七年级数学上第二章单项式与多项式测试题
- 格式:doc
- 大小:402.00 KB
- 文档页数:8
人教版七年级上册数学第二章测试卷一、选择题(每题3分,共30分)1. 单项式-frac{2xy^2}{5}的系数是()A. -2B. -(2)/(5)C. (2)/(5)D. 22. 下列式子中,是整式的是()A. (1)/(x)B. (1)/(x + 1)C. x + yD. √(x)3. 多项式3x^2 - 2x - 1的各项分别是()A. 3x^2,2x,1B. 3x^2, - 2x, - 1C. -3x^2,2x,1D. -3x^2, - 2x, - 14. 单项式3x^my^3与-2x^2y^n是同类项,则m + n=()A. 5B. 4C. 3D. 25. 化简a + 2b - b的结果是()A. a - bB. a + bC. a + 3bD. a + 26. 若A = x^2-2x + 1,B = 3x - 2,则A - B=()A. x^2-5x + 3B. x^2+x - 1C. x^2-5x - 1D. x^2-x + 37. 一个多项式与x^2-2x + 1的和是3x - 2,则这个多项式为()A. -x^2+5x - 3B. -x^2+x - 1C. x^2-5x + 3D. x^2-x + 38. 当x = 1时,代数式ax^3+bx + 1的值为3,则当x=-1时,代数式ax^3+bx + 1的值为()A. -1B. 1C. 3D. -39. 若M = 3x^2-5x + 2,N = 3x^2-4x + 2,则M与N的大小关系是()A. M>NB. M = NC. MD. 无法确定。
10. 某商品先按批发价a元提高10%零售,后又按零售价降低10%出售,则它最后的单价是()A. a元B. 0.99a元C. 1.21a元D. 0.81a元。
二、填空题(每题3分,共18分)11. 单项式frac{3π x^2y}{4}的次数是______。
12. 多项式2x^3-x^2y^2-3xy + x - 1是______次______项式。
人教版数学七年级上册第二章测试题含答案2.1整式一.选择题1.下列说法正确的是()A.是单项式B.x2+2x﹣1的常数项为1C.的系数是2D.xy的次数是2次2.在下面四个式子中,为单项式的是()A.y=x2B.C.﹣D.x3+x2(b+1)+1是关于x的二次多项式,则a,b的值可以是()A.0,0B.0,﹣1C.2,0D.2,﹣14.下列说法中,正确的为()A.单项式﹣的系数是﹣2,次数是3B.单项式a的系数是0,次数是1C.是二次单项式D.单项式﹣的系数是﹣,次数是35.下列代数式:0,﹣π,3x﹣2,a,,,,.多项式有()个.A.4B.3C.2D.16.多项式2x5+4xy3﹣5x2﹣1的次数和常数项分别是()A.5,﹣1B.5,1C.10,﹣1D.4,﹣17.关于整式的概念,下列说法正确的是()A.的系数是B.32x3y的次数是6C.的常数项是D.﹣x2y+xy﹣7是5次三项式8.下列说法正确的是()A.单项式的系数是B.m的系数和次数都是1C.m+n+1是一次单项式D.多项式2m3+3m2﹣4的项数是49.下列式子:x2+2,+4,,,5x,0中,整式的个数是()A.3B.4C.5D.610.下列说法正确的是()①的相反数是﹣3;②a3b的次数是3;③多项式﹣5x+6x2﹣1是二次三项式;④﹣6.1是负分数;⑤的系数是﹣.A.1个B.2个C.3个D.4个二.填空题11.多项式2x+3x2y﹣4的次数是,次数最高的项是,常数项是.12.若x2y3﹣πx4y n+xy2是关于x,y的六次多项式,则正整数n的值为.13.同时符合下列条件:①同时含有字母a,b;②常数项是﹣,且最高次项的系数是2的一个4次2项式,请你写出满足以上条件的一个整式.14.已知(b﹣3)x2y|b|+(a+2)是关于x,y的五次单项式,a2﹣3ab+b2的值为.15.把多项式2x3y﹣4y2x+5x2﹣1重新排列:则按x降幂排列:.三.解答题16.若关于x,y的多项式3x2﹣nx m y﹣x是一个三次三项式,且最高次项的系数是﹣3,求m ﹣n的值.17.已知多项式A=ax4+4x2﹣,B=3x b﹣5x,若A,B两个多项式的次数相同,且最高次数项的系数互为相反数.(1)求a,b的值;(2)求b2﹣3b+4b﹣5的值.18.已知多项式2x2y3+x3y2+xy﹣5x4﹣.(1)把这个多项式按x的降幂重新排列;(2)请指出该多项式的次数,并写出它的二次项和常数项.19.已知a、b互为相反数,c、d互为倒数,多项式﹣5x2y m+1+xy2﹣x3+6是六次四项式,单项式x2n y5﹣m的次数与这个多项式的次数相同,求(a+b)m+m n﹣(cd﹣n)2019的值.参考答案与试题解析一.选择题1.【解答】解:A、是多项式,故此选项错误;B、x2+2x﹣1的常数项为﹣1,故此选项错误;C、的系数是,故此选项错误;D、xy的次数是2次,正确.故选:D.2.【解答】解:A.y=x2是y关于x的函数,不是单项式;B.是数与字母的商,不是数与字母的积,不是单项式;C.﹣是单项式;D.(x﹣y)2=x2﹣2xy+y2,是多项式,不是单项式;故选:C.3.【解答】解:由题意得:a﹣2=0,b+1≠0,解得:a=2,b≠﹣1,故选:C.4.【解答】解:A、单项式﹣的系数是﹣,次数是3,故原题说法错误;B、单项式a的系数是1,次数是1,故原题说法错误;C、是二次多项式,故原题说法错误;D、单项式﹣的系数是﹣,次数是3,故原题说法正确;故选:D.5.【解答】解:在代数式:0,﹣π,3x﹣2,a,,,,中,多项式有3x﹣2,,共2个;故选:C.6.【解答】解:多项式2x5+4xy3﹣5x2﹣1的次数和常数项分别是5,﹣1.故选:A.7.【解答】解:A、﹣的系数是﹣;B、32x3y的次数是4;C、﹣的常数项是﹣;D、﹣x2y+xy﹣7是三次三项式;故选:C.8.【解答】解:A、单项式﹣的系数是﹣,原说法错误,故此选项不符合题意;B、单m的系数和次数都是1,原说法正确,故此选项符合题意;C、m+n+1是一次多项式,原说法错误,故此选项不符合题意;D、多项式2m3+3m2﹣4的项数是3,原说法错误,故此选项不符合题意.故选:B.9.【解答】解:在x2+2,+4,,,5x,0中,整式有x2+2,,5x,0,共有4个.故选:B.10.【解答】解:①的相反数是﹣;②a3b的次数是4;③多项式﹣5x+6x2﹣1是二次三项式;④﹣6.1是负分数;⑤的系数是﹣,其中正确的③④,共2个;故选:B.二.填空题(共5小题)11.【解答】解:多项式2x+3x2y﹣4的次数是:3,次数最高的项是:3x2y,常数项是:﹣4.故答案为:3,3x2y,﹣4.12.【解答】解:∵x2y3﹣πx4y n+xy2是关于x,y的六次多项式,又∵n是正整数,∴4+n=6,∴n=2;故答案为:2.13.【解答】解:满足以上条件的一个整式为2a2b2﹣,故答案为:2a2b2﹣(答案不唯一).14.【解答】解:∵(b﹣3)x2y|b|+(a+2)是关于x,y的五次单项式,∴|b|=3且b﹣3≠0,a+2=0,解得a=﹣2,b=﹣3,∴a2﹣3ab+b2=(﹣2)2﹣3×(﹣2)×(﹣3)+(﹣3)2=4﹣18+9=﹣5,故答案为:﹣5.15.【解答】解:多项式2x3y﹣4y2x+5x2﹣1的各项为2x3y,﹣4y2x,5x2,﹣1,按x降幂排列,得2x3y+5x2﹣4y2x﹣1;故答案为:2x3y+5x2﹣4y2x﹣1.三.解答题(共4小题)16.【解答】解:∵关于x,y的多项式3x2﹣nx m y﹣x是一个三次三项式,且最高次项的系数是﹣3,∴m+1=3,﹣n=﹣3,解得:n=3,m=2,故m﹣n=2﹣3=﹣1.17.【解答】解:(1)∵多项式A=ax4+4x2﹣,B=3x b﹣5x,若A,B两个多项式的次数相同,且最高次数项的系数互为相反数,∴;(2)b2﹣3b+4b﹣5=,把b=4代入得:==8+4﹣5=7.18.【解答】解:(1)按x降幂排列为:﹣5x4+x3y2+2x2y3+xy﹣;(2)该多项式的次数是5,它的二次项是xy,常数项是﹣.19.【解答】解:∵多项式﹣5x2y m+1+xy2﹣x3+6是六次四项式,∴2+m+1=6,解得:m=3,∵单项式x2n y5﹣m的次数与这个多项式的次数相同,∴2n+5﹣m=6,则2n+5﹣3=6,解得:n=2,∵a、b互为相反数,c、d互为倒数,∴a+b=0,cd=12.2 整式的加减一.选择题1.下列计算正确的是()A.5a﹣4a=1B.3x+4x=7x2C.4x2y+yx2=5x2y D.a+2b=3ab2.若单项式a m﹣1b2与a2b n的和仍是单项式,则2m﹣n的值是()A.3B.4C.6D.83.计算x3+x3的结果是()A.x6B.x9 C.2x6 D.2x34.下列等式一定成立的有()①﹣a+b=﹣(a﹣b),②﹣a+b=﹣(b+a),③2﹣3x=﹣(3x﹣2),④30﹣x=5(6﹣x).A.1个B.2个C.3个D.4个5.下列去括号的结果中,正确的是()A.﹣m+(﹣n2+3mn)=﹣m+n2+3mnB.4mn+4n﹣(m2﹣2mn)=4mn+4n﹣m2+2mnC.﹣(a﹣c)+(b+d)=﹣a+b﹣c+dD.(﹣3b+)﹣(﹣5a)=5a﹣3b﹣6.若代数式x2+ax﹣(bx2﹣x﹣3)的值与字母x无关,则a﹣b的值为()A.0B.﹣2C.2D.17.A和B都是三次多项式,则A+B一定是()A.三次多项式B.次数不高于3的整式C.次数不高于3的多项式D.次数不低于3的整式8.下列计算正确的是()A.2a+3b=5ab B.2a2+3a2=5a4C.2a2b+3a2b=5a2b D.2a2﹣3a2=﹣a9.若与a m b3是同类项,则m+n的值为()A.1B.2C.3D.无法确定10.已知6b﹣a=﹣5,则(a+2b)﹣2(a﹣2b)=()A.5B.﹣5C.﹣10D.10二.填空题11.请写出﹣5x5y3的一个同类项.12.已知关于x,y的多项式﹣5x2y﹣2nxy+5my2﹣3xy+4x﹣7不含二次项,则m+n=.13.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如下:×,所捂多项式是.14.有理数a,b,c在数轴上的位置如图所示:则代数式|a+c|﹣2|a﹣b|+|b﹣c|化简后的结果为.15.若关于x、y的代数式mx3﹣3nxy2﹣(2x3﹣xy2)+xy中不含三次项,则m﹣6n的值为.三.解答题16.计算(1)(﹣2)2×5﹣(﹣2)3÷4;(2)(6m2n﹣4m)+(2m2n﹣4m+1).17.已知﹣x m﹣2n y m+n与﹣3x5y6的和是单项式,求(m﹣2n)2﹣5(m+n)﹣2(m﹣2n)2+(m+n)的值.18.先化简,再求值:2x2﹣[3(﹣x2+xy)﹣(xy﹣3x2)]+2xy,其中x是﹣2的倒数,y 是最大的负整数.参考答案1.解:A、原式=a,不符合题意;B、原式=7x,不符合题意;C、原式=5x2y,符合题意;D、原式不能合并,不符合题意.故选:C.2.解:∵单项式a m﹣1b2与a2b n的和仍是单项式,∴m﹣1=2,n=2,解得:m=3,n=2,∴2m﹣n=2×3﹣2=4,故选:B.3.解:x3+x3=2x3.故选:D.4.解:①﹣a+b=﹣(a﹣b),正确;②﹣a+b=﹣(﹣b+a),故②错误;③2﹣3x=﹣(3x﹣2),正确;④30﹣x=5(6﹣x),故④错误;所以正确的有①③共2个.故选:B.5.解:A、原式=﹣m﹣n2+3mn=﹣m﹣n2+3mn,不符合题意;B、原式=4mn+4n﹣m2+2mn,符合题意;C、原式=﹣a+c+b+d,不符合题意;D、原式=﹣3b++5a,不符合题意,故选:B.6.解:∵x2+ax﹣(bx2﹣x﹣3)=x2+ax﹣bx2+x+3=(1﹣b)x2+(a+1)x+3,且代数式的值与字母x无关,∴1﹣b=0,a+1=0,解得:a=﹣1,b=1,则a﹣b=﹣1﹣1=﹣2,故选:B.7.解:A和B都是三次多项式,则A+B一定是次数不高于3的整式,故选:B.8.解:A.2a与3b不是同类项,所以不能合并,故本选项不合题意;B.2a2+3a2=5a2,故本选项不合题意;C.2a2b+3a2b=5a2b,正确;D.2a2﹣3a2=﹣a2,故本选项不合题意.故选:C.9.解:∵与a m b3是同类项,∴m=1,n+1=3,∴m=1,n=2,∴m+n=3,故选:C.10.解:∵6b﹣a=﹣5,则(a+2b)﹣2(a﹣2b)=a+2b﹣2a+4b=﹣a+6b=﹣5;故选:B.11.解:答案不唯一,如3x5y3.故答案为:3x5y3(答案不唯一).12.解:﹣5x2y﹣2nxy+5my2﹣3xy+4x﹣7=﹣5x2y﹣(2n+3)xy+5my2+4x﹣7,∵多项式不含二次项,∴5m=0,2n+3=0,解得m=0,n=﹣1.5,∴m+n=﹣1.5,故答案为:﹣1.5.13.解:由题意可得,所捂多项式是:(3x2y﹣xy2+xy)÷(﹣xy)=3x2y÷(﹣xy)﹣xy2÷(﹣xy)+xy÷(﹣xy)=﹣6x+2y﹣1.故答案为:﹣6x+2y﹣1.14.解:根据数轴得a<b<0<c且|a|>|b|>|c|,则a+c<0,a﹣b<0,b﹣c<0,则|a+c|﹣2|a﹣b|+|b﹣c|=﹣(a+c)+2(a﹣b)﹣(b﹣c)=﹣a﹣c+2a﹣2b﹣b+c=a﹣3b.故答案为:a﹣3b.15.解:mx3﹣3nxy2﹣(2x3﹣xy2)+xy=(m﹣2)x3+(1﹣3n)xy2+xy,∵关于x、y的代数式mx3﹣3nxy2﹣(2x3﹣xy2)+xy中不含三次项,∴m﹣2=0,1﹣3n=0,解得m=2,n=,∴m﹣6n=2﹣=2﹣2=0.故答案为:0.16.解:(1)原式=4×5﹣(﹣8)÷4=20+2=22;(2)原式=6m2n﹣4m+2m2n﹣4m+1=8m2n﹣8m+1.17.解:原式=(1﹣2)(m﹣2n)2+(1﹣5)(m+n)=﹣(m﹣2n)2﹣4(m+n),∵﹣x m﹣2n y m+n与﹣3x5y6是同类项,∴m﹣2n=5,m+n=6,∴﹣(m﹣2n)2﹣4(m+n)=﹣52﹣4×6=﹣25﹣24=﹣49.18.解:原式=2x2+5x2﹣2xy+xy﹣3x2+2xy=4x2+xy,∵x是﹣2的倒数,y是最大的负整数,∴x=﹣,y=﹣1,则原式=1.。
单项式与多项式例题及练习例: 试用尽可能多的方法对下列单项式进行分类: 3a3x, bxy, 5x2, -4b2y, a3, -b2x2, axy2解: (1)按单项式的次数分: 二次式有5x;三次式有bxy, -4b2y, a3;四次式有3a3x, •-b2x2, axy2。
(2)按字母x的次数分: x的零次式有-4b2y, a3;x的一次式有3a3x, bxy, axy2;x的二次式有5x2, -b2x2。
(3)按系数的符号分:系数为正的有3a3x, bxy, 5x2, a3, axy2;系数为负的有-4b2y, -b2x2。
(4)按含有字母的个数分: 只含有一个字母的有5x2, a3;•含有两个字母的有3a3x, •-4b2y, -b2x2;含有三个字母的有bxy, axy2。
评析: 对单项式进行分类的关键在于选择一个恰当的分类角度。
如按单项式的次数、按式中某个字母的次数、按系数的符号、按含有字母的个数等等。
1、把代数式和的共同点填在下列横线上, 例如:都是代数式。
①都是式;②都是。
2.写出一个系数为-1, 含字母、的五次单项式。
3、如果是关于x的五次四项式, 那么p+q= 。
4、若(4 -4)x2yb+1是关于x, y的七次单项式, 则方程ax-b=x-1的解为。
5.下列说法中正确的是()A. 的次数为0 B、的系数为C.-5是一次单项式D. 的次数是3次6.若是关于x, y的一个单项式, 且系数是, 次数是5, 则和b的值是多少7、已知:是关于a、b的五次单项式, 求下列代数式的值, 并比较(1)、(2)两题结果:(1), (2)●体验中考1.(2008年湖北仙桃中考题改编)在代数式, , , , , 中单项式有个。
2、(2009年江西南昌中考题改编)单项式xy2z 的系数是__________, 次数是__________。
3.(2008年四川达州中考题改编)代数式和的共同点是。
4、(2009年山东烟台中考题改编)如果是六次单项式, 则的值是( )A.1B.2C.3D.5参考答案:◆随堂检测1. , 32.—63.C4.D5.①×;②√;③×;④×◆课下作业●拓展提高1.①单项式;②5次2.3.94.x=5.D6. 7、由题意可知: , 解得 。
人教版七年级数学上册第二章单元测试题(含答案)一、单选题1.下列各组单项式中,属于同类项的是( )A .2x y 与22yxB .2ab 与2a b -C .4x -与4y -D .3ab 与3a b2.下列说法正确的是( )A .单项式2xy-的系数是-2 B .单项式23x y -与4x 是同类项 C .单项式2x yz -的次数是4D .多项式3221x x --是三次三项式3.下列各式中,正确的是( )A .325a a a +=B .235a b ab +=C .321ab ab -=D .22223a b a b a b -=-4.多项式245634a a a ---的最高次项为( )A .-4B .4C .44aD .44a -5.一台整式转化器原理如图,开始时输入关于x 的整式M ,当21M x =+时,第一次输出41x +,继续下去,则第3次输出的结果是( )A .161x +B .141x +C .121x +D .81x +6.已知单项式13a b x y -与436x y 是同类项,则代数式a+b 的值为( )A .5B .6C .7D .87.下列说法中正确的个数是( )⑴a 和0都是单项式.⑵多项式2223721a b a b ab -+-+的次数是3. ⑶单项式22π3a b -的系数为23-.⑷222x xy y +-可读作2x 、2xy 、2y -的和. A .1个B .2个C .3个D .4个8.将1,2,3,4,5,6六个数随机分成2组,每组各3个,分别用 1a , 2a , 3a 和 1b , 2b ,3b 表示,且 123a a a << , 123b b b >> ,设 112233m a b a b a b =-+-+- ,则 m 的可能值为( ). A .3B .39或C .9D .59或9.已知代数式x 2+ax -2y +7-(bx 2-2x +9y -1)的值与x 的取值无关,则a +b 的值为( )A .-1B .1C .-2D .210.多项式8x 2-3x+5与多项式3x 3+2mx 2-5x+7相加后,不含二次项,则常数m 的值是( )A .2B .-4C .-2D .-8二、填空题11.将多项式2233235x y xy x y -++-按字母y 降幂排列是 . 12.多项式2365a a --中的常数项是 .13.若42m a b -与325n a b +是同类项,则m n -+的值是 . 14.若单项式12m xy -与32n x y -的差是单项式,则m n -的值是 .15.如图,数轴上有三个点A 、B 、C ,表示的数分别是﹣4、﹣2、3,请回答:(1)若使C 、B 两点的距离与A 、B 两点的距离相等,则需将点C 向左移动 个单位(其中点C 不与点A 重合).(2)若在表示﹣1的点处有一只小青蛙,一步跳1个单位长.小青蛙第1次先向左跳1步,第2次再向右跳3步,然后第3次再向左跳5步,第4次再向右跳7步…按此规律继续跳下去,那么跳第99次时,应跳 步,落脚点表示的数是 .(3)若移动A 、B 、C 三点中的两个点,使三个点表示的数相同,移动方法有 种,其中移动所走的距离和最小的是 个单位;(4)若数轴上有个动点表示的数是x ,则|x+4|+|x+2|+|x-3|的最小值是 .16.把四张形状大小完全相同的小长方形卡片(如图①),卡片长为x ,宽为y ,不重叠地放在一个底面为长方形(宽为a )的盒子底部(如图②),盒底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分周长和是 (用只含b 的代数式表示).三、解答题17.先化简,再求值:4xy -2xy -(-3xy ),其中x =2,y =-1.18.已知 22a b -=- ,求代数式 ()()22324232ab a b ab a b -+--+ 的值.19.先化简,再求值:()42424443a ab a ab a ---+,其中3a =-,2b =.20.已知有理数a 、b 、c 在数轴上对应的点如下图所示,化简:|||2|||b a a c c b --+-+21.设 ()()3254326356107133212ax x x x b x x x x x -+++=+-++- ,求a 与b 的值22.已知A=a 2-2ab+b 2,B=-a 2-3ab-b 2,求:2A-3B 。
2.1整式一.选择题1.多项式3xy﹣2xy2+1的次数及最高次项的系数分别是()A.2,﹣3B.2,3C.3,2D.3,﹣2 2.单项式﹣4πab2的次数是()A.﹣4B.2C.3D.4 3.单项式﹣6ab的系数与次数分别为()A.6,1 B.﹣6,1C.6,2D.﹣6,2 4.下列说法,正确的是()A.23x2是五次单项式B.2πR2的系数是2C.0是单项式D.a3b的系数是05.下列关于多项式x2+3x﹣2的说法,其中错误的是()A.是二次三项式B.最高次项的系数是1C.一次项系数是3D.常数项是26.在式子a2+2,,ab2,,﹣8x,3中,整式有()A.6个B.5个C.4个D.3个7.下列说法正确的是()A.多项式ab+c是二次三项式B.5不是单项式C.单项式﹣x3y2z的系数是﹣1,次数是6D.多项式2x2+3y的次数是38.在式子,2x+5y,0,﹣2a,﹣3x2y3,中,单项式的个数是()A.5个B.4个C.3个D.2个9.下列说法正确的是()A.﹣1不是单项式B.2πr3+的次数是3C.的次数是3D.的系数是10.下列说法中,正确的是()A.单项式的系数是﹣2,次数是3B.单项式a的系数是1,次数是0C.﹣3x2y+4x﹣1是三次三项式,常数项是1D.单项式的次数是2,系数为二.填空题11.多项式﹣x3y2+xy﹣2的常数项是,它的项数是,它的次数是.12.单项式﹣x2y的系数是;多项式2x2y﹣xy的次数是.13.如果一个单项式的系数和次数分别为m、n,那么2mn=.14.下列代数式:﹣6x2y、、﹣、a、、、﹣x2+2x﹣1中,单项式有个.15.如果y|m|﹣3﹣(m﹣5)y+16是关于y的二次三项式,则m的值是.三.解答题16.已知a、b互为相反数,c、d互为倒数,多项式﹣5x2y m+1+xy2﹣x3+6是六次四项式,单项式x2n y5﹣m的次数与这个多项式的次数相同,求(a+b)m+m n﹣(cd﹣n)2019的值.17.已知多项式A=ax a+4x2﹣,B=3x b﹣5x,若A,B两个多项式的次数相同,且最高次数项的系数互为相反数.(1)求a,b的值;(2)求b2﹣3b+4b﹣5的值.18.已知多项式2x2y3+x3y2+xy﹣5x4﹣.(1)把这个多项式按x的降幂重新排列;(2)请指出该多项式的次数,并写出它的二次项和常数项.19.已知式子M=(a﹣16)x3+20x2+10x+5是关于x的二次多项式,且二次项的系数为b,在数轴上有点A、B、C三个点,且点A、B、C三点所表示的数分别为a、b、c,如图所示已知AC=6AB(1)a=;b=;c=.(2)若动点P、Q分别从C、O两点同时出发,向右运动,且点Q不超过点A.在运动过程中,点E为线段AP的中点,点F为线段BQ的中点,若动点P的速度为每秒2个单位长度,动点Q的速度为每秒3个单位长度,求的值.(3)点P、Q分别自A、B出发的同时出发,都以每秒2个单位长度向左运动,动点M 自点C出发,以每秒6个单位长度的速度沿数轴向右运动设运动时间为t(秒),3<t<时,数轴上的有一点N与点M的距离始终为2,且点N在点M的左侧,点T为线段MN 上一点(点T不与点M、N重合),在运动的过程中,若满足MQ﹣NT=3PT(点T不与点P重合),求出此时线段PT的长度.参考答案与试题解析一.选择题1.【解答】解:多项式3xy﹣2xy2+1的次数及最高次项的系数分别是:3,﹣2.故选:D.2.【解答】解:单项式﹣4πab2的次数是3.故选:C.3.【解答】解:单项式﹣6ab的系数与次数分别为﹣6,2.故选:D.4.【解答】解:A、23x2是二次单项式,故A选项错误;B、2πR2的系数是2π,故B选项错误;C、0是单项式,故C选项正确;D、a3b的系数是1,故D选项错误.故选:C.5.【解答】解:A、多项式x2+3x﹣2是二次三项式,正确,不合题意;B、多项式x2+3x﹣2的最高次项的系数是1,正确,不合题意;C、多项式x2+3x﹣2的一次项系数是3,正确,不合题意;D、多项式x2+3x﹣2的常数项是﹣2,原式错误,符合题意.故选:D.6.【解答】解:在式子a2+2,,ab2,,﹣8x,3中,整式有:a2+2,ab2,,﹣8x,3共5个.故选:B.7.【解答】解:A、多项式ab+c是二次二项式,故此选项错误;B、5是单项式,故此选项错误;C、单项式﹣x3y2z的系数是﹣1,次数是6,故此选项正确;D、多项式2x2+3y的次数是2,故此选项错误.故选:C.8.【解答】解:式子,2x+5y,0,﹣2a,﹣3x2y3,中,单项式有:0,﹣2a,﹣3x2y3,共3个.故选:C.9.【解答】解:A、﹣1是单项式,错误;B、2πr3+的次数是4,错误;C、的次数是3,正确;D、﹣的系数是﹣,错误;故选:C.10.【解答】解:A、单项式的系数是﹣,次数是3,系数包括分母,故这个选项错误;B、单项式a的系数是1,次数是1,当系数和次数是1时,可以省去不写,故这个选项错误;C、﹣3x2y+4x﹣1是三次三项式,常数项是﹣1,每一项都包括这项前面的符号,故这个选项错误;D、单项式﹣的次数是2,系数为﹣,符合单项式系数、次数的定义,故这个选项正确;故选:D.二.填空题(共5小题)11.【解答】解:多项式﹣x3y2+xy﹣2的常数项是:﹣2,它的项数是:3,它的次数是:5.故答案为:﹣2,3,5.12.【解答】解:单项式﹣x2y的系数是:﹣;多项式2x2y﹣xy的次数是:3.故答案为:﹣,3.13.【解答】解:单项式的系数是﹣,次数是4,则m=﹣,n=4,所以:2mn=2×(﹣)×4=﹣,故答案为:﹣.14.【解答】解:根据单项式的定义,可以得到:﹣6x2y、、﹣、a是单项式,共4个.故答案为:4.15.【解答】解:∵y|m|﹣3﹣(m﹣5)y+16是关于y的二次三项式,∴|m|﹣3=2,m﹣5≠0,∴m=﹣5,故答案为:﹣5.三.解答题(共4小题)16.【解答】解:∵多项式﹣5x2y m+1+xy2﹣x3+6是六次四项式,∴2+m+1=6,解得:m=3,∵单项式x2n y5﹣m的次数与这个多项式的次数相同,∴2n+5﹣m=6,则2n+5﹣3=6,解得:n=2,∵a、b互为相反数,c、d互为倒数,∴a+b=0,cd=1,∴(a+b)m+m n﹣(cd﹣n)2019=0+9﹣(1﹣2)2019=9﹣(﹣1)=10.17.【解答】解:(1)∵多项式A=ax a+4x2﹣,B=3x b﹣5x,若A,B两个多项式的次数相同,且最高次数项的系数互为相反数,∴,解得a=﹣7,b=2;(2)b2﹣3b+4b﹣5=,把b=2代入得:==2+2﹣5=﹣1.18.【解答】解:(1)按x降幂排列为:﹣5x4+x3y2+2x2y3+xy﹣;(2)该多项式的次数是5,它的二次项是xy,常数项是﹣.19.【解答】解:(1)∵M=(a﹣16)x3+20x2+10x+5是关于x的二次多项式,二次项的系数为b∴a=16,b=20;∴AB=4∵AC=6AB∴AC=24∴16﹣c=24∴c=﹣8故答案为:16,20,﹣8;(2)设点P的出发时间为t秒,由题意得:EF=AE﹣AF=AP﹣BQ+AB=(24﹣2t)﹣(20﹣3t)+4=6+∴BP﹣AQ=(28﹣2t)﹣(16﹣3t)=12+t,∴=2;(3)设点P的出发时间为t秒,P点表示的数为16﹣2t,Q点表示的数为20﹣2t,M点表示的数为6t﹣8,N点表示的数为6t﹣10,T点表示的数为x,∴MQ=28﹣8t,NT=x﹣6t+10,PT=|16﹣2t﹣x|2.2整式的加减一.选择题1.下列运算正确的是()A.3a2+a3=a5B.3a2b﹣5ab2=﹣2abC.3ab﹣ab=2D.3a+2a=5a2.若﹣4x2y和23x m y n是同类项,则m,n的值分别是()A.m=2,n=1B.m=2,n=0C.m=4,n=1D.m=4,n=0 3.下列各组代数式中,属于同类项的是()A.ab与3ba B.a2b与a2c C.2a2b与2ab2D.a与b4.若代数式2x2+7kxy﹣y2中不含xy项,则k的值为()A.0B.﹣C.D.15.下列计算中,正确的是()A.a3﹣a2=a B.5a﹣7a=﹣2C.2a3+3a2=5a5D.a2b﹣ba2=﹣a2b6.下列运算正确的是()A.5a2﹣3a2=2B.x2+x2=x4C.3a+2b=5ab D.7ab﹣6ba=ab 7.下列各式去括号正确的是()A.a2﹣(2a﹣b+c)=a2﹣2a﹣b+cB.a+(b﹣c﹣d)=a﹣b+c+dC.a﹣(b﹣c﹣d)=a﹣b+c+dD.2a﹣[2a﹣(﹣2a)]=08.若单项式与﹣y2n x3的和仍是单项式,则(mn)2021的值为()A.﹣1B.C.D.19.已知与3xy4+b的和是单项式,那么a、b的值分别是()A.B.C.D.10.已知2x2y3a与﹣4x2a y1+b是同类项,则b a的值为()A.2B.﹣2C.1D.﹣1二.填空题11.若代数式﹣a m b4和3ab n相加后仍是单项式,则m+n=.12.甲、乙、丙三人有相同数量的小球.如果甲给乙2颗,丙给甲5颗,然后乙再给丙一些球,所给的数量与丙还有的球数量相同,那么乙最后剩下颗球.13.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如下:×,所捂多项式是.14.单项式x﹣|a﹣1|y与是同类项,则b a=.15.某同学在做计算A+B时,误将“A+B”看成了“A﹣B”,求得的结果是9x2﹣2x+7,已知B=x2+3x+2,则A+B的正确答案为.三.解答题16.合并同类项:5m+2n﹣m﹣3n.17.化简(1)5xy﹣2y2﹣3xy﹣4y2.(2)2(2a﹣3b)﹣3(2b﹣3a).18.多项式A=x3+mx2+2x﹣8、B=3x﹣n,A与B的乘积中不含有x3和x项.(1)试确定m和n的值;(2)求3A﹣2B.19.小红做一道题:已知两个多项式A,B,其中A=y2+ay﹣1,计算B﹣2A她误将B﹣2A 写成2B﹣A,结果答案是3y2+5ay﹣4y﹣1.(1)求多项式B;(2)若a为常数,要使得B中不含一次项,则a的值为多少?参考答案与试题解析一.选择题1.【解答】解:3a2与a3、3a2b与5ab2都不是同类项,不能合并,故选项A、B错误;3ab﹣ab=2≠2ab,故选项C错误;3a+2a=5a,合并正确.故选:D.2.【解答】解:∵﹣4x2y和23x m y n是同类项,∴m=2,n=1,故选:A.3.【解答】解:A、ab与3ba符合同类项的定义,它们是同类项.故本选项正确;B、a2b与a2c所含的字母不相同,它们不是同类项.故本选项错误;C、2a2b与2ab2相同字母的指数不相同,它们不是同类项.故本选项错误;D、a与b所含字母不相同,它们不是同类项.故本选项错误;故选:A.4.【解答】解:∵代数式2x2+7kxy﹣y2中不含xy项,∴7k=0.解得:k=0.故选:A.5.【解答】解:A、a3与﹣a2不是同类项,所以不能合并,故本选项不合题意;B、5a﹣7a=﹣2a,故本选项不合题意;C、2a3与3a2不是同类项,所以不能合并,故本选项不合题意;D、,故本选项符合题意.故选:D.6.【解答】解:A、5a2﹣3a2=2a2,故本选项不合题意;B、x2+x2=2x2,故本选项不合题意;C、3a和2b不是同类项,所以不能合并,故本选项不合题意;D、7ab﹣6ba=ab,故本选项符合题意.故选:D.7.【解答】解:A、a2﹣(2a﹣b+c)=a2﹣2a+b﹣c;B、a+(b﹣c﹣d)=a+b﹣c﹣d;C、a﹣(b﹣c﹣d)=a﹣b+c+d;D、2a﹣[2a﹣(﹣2a)]=2a﹣(2a+2a)=2a﹣2a﹣2a=﹣2a;故选:C.8.【解答】解:依题意得:,解得:,∴(mn)2021=()2021=﹣1.故选:A.9.【解答】解:∵与3xy4+b的和是单项式,∴与3xy4+b是同类项.∴.∴a=2,b=﹣1.故选:B.10.【解答】解:根据题意可得:,解得:,所以b a的值=21=2,故选:A.二.填空题11.【解答】解:∵代数式﹣a m b4和3ab n相加后仍是单项式,∴﹣a m b4和3ab n是同类项.∴m=1,n=4.∴m+n=5.故答案为:5.12.【解答】解:设甲、乙、丙原来有a颗小球,乙最后剩下的小球有:a+2﹣(a﹣5)=a+2﹣a+5=7,故答案为:7.13.【解答】解:由题意可得,所捂多项式是:(3x2y﹣xy2+xy)÷(﹣xy)=3x2y÷(﹣xy)﹣xy2÷(﹣xy)+xy÷(﹣xy)=﹣6x+2y﹣1.故答案为:﹣6x+2y﹣1.14.【解答】解:由题意知﹣|a﹣1|=≥0,∴a=1,b=1,则a b=11=1,故答案为:1.15.【解答】解:∵A﹣B=9x2﹣2x+7,B=x2+3x+2,∴A=x2+3x+2+9x2﹣2x+7,=10x2+x+9,∴A+B=10x2+x+9+x2+3x+2,=11x2+4x+11.故答案为:11x2+4x+11.三.解答题16.【解答】解:5m+2n﹣m﹣3n=(5m﹣m)+(2n﹣3n)=4m﹣n.17.【解答】解:(1)原式=5xy﹣3xy﹣4y2﹣2y2=2xy﹣6y2.(2)原式=4a﹣6b﹣6b+9a=13a﹣12b.18.【解答】解:(1)(x3+mx2+2x﹣8)(3x﹣n)=3x4+3mx3+6x2﹣24x﹣nx3+mnx2+2nx+8n=3x4+(3m﹣n)x3+(6+mn)x2+(2n﹣24)x+8n,∵多项式A=x3+mx2+2x﹣8、B=3x﹣n,A与B的乘积中不含有x3和x项,∴3m﹣n=0,2n﹣24=0,解得:n=12,m=4;(2)由(1)得:3A﹣2B=3(x3+mx2+2x﹣8)﹣2(3x﹣n)=3(x3+4x2+2x﹣8)﹣2(3x﹣12)=3x3+12x2+6x﹣24﹣6x+24=3x3+12x2.19.【解答】解:(1)∵2B﹣A=3y2+5ay﹣4y﹣1,A=y2+ay﹣1,∴2B=3y2+5ay﹣4y﹣1+y2+ay﹣1=4y2+6ay﹣4y﹣2,∴B=2y2+3ay﹣2y﹣1。
第02讲整式(单项式与多项式)1.掌握单项式、多项式、整式的概念;2.掌握单项式的系数与次数和多项式的项数、系数与次数;3.掌握单项式的规律题的方法;4.掌握多项式的升幂、降幂排列方法.知识点01单项式的概念如mn 2-,23xy π,0,它们都是数与字母的积,像这样的式子叫单项式,单独的一个数或一个字母也是单项式.【注意】(1)单项式包括三种类型:①数字与字母相乘或字母与字母相乘组成的式子;②单独的一个数;③单独的一个字母.(2)单项式中不能含有加减运算,但可以含有除法运算.如:2mn 可以写成mn 21。
但若分母中含有字母,如x 1就不是单项式,因为它无法写成数字与字母的乘积.知识点02单项式的系数与次数1.单项式的系数:单项式中的数字因数叫做这个单项式的系数.(1)确定单项式的系数时,最好先将单项式写成数与字母的乘积的形式,再确定其系数;(2)圆周率π是常数.单项式中出现π时,应看作系数;(3)当一个单项式的系数是1或-1时,“1”通常省略不写;(4)单项式的系数是带分数时,通常写成假分数.2.单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数.单项式的次数是计算单项式中所有字母的指数和得到的,计算时要注意以下两点:(1)没有写指数的字母,实际上其指数是1,计算时不能将其遗漏;(2)不能将数字的指数一同计算.知识点03多项式1.多项式的概念:几个单项式的和叫做多项式.2.多项式的项:每个单项式叫做多项式的项,不含字母的项叫做常数项.【注意】(1)多项式的每一项包括它前面的符号.(2)一个多项式含有几项,就叫几项式,如:1-xx是一个三项式.22+33.多项式的次数:多项式里次数最高项的次数,叫做这个多项式的次数.【注意】(1)多项式的次数不是所有项的次数之和,而是多项式中次数最高的单项式的次数.(2)一个多项式中的最高次项有时不止一个,在确定最高次项时,都应写出.知识点04整式单项式与多项式统称为整式.【注意】(1)单项式、多项式、整式这三者之间的关系如图所示.即单项式、多项式必是整式,但反过来就不一定成立.(2)分母中含有字母的式子一定不是整式.题型01单项式的判断题型02单项式的系数、次数题型03写出满足某些特征的单项式题型04单项式规律题题型05多项式的判断题型06多项式的项、项数或次数题型07多项式系数、指数中字母求值的值是题型08将多项式按某个字母升幂(降幂)排列题型09整式的判断一、单选题。
一.选择题(共10小题)1.(2015•厦门)已知一个单项式的系数是2,次数是3,则这个单项式可所以()A.﹣2xy2B.3x2C.2xy3D.2x32.(2015•台州)单项式2a的系数是()A.2B.2aC.1D.a3.(2015•通辽)下列说法中,准确的是()A.﹣x2的系数是B.πa2的系数是C.3ab2的系数是3aD.xy2的系数是4.(2015•杭州模仿)整式﹣0.3x2y,0,,,,﹣2a2b3c中是单项式的个数有(A.2个B.3个C.4个D.5个5.(2015•浦东新区二模)下列各整式中,次数为5次的单项式是()A.xy4B.xy5C.x+y4D.x+y56.(2015•金山区二模)下列代数式中是二次二项式的是()A.xy﹣1B.C.x2+xy2D.7.(2015春•青羊区校级月考)在代数式a+bac,,π,3x2﹣4x ﹣2,,πab,0,中,下列结论准确的是(A.有4个单项式,2个多项式B.有4个单项式,3个多项式C.有7个整式D.有3个单项式,2个多项式8.(2015•佛山)多项式2a2b﹣ab2﹣ab的项数及次数分离是()A.3,3B.3,2C.2,3D.2,29.(2014•甘肃模仿)下列说法准确的是()A.﹣3x3y2z的系数是3B.x2+x3是5次多项式C.不是整式D.πr2是3次单项式10.(2015•临沂)不雅察下列关于x的单项式,探讨其纪律:x,3x2,5x3,7x4,9x5,11x6,…按照上述纪律,第2015个单项式是()A.2015x2015B.4029x2014C.4029x2015D.4031x2015二.填空题(共10小题)11.(2015•岳阳)单项式﹣x2y3的次数是.12.(2015•牡丹江)一列单项式:﹣x2,3x3,﹣5x4,7x5,…,按此纪律分列,则第7个单项式为13.(2015•长沙校级二模)单项式的系数与次数之积为.14.(2015春•乐平市期中)在代数式3xy2,m,6a2﹣a+3,12,,中,单项式有个,多项式有个.15.(2015春•濮阳校级期中)的系数是,次数是.16.(2014秋•根河市校级期中)在代数式,+3,﹣2,,,,单项式有个多项式有个,整式有个,代数式有个.17.(2015•咸阳模仿)是次项式.18.(2015春•芦溪县期末)有一个多项式为a8﹣a7b+a6b2﹣a5b3+…,按照此纪律写下来,这个多项式的第六项是19.(2014•咸阳模仿)﹣x4y﹣4a2b+是由..三项构成,它们的系数分离是,,.20.(2014秋•西城区校级期末)若3a2bcm为七次单项式,则m 的值为.三.解答题(共5小题)21.指出下列各式中哪些是单项式?哪些是多项式?哪些是整式?.22.(2014秋•曹县期末)不雅察下列各式:﹣a,a2,﹣a3,a4,﹣a5,a6,…(1)写出第2014个和2015个单项式;(2)写出第n个单项式.23.(2014秋•忠县校级期末)不雅察下列一串单项式的特色:xy,﹣2x2y,4x3y,﹣8x4y,16x5y,…(1)按此纪律写出第9个单项式;(2)试猜测第N个单项式为若干?它的系数和次数分离是若干?24.(2014秋•寿县校级期中)写出一个三次四项式,知足前提:①含有两个字母,②每个字母的指数都不大于2,③含有常数项.然后选出你所爱好的一正一负两个有理数作为字母的值代入求这个多项式的值25.(2012春•梅江区校级月考)已知多项式:x10﹣x9y+x8y2…﹣xy9+y10(1)该多项式有什么特色和纪律;(2)按纪律写出多项式的第六项,并指出它的次数和系数;(3)这个多项式是几回几项式?一.选择题(共10小题)1.D2.A3.D4.C5.A6.A7.A8.A9.C10.C二.填空题(共10小题)11.512.-13x813.-214.3215.-516.224617.三三18.-a3b519.-x4y-4a2b-1-420.4三.解答题(共5小题)21.解:的分母中含有字母,既不是单项式,也不是多项式,更不是整式.单项式有:;多项式有:;整式有:.22.解:(1)由﹣a,a2,﹣a3,a4,﹣a5,a6,…可得第n项的表达式为(﹣1)n,所以第2014个单项式为,第2015个单项式为﹣.(2)由单项式的特色可得第n个单项式为(﹣1)n.23.解:(1)∵当n=1时,xy,当n=2时,﹣2x2y,当n=3时,4x3y,当n=4时,﹣8x4y,当n=5时,16x5y,∴第9个单项式是29﹣1x9y,即256x9y.(2)∴n为偶数时,单项式为负数.x的指数为n时,2的指数为n ﹣1,∴当n为奇数时的单项式为2n﹣1xny,它的系数是2n﹣1,次数是n+1.24.解:此题答案不独一,知足前提的可为:a2b﹣a2+b﹣1.令a=1,b=﹣1,则a2b﹣a2+b﹣1=12×(﹣1)+(﹣1)﹣1=﹣1﹣1﹣1=﹣3.即该多项式的值是﹣3.25.解:(1)该多项式的特色是:x的次数在减小,y的次数在增长,纪律是:x的次数减小量等于y的次数增长量;(2)依据纪律可得第六项为:﹣x5y5,它的系数是﹣1,次数是10;(3)这个多项式是10次11项式.。
单项式和多项式一、基本练习:1.单项式: 由____与____的积组成的代数式。
单独的一个___或_____也是单项式。
2.练习:判断下列各代数式哪些是单项式?(1) x3 (2)abc; (3) 2.6h (4) a+b+c (5)y (6)-3 a2b (7)-5 。
3.单项式系数: 单项式中的___因数叫这个单项式的系数,对应单项式中的数字(包括数字符号)部分。
如x3,π,ab,2.6h,-m它们都是单项式,系数分别为______4、单项式次数:一个单项式中,______的指数的和叫这个单项式的次数。
只与字母指数有关。
如x3,ab,2.6h,-m, 它们都是单项式,次数分别为______分别叫做三次单项式,二次单项式,一次单项式。
5、判断下列代数式是否是单项式。
如不是,请说明理由;如是,请指出它的系数和次数。
-m mn πa+3b - a πx+ y 5x+16、请你写出三个单项式:(1)此单项式含有字母x、y;(2)此单项式的次数是5;二、巩固练习1、单项式-a2b3c()A.系数是0次数是3B.系数是1次数是5C.系数是-1次数是6D.系数是1次数是62.判断下列代数式是否是单项式。
如不是,请说明理由;如是,请指出它的系数和次数。
-3,a2b,,a2-b2 ,2x2+3x+5 πR23.制造一种产品,原来每件成本a元,先提价5%,后降价5%,则此时该产品的成本价为( )A.不变B.a(1+5%)2C.a(1+5%)(1-5%)D.a(1-5%)24.(1)若长方形的长与宽分别为a、b,则长方形的面积为_________. (2)若某班有男生x人,每人捐款21元,则一共捐款__________元.(3)某次旅游分甲、乙两组,已知甲组有a名队员,平均门票m元,乙组有b名队员,平均门票n元,则一共要付门票_____元.5.某公司职员,月工资a元,增加10%后达到_____元.6.如果一个两位数,十位上数字为x,个位上数字为y,则这个两位数为_____.7.有一棵树苗,刚栽下去时,树高2米,以后每年长0.3米,则n年后树高___米_三、多项式1、______________叫做多项式2、____________________________叫做多项式的项3、_________叫做常数项4、一个多项式含有几项,就叫几项式.______________多项式的次数.5、指出下列多项式的项和次数:(1);(2).6、指出下列多项式是几次几项式:(1);(2)7、__________________________统称整式随堂测试:1、判断(1)多项式a3-a2b+ab2-b3的项为a3、a2b、ab2、b3,次数为12;()(2)多项式3n4-2n2+1的次数为4,常数项为1。
专题2.4 整式-多项式(专项练习)一、填空题类型一、多项式的判断1.在式子①25x +,①1-,①222a ab b ++,①xyz ,①11x y +,①2x y +,①23π+,①22x y -中是整式的有________,其中是单项式的有________,是多项式的有________.2.在代数式23xy ,m ,263a a -+,12,22145x yz xy -,23ab 中,单项式有___个,多项式有____个. 3.代数式2x y -、m 、2x xy -、0、2ab -、1x 、3a b +、()2a b +、0.5-、xy a +中,单项式有________个,多项式有________个,整式有________个.4.在代数式xy ,﹣3,31+14x -,x ﹣y ,﹣m 2n ,1x ,4x ,4﹣x 2,ab 2,23x +中,单项式有_____个,多项式有_____个. 类型二、多项式的项、项的系数、次数5.多项式234a b ++的常数项是_____. 6.多项式12x |m|﹣(m ﹣3)x+6是关于x 的三次三项式,则m 的值是_____. 7.如果y |m|﹣3﹣(m -5)y+16是关于y 的二次三项式,则m 的值是_____.8.多项式3233525xy x y x y -+-+的次数是________,最高次项的系数是________,常数项是________. 类型三、由多项式的系数求值9.若多项式||22(2)1m n xy n x y 是关于x ,y 的三次多项式,则mn =_____.10.若关于x ,y 的多项式4xy 3–2ax 2–3xy +2x 2–1不含x 2项,则a =__________.11.已知多项式kx 2+4x ﹣x 2﹣5是关于x 的一次多项式,则k=_____.12.若多项式()()4322311x a x x b x --+-+-中不含3x 和x 项,则a+b=_______. 类型四、由多项式的指数求值13.已知多项式x |m |+(m ﹣2)x ﹣10是二次三项式,m 为常数,则m 的值为_____.14.如果关于x 的多项式42142mx x +-与多项式35n x x +的次数相同,则2234n n -+-=_________. 15.多项式||1(2)32m x m x --+是关于x 的二次三项式,则m 的值是_________.16.已知p=(m+2)2m x ﹣(n ﹣3)xy |n|﹣1﹣y ,若P 是关于x 的四次三项式,又是关于y 的二次三项式,则32m n +的值为_____. 类型五、按某个字母升幂(降幂)排列 17.把多项式 32x 3y ﹣45y 2+ 12xy ﹣12x 2 按照字母 x 升幂排列:_____. 18.把多项式2ab 2-5a 2b -7+a 3b 3按字母b 的降幂排列,排在第三项的是___________.19.将代数式4a 2b +3ab 2﹣2b 3+a 3按a 的升幂排列的是_____.20.2a 4+a 3b 2-5a 2b 3+a -1是____次____项式.它的第三项是__________.把它按a 的升幂排列是____________________.类型六、据要求写出多项式21.请根据给出的x ,-2,y 2组成一个单项式和一个多项式________________22.一个只含有字母x 的二次三项式,它的二次项系数为-2,一次项系数为37,常数项为-1,则这个二次三项式为__________.23.请写出一个单项式,同时满足下列条件:①含有字母x 、y ;①系数是负整数;①次数是4,你写的单项式为______. 类型七、整式的判断24.一个关于x 的二次三项式,一次项的系数是1,二次项的系数和常数项都是-12,则这个二次三项式为________________________.25.如果一个整式具备以下三个条件:(1)它是一个关于字母x 的二次三项式;(2)各项系数的和等于10;(3)它的二次项系数和常数项都比﹣2小1,请写出满足这些条件的一个整式_____.26.在下列各式中:12x y -,3x ,22x x y -+,5x ,3x y z +-中,单项式有________,多项式有________,整式有________. 27.代数式2x ,223x x --,2x a +,322y y y+-中,整式有________个. 类型八、数字类规律探索28.找出下列各图形中数的规律,依此,a 的值为_____.29.按一定规律排列的一列数为12-,2,92-,8,252-,18……,则第8个数为________,第n个数为_________.30.观察以下一列数:3,54,79,916,1125,…则第20个数是_____.31.按一定规律排列的一列数:3,23,13-,33,43-,73,113-,183,…,若a,b,c表示这列数中的连续三个数,猜想a,b,c满足的关系式是__________.类型九、图形类规律探索32.如图所示是一组有规律的图案,第l个图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第n(n是正整数)个图案中的基础图形个数为_______ (用含n的式子表示).33.归纳“T”字形,用棋子摆成的“T”字形如图所示,按照图①,图①,图①的规律摆下去,摆成第n个“T”字形需要的棋子个数为_______.34.如图是一组有规律的图案,它们是由边长相等的正三角形组合而成,第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形按此规律摆下去,第n个图案有_______个三角形(用含n 的代数式表示).35.如图,每一幅图中有若干个菱形,第1幅图中有1个菱形,第2幅图中有3菱形.第3幅图中有5个菱形,依照此规律,第6幅图中有_____个菱形.参考答案1.①①①①①①① ①① ①①①①①【解析】【分析】根据整式、单项式、多项式的定义,结合所给各式进行判断即可.【详解】解:所给式子中整式有:①①①①①①①;单项式有:①①①;多项式有:①①①①.故答案为:①①①①①①①、①①、①①①①①.【点睛】本题考查了多项式、单项式及整式的知识,掌握三者的定义是解题的关键,属于基础知识考察类题目. 2.3 2【详解】单项式有:3xy 2,m ,12,共3个,多项式有:6a 2-a+3,4x 2yz -15xy 2,共2个. 故答案为3,2.3.4 4 8【解析】【分析】根据整式的定义和多项式、单项式的定义求解.【详解】解:单项式有:m 、0、-ab 2、|-0.5|共4个.多项式有2x -y 、x 2-xy 、3a +b 、2(a+b )共4个. 1x 、x a+y 分母中含有未知数不是整式,其余的都是整式,共8个. 故答案为:4,4,8.【点睛】本题重点对整式、单项式、单项式定义的考查.4.5, 3【解析】【分析】根据单项式和多项式的概念解答即可.【详解】在代数式xy ,﹣3,31+14x -,x ﹣y ,﹣m 2n ,1x ,4x ,4﹣x 2,ab 2,23x +中,单项式有: xy ,﹣3,﹣m 2n ,,4x ,ab 2,5个,多项式有:31+14x -,x ﹣y ,4﹣x 2,3个.故答案为:(1). 5 (2). 3. 【点睛】本题考查了单项式和多项式的概念,解题的关键是掌握:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式;几个单项式的和叫做多项式.5.34【解析】【分析】根据常数项的定义即可求解.【详解】a+2b+3a 2b 3=++4444. 故答案为34. 【点睛】本题主要考查常数项的定义,熟悉掌握是关键.6.-3【分析】由题意可知:|m|=3,且m -3≠0即可作答.【详解】由题意可知:|m|=3,且m -3≠0;①m= -3;故答案为-3.【点睛】本题考查了单项式与多项式的概念,掌握一个单项式中,所有字母的指数的和叫做这个单项式的次数.多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数是解题的关键. 7.-5【分析】根据二次三项式的定义,可知多项式y |m|-3-(m -5)y+16的最高次数是二次,共有三项,据此列出m 的关系式,从而确定m 的值.【详解】①y |m|-3-(m -5)y+16是关于y 的二次三项式,①|m|-3=2,m -5≠0,①m=-5,故答案为-5.【点睛】本题考查了二次三项式的定义:一个多项式含有几项,是几次就叫几次几项式.注意一个多项式含有哪一项时,哪一项的系数就不等于0.8.5 -2 +5【解析】【分析】根据多项式的概念及单项式的次数、系数的定义解答.【详解】多项式3233525xy x y x y -+-+的次数是5.最高次项系数是-2,常数项是+5.故答案为:5,-2,+5.【点睛】本题考查了多项式:几个单项式的和叫多项式.多项式中每个单项式都是多项式的项,这些单项式的最高次数,就是这个多项式的次数.9.0或8【分析】直接利用多项式的次数确定方法得出答案.【详解】 解:多项式||22(2)1m n xy n x y 是关于x ,y 的三次多项式,20n ∴-=,1||3m n ,2n ∴=,||2m n ,2m n ∴-=或2n m ,4m ∴=或0m =,0mn 或8.故答案为:0或8.【点睛】本题主要考查了多项式,正确掌握多项式的次数确定方法是解题关键.10.1【分析】把a看成是常数,合并同类项,然后令x2项的系数为0即可求出a的值.【详解】解:4xy3-2ax2-3xy+2x2-1=4xy3+(2-2a)x2-3xy-1,因为多项式不含x2项,所以2-2a=0,解得:a=1.故答案为1.【点睛】此题主要考查了多项式,关键是掌握合并同类项法则.即系数相加作为系数,字母和字母的指数不变.在多项式中不含某一项,即合并同类项后令这一项的系数为0.11.1.【分析】根据多项式的次数的定义来解题.要先找到题中的等量关系,然后列出方程求解.【详解】多项式kx2+4x﹣x2﹣5是关于的一次多项式, 多项式不含x2项,即k-1=0,k=1.故k的值是1.【点睛】本题考查了以下概念:(1)组成多项式的每个单项式叫做多项式的项;(2)多项式中次数最高项的次数叫做多项式的次数.12.1【解析】【分析】根据多项式的有关概念和题目要求得到-(a-2)=0,b+1=0,然后解一次方程即可.【详解】根据题意得−(a−2)=0,b+1=0,解得a=2,b=−1,则a+b=2-1=1.故答案为:1.【点睛】此题考查多项式,代数式求值,解题关键在于掌握其概念.13.-2【详解】因为多项式x |m|+(m -2)x -10是二次三项式,可得:m−2≠0,|m|=2,解得:m=−2,故答案为−214.24-【分析】根据多项式的次数的定义,先求出n 的值,然后代入计算,即可得到答案.【详解】解:①多项式42142mx x +-与多项式35n x x +的次数相同, ①4n =,①22234243443212424n n -+-=-⨯+⨯-=-+-=-;故答案为:24-.【点睛】本题考查了求代数式的值,以及多项式次数的定义,解题的关键是正确求出n 的值.15.2-【分析】直接利用二次三项式的次数与项数的定义得出m 的值.【详解】①多项式||1(2)32m x m x --+是关于x 的二次三项式, ①||2m =,且()20m --≠,①2m =-.故答案为:2-.【点睛】本题主要考查了多项式,正确利用多项式次数与系数的定义得出m 的值是解题关键.16.56- 【解析】分析:根据多项式的概念即可求出m ,n 的值,然后代入求值.详解:依题意得:m 2=4且m+2≠0,|n|-1=2且n -3≠0,解得m=2,n=-3, 所以32m n +=235326-+=-. 故答案是:56-. 点睛:本题考查多项式的概念,解题的关键是熟练运用多项式概念17.﹣45y 2+ 12xy ﹣12x 2 +32x 3y 【解析】【分析】先分清多项式的各项:32x 3y ,﹣45y 2, 12xy ﹣12x 2;再按升幂排列的定义排列. 【详解】多项式32x 3y ﹣45y 2+ 12xy ﹣12x 2按字母x 的升幂排列是: 2234112?3252y xy x x y ﹣﹣++. 故答案是:2234112?3252y xy x x y ﹣﹣++. 【点睛】本题考查了多项式.解答此题必须熟悉降幂排列的定义:我们把一个多项式的各项按照某个字母的指数从大到小或从小到大的顺序排列称为按这个字母的降幂或升幂排列.18.-5a 2b【分析】先把多项式2ab 2-5a 2b -7+a 3b 3按字母b 的降幂排列,然后找出符合条件的项即可.【详解】多项式2ab 2-5a 2b -7+a 3b 3按字母b 的降幂排列为:a 3b 3+2ab 2-5a 2b -7.故答案为-5a 2b .【点睛】本题主要考查的是多项式概念,掌握多项式按照某一字母的升降幂排列的方法是解题的关键.19.﹣2b 3+3ab 2+4a 2b+a 3.【分析】找出a 的次数的高低后,由低到高排列即可得出答案.【详解】可得出﹣2b 3+3ab 2+4a 2b+a 3.【点睛】本题考查了代数式中的次数,熟悉掌握次数的概念和细心是解决本题的关键.20.五 五 −5a 2b 3 −1+a −5a 2b 3+a 3b 2+2a 4【解析】【分析】根据多项式的次数和项数的定义进行求解,再根据a 的指数的大小按升幂排列起来即可.【详解】2a 4+a 3b 2-5a 2b 3+a -1是五次五项式,它的第三项是-5a 2b 3,把它按a 的升幂排列是-1+a -5a 2b 3+a 3b 2+2a 4. 故答案为:五,五,−5a 2b 3,-1+a -5a 2b 3+a 3b 2+2a 4.【点睛】此题考查了多项式,用到的知识点是多项式的次数和项数以及排列顺序;多项式里次数最高项的次数,叫做这个多项式的次数,多项式中的每个单项式叫做多项式的项.21.-2xy 2;-2x+y 2;【分析】根据单项式的定义和多项式的定义即可得出答案.单项式的定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式.几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.【详解】由x 、-2、y 2组成一个单项式,这个单项式可以为-2xy 2,由x 、-2、y 2组成一个二项式,这个二次项式可以为-2x+y 2.故答案为:-2xy 2;-2x+y 2;【点睛】此题考查单项式,多项式,解题关键在于掌握其定义.22.23217x x -+- 【解析】一个只含有x 的二次三项式,它的二次项系数为-2,一次项系数为37,常数项为-1,得 23217x x -+-. 故答案是:23217x x -+-. 23.﹣xy 3.【解析】①含有字母x 、y ;①系数是负整数;①次数是4,符合条件的单项式不唯一,例如:-xy 3.故答案是:-xy 3等.24.21122x x -+- 【解析】根据题意,要求写一个关于字母x 的二次三项式,其中二次项是x 2,一次项是-12x ,常数项是1,所以再相加可得此二次三项式为211x x 22-+-. 25.﹣3x 2+16x ﹣3【解析】分析:根据整式的概念写出要求的整式.详解:根据题意可知答案不唯一,(1)它是一个关于字母x 的二次三项式;(2)各项系数的和等于10,如-3+16-3=10;(3)它的二次项系数和常数项都比-2小1,如二次项系数是-3,常数项是-3,所以满足这些条件的一个整式为:-3x 2+16x -3故本题答案为:-3x 2+16x -3.点睛:主要考查了整式的有关概念.要能准确的分清什么是整式.整式是有理式的一部分,在有理式中可以包含加,减,乘,除四种运算,但在整式中除式不能含有字母.本题的关键是根据描述写出式子要特别熟悉整式的特点.26.3x ,5x 12x y -,3x y z +- 3x ,5x ,12x y -,3x y z +- 【解析】【分析】单项式和多项式统称为整式.由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式,字母前的常数为单项式的系数,字母的指数和为单项式的次数.多项式的定义:若干个单项式的和组成的式子叫做多项式.多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.根据定义逐项判断即可.【详解】解:单项式有:3x ,5x ; 多项式有:12x y -,3x y z +-; 整式有:3x ,5x ,12x y -,3x y z +-; 故答案为:(1)3x ,5x ;(2)12x y -,3x y z +-;(3)3x ,5x ,12x y -,3x y z +-. 【点睛】本题考查了对多项式、单项式、整式的定义的应用.易错点,多项式和单项式都是整式.27.2【解析】【分析】根据整式的概念分析判断各个式子.【详解】根据整式的概念可知,整式有x 2−x−23,2x a +,共2个. 故答案为:2.【点睛】本题考查了整式的概念,解题的关键是熟练的掌握整式的概念.28.226.【详解】试题分析:观察图形可得,0+2=1×2,2+10=3×4,4+26=5×6,6+50=7×8,由此规律可得14+a=15×16,解得:a=226.考点:规律探究题. 29.32 22(1)n n -⋅ 【分析】首先把整数化为分母是2的分数,可以发现该数列中的每一个数的绝对值的分母都为2,分子恰是自然数列的平方,前面的符号,第奇数个为负,第偶数个为正,可用(﹣1)n 表示,代入即可求解.【详解】把整数化为分母是2的分数,可以发现该数列中的每一个数的绝对值的分母都为2,分子恰是自然数列的平方,前面的符号,第奇数个为负,第偶数个为正,可用(﹣1)n 表示,故第n 个数为:(﹣1)n22n ⨯,第8个数为:(﹣1)8282⨯=32. 故答案为32,(﹣1)n 22n ⨯. 【点睛】本题考查了数列的探索与运用,合理的统一数列中的分母寻找规律是解题的关键.30.41400【分析】观察已知数列得到一般性规律,写出第20个数即可.【详解】解:观察数列得:第n 个数为221n n +,则第20个数是41400. 故答案为41400. 【点睛】本题考查了规律型:数字的变化类,弄清题中的规律是解答本题的关键.31.bc=a【分析】根据题目中的数字,可以发现相邻的数字之间的关系,从而可以得到a ,b ,c 之间满足的关系式.【详解】解:①一列数:3,23,13-,33,43-,73,113-,183-,…,可发现:第n 个数等于前面两个数的商,①a ,b ,c 表示这列数中的连续三个数,①bc=a ,故答案为:bc=a .【点睛】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律,求出a ,b ,c 之间的关系式.32.3n+1【详解】试题分析:由图可知每个图案一次增加3个基本图形,第一个图案有4个基本图形,则第n 个图案的基础图形有4+3(n -1)=3n+1个考点:规律型33.3n +2.【分析】根据题意和图形,可以发现图形中棋子的变化规律,从而可以求得第n 个“T”字形需要的棋子个数.【详解】解:由图可得,图①中棋子的个数为:3+2=5,图①中棋子的个数为:5+3=8,图①中棋子的个数为:7+4=11,……则第n 个“T”字形需要的棋子个数为:(2n+1)+(n+1)=3n+2,故答案为3n+2.【点睛】本题考查图形的变化类,解答本题的关键是明确题意,发现题目中棋子的变化规律,利用数形结合的思想解答.34.()31n +【分析】由图形可知第1个图案有3+1=4个三角形,第2个图案有3×2+ 1=7个三角形,第3个图案有3×3+ 1=10个三角形...依此类推即可解答.【详解】解:由图形可知:第1个图案有3+1=4个三角形,第2个图案有3×2+ 1=7个三角形,第3个图案有3×3+ 1=10个三角形,...第n 个图案有3×n+ 1=(3n+1)个三角形.故答案为(3n+1).【点睛】本题考查图形的变化规律,根据图形的排列、归纳图形的变化规律是解答本题的关键.35.11【分析】根据题意分析可得:第1幅图中有1个,第2幅图中有2×2﹣1=3个,第3幅图中有2×3﹣1=5个,…,可以发现,每个图形都比前一个图形多2个,继而即可得出答案.【详解】解:根据题意分析可得:第1幅图中有1个.第2幅图中有2×2﹣1=3个.第3幅图中有2×3﹣1=5个.第4幅图中有2×4﹣1=7个.….可以发现,每个图形都比前一个图形多2个.故第n幅图中共有(2n﹣1)个.当n=6时,2n﹣1=2×6﹣1=11,故答案为:11.【点睛】本题主要考查图形规律类,根据图形的变化找到规律是解题的关键.。
七年级数学上册同步练习2.1.2单项式与多项式时间:30分钟一、单选题1.代数式:①2a 3;①πr 2;①21x 12+;①﹣3a 2b ;①a bc +.其中整式的个数是( )A .2B .3C .4D .5 2.单项式﹣2πxy 2的系数和次数分别是( )A .﹣2和4B .2π和3C .2和4D .﹣2π和3 3.整式-0.3x 2y ,0,12x +,-22abc 2,13x 2,−14y ,−13ab 2-12a 2b 中单项式的个数有()A .6个B .5个C .4个D .3个 4.下列各式中不是单项式的是( )A .a +bB .-2aC .0D .π 5.多项式32281x x x -+-与多项式323253x mx x +-+的和不含二次项,则m 为( ) A .2 B .-2 C .4 D .-4 6.下列说法正确的是( )A .m 2+m ﹣1的常数项为1B .单项式32mn 3的次数是6次C .多项式5m n+的次数是1,项数是2D .单项式﹣12πmn 的系数是﹣127.下列判断中错误的是( )A .2a ab --是二次三项式B .3m n-是多项式C .22r π中,系数是2D .2020是单项式8.若(3x 3+M )(2x 2-1)是一个五次多项式,则下列说法中正确的是( ) A .M 是一个三次单项式 B .M 是一个三次多项式C .M 的次数不高于三D .M 不可能是一个常数9.下列说法正确的是( )A .﹣5,a 不是单项式B .﹣2abc的系数是﹣2C .223x y -的系数是﹣13,次数是4 D .x 2y 的系数为0,次数为210.下列各式是5次单项式的是( )A .45xy -B .32xyC .5x yD .32x x +二、填空题11.多项式112m x -﹣3x+7是关于x 的四次三项式,则m 的值是_____. 12.222324x y x y xy -+--的最高次项为_______.13.写出一个系数是﹣1,次数是3的单项式_____________.14.在112,,5,,22x y a x π+--中,是单项式的为_______. 15.在式子2a ,3a ,1+y x ,﹣12,1﹣x ﹣5xy 2,﹣x ,6xy+1,a 2+b 2中,多项式有_____个. 16.单项式317xy -的系数是____________,次数是____________. 17.写出系数为-1,含有字母x y 、的四次单项式___________.18.单项式212xy -的系数和次数的和为__________.三、解答题19.把下列各式式的序号分别填在相应的大括号内: ① 67ab -;① 23n p m -;① 1a +;① 2123xy xy +-;①3m y π;①2221352x y x y +-;①3. 单项式:{ };多项式:{ };20.分别写出下列各项的系数与次数(1)32x ;(2)2x y -;(3)35xy ; (4)23815x y -.21.已知多项式3322351x y x y x ---+.(1)求次数为3的项的系数和.(2)当1x =-,2y =-时,求该多项式的值.22.已知多项式2123536m x y xy x +-+--是六次四项式,且253n m x y -的次数跟它相同. (1)求m 、n 的值;(2)求多项式各项的系数和.23.把下列代数式的序号填入相应的集合括号里.A .3x 2+2y ;B .35x −x 2+1;C .2a b +;D .–23xy ;E .0;F .–x +3y ;G .2xy a . (1)单项式集合{____________________________…}(2)多项式集合{____________________________…}.24.若关于,x y 的多项式23m x nx y x --是一个三次三项式,且最高次项的系数是3-,求m n -的值. 25.一块原长分别为a 、b (1,1a b >>)的长方形,一边增加1,另一边减少1(1)当a b =时,变化后的面积是增加还是减少?(2)当a b >时,有两种方案,第一种方案如图1,第二种方案如图2,请你比较这两种方案,确定哪一种方案变化后的面积比较大.参考答案1.C【解析】①23a ;①πr 2;①12x 2+1;①﹣3a 2b ,都是整式, ①a b c+,分母中含有字母,不是整式,故选:C . 2.D【解析】解:单项式﹣2πxy 2的系数和次数分别是:﹣2π和3.故选:D .3.B【解析】根据单项式的定义:由数字和字母的积组成的代数式叫做单项式判断,有-0.3x 2y ,0,-22abc 2,13x 2,−14y 是单项式,共有5个,故选B. 4.A【解析】解:-2a ,0,π都是单项式,a +b 不是单项式,是多项式,故选A .5.C【解析】解:根据题意得:2x 3-8x 2+x -1+3x 3+2mx 2-5x +3=5x 3+(2m -8)x 2-4x +2, 由结果不含二次项,得到2m -8=0,解得:m =4.故选C .6.C【解析】解:A .m 2+m ﹣1的常数项为﹣1,故本选项错误;B .单项式32mn 3的次数是4次,故本选项错误;C .多项式5m n +的次数是1,项数是2,故本选项正确; D .单项式﹣12πmn 的系数是﹣12π,故本选项错误;故选:C .7.C【解析】解:A 、2a ab --是二次三项式,正确,不合题意;B 、3m n -是多项式,正确,不合题意;C 、22r π中,系数是2π,故此选项错误,符合题意;D 、2020是单项式,正确,不合题意.故选:C .8.C【解析】解:(3x 3+M )(2x 2-1)=6x 5-3x 3+2Mx 2-M ,因为结果是一个五次多项式,所以M 的次数不高于三,故选:C .9.C【解析】A 、﹣5,a 是单项式,故此选项错误;B 、2abc -的系数是12-,故此选项错误; C 、223x y -的系数是13-,次数是4,故此选项正确; D 、x 2y 的系数为1,次数为3,故此选项错误.故选:C .10.A【解析】解:A 、单项式45xy -的次数是1+4=5次,符合题意;B 、单项式32xy 的次数是1+1=2次,不符合题意;C 、单项式5x y 的次数是5+1=6次,不符合题意;D 、32x x +是多项式不是单项式,其次数是3次,不符合题意;故选择:A11.5【解析】解:①多项式112m x -﹣3x+7是关于x 的四次三项式, ①m ﹣1=4,解得m =5,故答案为:5.12.222x y -.【解析】解:222324x y x y xy -+--的最高次项为:222x y -.故答案为:222x y -.13.3a -.【解析】解:系数是-1、次数是3的单项式,如:3a -.故答案为:3a -.14.1,5,2a π- 【解析】解:在112,,5,,22x y a x π+--中, 单项式有:1,5,2a π-, 故答案为:1,5,2a π-. 15.3【解析】根据多项式的定义可知,上述各式中属于多项式的有:1﹣x ﹣5xy 2、6xy+1、a 2﹣b 2,共3个.故答案为3.16.17- 4 【解析】解:单项式317xy -的系数是17-,次数是1+3=4, 故答案为:17-;4. 17.3-x y【解析】解:系数为-1,含有字母x y 、的四次单项式为:3-x y .故答案为:3-x y .18.52【解析】解:单项式212xy -的系数和次数分别是:-12和3, ①单项式212xy -的系数和次数的和为-12+3=52. 故答案为:52. 19.① ① ①,① ① ①【解析】单项式:{ ① ① ① };多项式:{ ① ① ① };20.(1)系数:2,次数:3;(2)系数:-1,次数:3;(3)系数:35,次数:2;(4)系数:815-,次数:5 【解析】解:(1)32x 的系数:2,次数:3;(2)2x y -系数:-1,次数:3;(3)35xy 系数:35,次数:2; (4)23815x y -系数:815-,次数:5. 21.(1)3;(2)15【解析】解:(1)多项式3322351x y x y x ---+中,次数为3的项是33x ,3y -和25x y -,系数分别是3,-1,-5,①和为3-1-5=-3;(2)当1x =-,2y =-时,3322351x y x y x ---+=15.22.(1)3m =,2n =;(2)-13【解析】解:(1)①多项式2123536m x y xy x +-+--是六次四项式,①216m ++=,解得,3m =,5-m=5-3=2,253n m x y -的次数与多项式的次数相同,226n +=,解得,2n =.(2)各项的系数之和为:51(3)(6)13-++-+-=-.23.(1)D ,E (2)B ,C ,F【解析】(1)单项式集合:{D ,E…};(2)多项式集合:{B ,C ,F…}.24.-1【解析】①关于x ,y 的多项式23m x nx y x --是一个三次三项式,且最高次项的系数是3,①m +1=3,﹣n =- 3,解得:m =2,n =3, ①231m n -=-=-.25.(1)减小(2)方案2变化后面积大【解析】解:(1)设原来长方形的面积是S 前,变化后的长方形的面积是S 后, 根据题意得:S 前=ab ,S 后=(a +1)(b −1)=ab +b −a −1, ①S 后−S 前=ab +b −a −1−ab =b −a −1, ①a =b ,①b −a −1=−1<0,①S 后<S 前,①变化后面积减小了.(2)方案1,S 1=(a +1)(b −1)=ab −a +b −1, 方案2,S 2=(a −1)(b +1)=ab +a −b −1, ①S 1−S 2=−2a +2b =−2(a −b ), ①a >b ,①S 1−S 2<0,①方案2变化后面积大.。
1.若8m x y 与36n x y 的和是单项式,则()3m n +的平方根为( ).A .4B .8C .±4D .±8D解析:D【分析】根据单项式的定义可得8m x y 和36n x y 是同类项,因此可得参数m 、n ,代入计算即可. 【详解】解:由8mx y 与36n x y 的和是单项式,得 3,1m n ==.()()333164m n +=+=,64的平方根为8±. 故选D .【点睛】本题主要考查单项式的定义,关键在于识别同类项,根据同类项计算参数.2.由于受H7N9禽流感的影响,某市城区今年2月份鸡的价格比1月份下降a %,3月份比2月份下降b %,已知1月份鸡的价格为24元/kg .则3月份鸡的价格为( ) A .24(1-a %-b %)元/kgB .24(1-a %)b % 元/kgC .(24-a %-b % )元/kgD .24(1-a %)(1-b %)元/kg D 解析:D【分析】首先求出二月份鸡的价格,再根据三月份比二月份下降b%即可求出三月份鸡的价格.【详解】∵今年2月份鸡的价格比1月份下降a %,1月份鸡的价格为24元/kg ,∴2月份鸡的价格为24(1-a %)元/kg ,∵3月份比2月份下降b %,∴三月份鸡的价格为24(1-a %)(1-b %)元/kg .故选:D .【点睛】本题主要考查了列代数式,解题的关键是掌握每个月份的数量增长关系.3.下列代数式的书写,正确的是( )A .5nB .n5C .1500÷tD .114x 2y A 解析:A【分析】直接利用代数式书写方法分析得出答案.【详解】解:A 、5n ,书写正确,符合题意;B 、n5,书写错误,不合题意;C 、1500÷t ,应为1500t ,故书写错误,不合题意; D 、114x 2y=54x 2y ,故书写错误,不合题意; 故选:A .【点睛】此题主要考查了代数式,正确把握代数式的书写方式是解题关键.4.某公司今年2月份的利润为x 万元,3月份比2月份减少8%,4月份比3月份增加了10%,则该公司4月份的利润为(单位:万元)( )A .(x ﹣8%)(x+10%)B .(x ﹣8%+10%)C .(1﹣8%+10%)xD .(1﹣8%)(1+10%)x D解析:D【分析】首先利用减小率的意义表示出3月份的利润,然后利用增长率的意义表示出4月份的利润.【详解】解:由题意得3月份的产值为(1﹣8%)x ,4月份的产值为(1﹣8%)(1+10%)x . 故选:D .【点睛】本题考查了列代数式,正确理解增长率以及下降率的定义是关键.5.已知-25a 2m b 和7b 3-n a 4是同类项,则m +n 的值是( )A .2B .3C .4D .6C 解析:C【分析】本题根据同类项的性质求解出m 和n 的值,代入求解即可.【详解】 由已知得:2431m n =⎧⎨-=⎩,求解得:22m n =⎧⎨=⎩, 故224m n +=+=;故选:C .【点睛】本题考查同类项的性质,按照对应字母指数相同原则列式求解即可,注意计算仔细. 6.下列计算正确的是( )A .﹣1﹣1=0B .2(a ﹣3b )=2a ﹣3bC .a 3﹣a=a 2D .﹣32=﹣9D 解析:D【分析】根据有理数的减法、去括号、同底数幂的乘方即可解答.【详解】解:A .﹣1﹣1=﹣2,故本选项错误;B .2(a ﹣3b )=2a ﹣6b ,故本选项错误;C .a 3÷a =a 2,故本选项错误;D .﹣32=﹣9,正确;故选:D .【点睛】本题考查了去括号和简单的提取公因式,掌握去括号时符号改变规律是解决此题的关键.7.单项式21412n a b --与83m ab 是同类项,则57(1)(1)n m +-=( ) A .14 B .14- C .4 D .-4B解析:B【分析】直接利用同类项的概念得出n ,m 的值,即可求出答案.【详解】21412n a b --与83m ab 是同类项, ∴21184n m -=⎧⎨=⎩解得:121m n ⎧=⎪⎨⎪=⎩ 则()()5711n m +-=14- 故答案选B.【点睛】本题考查的知识点是同类项,解题的关键是熟练的掌握数轴同类项.8.下列变形中,正确的是( )A .()x z y x z y --=--B .如果22x y -=-,那么x y =C .()x y z x y z -+=+-D .如果||||x y =,那么x y = B 解析:B【分析】根据去括号法则、等式的基本性质以及绝对值的性质逐一判断即可.【详解】A :()x z y x z y --=-+,选项错误;B :如果22x y -=-,那么x y =,选项正确;C :()x y z x y z -+=--,选项错误;D :如果||||x y =,那么x 与y 互为相反数或二者相等,选项错误;【点睛】本题主要考查了去括号法则、等式的基本性质与绝对值性质,熟练掌握相关概念是解题关键.9.下列说法正确的是( )A .单项式34xy -的系数是﹣3B .单项式2πa 3的次数是4C .多项式x 2y 2﹣2x 2+3是四次三项式D .多项式x 2﹣2x +6的项分别是x 2、2x 、6C 解析:C【分析】根据单项式的系数、次数:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数;几个单项式的和叫做多项式,每个单项式叫做多项式的项.多项式中次数最高的项的次数叫做多项式的次数进行分析即可.【详解】解:A 、单项式34xy -的系数是34-,此选项错误; B 、单项式2πa 3的次数是3,此选项错误;C 、多项式x 2y 2﹣2x 2+3是四次三项式,此选项正确;D 、多项式x 2﹣2x+6的项分别是x 2、﹣2x 、6,此选项错误;故选:C .【点睛】本题考查了单项式及多项式的定义,解题的关键是牢记单项式的系数、次数及多项式的次数、项数,难度不大.10.已知m ,n 是不相等的自然数,则多项式2m n m n x x +-+的次数是( )A .mB .nC .m n +D .m ,n 中较大者D解析:D【分析】由于多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,因为m ,n 均为自然数,而2m n +是常数项,据此即可确定选择项.【详解】因为2m n +是常数项,所以多项式2m n m n x x +-+的次数应该是,m n x x 中指数大的,即m ,n 中较大的,故答案选D.【点睛】本题考查的是多项式的次数,解题关键是确定2m n +是常数项.11.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值等于1,则()2a b cd m +-+的值是( ).A .0B .-2C .0或-2D .任意有理数A【分析】根据相反数的定义得到0a b +=,由倒数的定义得到cd=1,根据绝对值的定义得到|m|=1,将其代入()2a b cd m +-+进行求值. 【详解】∵a ,b 互为相反数,∴0a b +=,∵c ,d 互为倒数,∴cd =1,∵m 的绝对值等于1,∴m =±1,∴原式=0110-+=故选:A.【点睛】本题考查代数式求值,相反数,绝对值,倒数.能根据相反数,绝对值,倒数的定义求出+a b ,cd 和m 的值是解决此题的关键.12.﹣(a ﹣b +c )变形后的结果是( )A .﹣a +b +cB .﹣a +b ﹣cC .﹣a ﹣b +cD .﹣a ﹣b ﹣c B 解析:B【分析】根据去括号法则解题即可.【详解】解:﹣(a ﹣b +c )=﹣a +b ﹣c故选B .【点睛】本题考查去括号法则:括号前是“+”,去括号后,括号里的各项都不改变符号,括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.13.下列各对单项式中,属于同类项的是( )A .ab -与4abcB .213x y 与212xyC .0与3-D .3与a C解析:C【分析】根据同类项的定义逐个判断即可.【详解】A .﹣ab 与4abc 所含字母不相同,不是同类项;B .213x y 与12x y 2所含相同字母的指数不相同,不是同类项; C .0与﹣3是同类项;D .3与a 不是同类项.【点睛】本题考查了同类项,能熟记同类项的定义是解答本题的关键.14.已知3a b -=-,2c d +=,则()()a d b c --+的值为( )A .﹣5B .1C .5D .﹣1A 解析:A【分析】先把所求代数式去掉括号,再化为已知形式把已知代入求解即可.【详解】解:根据题意:(a-d )-(b+c )=(a-b )-(c+d )=-3-2=-5,故选:A .【点睛】本题考查去括号、添括号的应用.先将其去括号化简后再重新组合,得出答案. 15.小明乘公共汽车到白鹿原玩,小明上车时,发现车上已有(6a ﹣2b )人,车到中途时,有一半人下车,但又上来若干人,这时车上共有(10a ﹣6b )人,则中途上车的人数为( )A .16a ﹣8bB .7a ﹣5bC .4a ﹣4bD .7a ﹣7b B 解析:B【分析】根据题意表示出途中下车的人数,再根据车上总人数即可求得中途上车的人数.【详解】由题意可得:(10a ﹣6b )﹣[(6a ﹣2b )﹣(3a ﹣b )]=10a ﹣6b ﹣6a +2b +3a ﹣b=7a ﹣5b .故选B .【点睛】本题考查了整式加减的应用,根据题意正确列出算式是解决问题的关键.1.a -b ,b -c ,c -a 三个多项式的和是____________0【解析】(a-b )+(b-c )+(c-a )=a-b+b-c+c-a=a-a+b-b+c-c=0故答案为0解析:0【解析】(a-b )+(b-c )+(c-a )=a-b+b-c+c-a=a-a+b-b+c-c=0,故答案为0.2.在多项式422315x x x x 中,同类项有_________________;-2x5x 【分析】根据同类项:所含字母相同并且相同字母的指数也相同进行判断即可【详解】解:-2x 与5x 是同类项;故答案为:-2x5x 【分析】本题考查了同类项的知识解题的关键是掌握同类项的定义解析:-2x ,5x根据同类项:所含字母相同,并且相同字母的指数也相同,进行判断即可.【详解】解: -2x 与5x 是同类项;故答案为:-2x ,5x .【分析】本题考查了同类项的知识,解题的关键是掌握同类项的定义.3.如果一个多项式与另一多项式223m m -+的和是多项式231m m +-,则这个多项式是_________.【分析】根据题意列出算式利用整式的加减混合运算法则计算出结果【详解】解:设这个多项式为A 则A=(3m2+m-1)-(m2-2m+3)=3m2+m-1-m2+2m-3=2m2+3m-4故答案为2m2+解析:2234m m +-【分析】根据题意列出算式,利用整式的加减混合运算法则计算出结果.【详解】解:设这个多项式为A,则A=(3m 2+m-1)-(m 2-2m+3)=3m 2+m-1-m 2+2m-3=2m 2+3m-4,故答案为2m 2+3m-4.【点睛】本题考查了整式的加减运算,掌握整式的加减混合运算法则是解题的关键.4.一个关于x 的二次三项式,一次项的系数是1,二次项的系数和常数项都是-12,则这个二次三项式为________________________.【解析】根据题意要求写一个关于字母x 的二次三项式其中二次项是x2一次项是-x 常数项是1所以再相加可得此二次三项式为 解析:21122x x -+-【解析】根据题意,要求写一个关于字母x 的二次三项式,其中二次项是x 2,一次项是-12x ,常数项是1,所以再相加可得此二次三项式为211x x 22-+-. 5.关于x 的二次三项式的一次项的系数为5,二次项的系数是-3,常数项是-4.按照x 的次数逐渐减小排列,这个二次三项式为____.-3x2+5x -4【分析】由于多项式是由单项式组成的而多项式的次数是多项式中次数最高的项的次数而关于x 的二次三项式的二次项系数是-3一次项系数是5常数项是-4根据前面的定义即可确定这个二次三项式【详解析:-3x2+5x-4【分析】由于多项式是由单项式组成的,而多项式的次数是“多项式中次数最高的项的次数”,而关于x的二次三项式的二次项系数是-3,一次项系数是5,常数项是-4,根据前面的定义即可确定这个二次三项式.【详解】∵关于x的二次三项式,二次项系数是-3,∴二次项是-3x2,∵一次项系数是,∴一次项是5x,∵常数项是-4,∴这个二次三项式为:-3x2+5x-4.故答案为:-3x2+5x-4【点睛】本题考查了多项式的知识,多项式是由单项式组成的,本题首先要确定是由几个单项式组成,要记住常数项也是一项,单项式前面的符号也应带着.6.将一个正方形纸片剪成如图中的四个小正方形,用同样的方法,每个小正方形又被剪成四个更小的正方形,这样连续5次后共得到______个小正方形.1024【分析】先写出前3次分割得到的正方形的个数找到规律即可得出答案【详解】由图可知分割1次得到正方形的个数为4;分割2次得到正方形的个数为个;分割3次得到正方形的个数为个;…以此类推分割5次得到解析:1024【分析】先写出前3次分割得到的正方形的个数,找到规律即可得出答案.【详解】由图可知分割1次得到正方形的个数为4;16=4个;分割2次得到正方形的个数为264=4个;分割3次得到正方形的个数为3…以此类推,分割5次得到正方形的个数为:54=1024个,故答案为:1024.【点睛】本题考查了图形规律题,仔细观察图形找到规律是解题的关键.7.观察下列式子:1×3+1=22;7×9+1=82;25×27+1=262;79×81+1=802;…可猜想第2 019个式子为__________.(32019-2)×32019+1=(32019-1)2【分析】观察等式两边的数的特点用n 表示其规律代入n =2016即可求解【详解】解:观察发现第n 个等式可以表示为:(3n-2)×3n +1=(3n-解析:(32 019-2)×32019+1=(32 019-1)2【分析】观察等式两边的数的特点,用n 表示其规律,代入n =2016即可求解.【详解】解:观察发现,第n 个等式可以表示为:(3n -2)×3n +1=(3n -1)2,当n =2019时,(32019-2)×32019+1=(32019-1)2,故答案为:(32019-2)×32019+1=(32019-1)2.【点睛】此题主要考查数的规律探索,观察发现等式中的每一个数与序数n 之间的关系是解题的关键.8.多项式||1(2)32m x m x --+是关于x 的二次三项式,则m 的值是_________.【分析】直接利用二次三项式的次数与项数的定义得出m 的值【详解】∵多项式是关于x 的二次三项式∴且∴故答案为:【点睛】本题主要考查了多项式正确利用多项式次数与系数的定义得出m 的值是解题关键解析:2-【分析】直接利用二次三项式的次数与项数的定义得出m 的值.【详解】∵多项式||1(2)32m x m x --+是关于x 的二次三项式, ∴||2m =,且()20m --≠, ∴2m =-.故答案为:2-.【点睛】本题主要考查了多项式,正确利用多项式次数与系数的定义得出m 的值是解题关键.9.如图,有一种飞镖游戏,将飞镖圆盘八等分,每个区域内各有一个单项式,现假设你的每支飞镖均能投中目标区域,如果只提供给你四支飞镖且都要投出,那么要使你投中的目标区域内的单项式之和为a+2b ,共有_____种方式(不考虑投中目标的顺序).2【分析】根据整式的加减尝试进行即可求解【详解】解:当投中的目标区域内的单项式为ab ﹣b2b 时a+b ﹣b+2b =a+2b ;当投中的目标区域内的单项式为﹣a2a02b 时﹣a+2a+0+2b =a+2b 故解析:2【分析】根据整式的加减尝试进行即可求解.【详解】解:当投中的目标区域内的单项式为a 、b 、﹣b 、2b 时,a+b ﹣b+2b =a+2b ;当投中的目标区域内的单项式为﹣a 、2a 、0、2b 时,﹣a+2a+0+2b =a+2b .故答案为2.【点睛】本题考查了整式的加减,解题的关键是尝试进行整式的加减.10.一个长方形的周长为68a b +,其一边长为23a b +,则另一边长为______.【分析】根据长方形的周长公式列出代数式求解即可【详解】解:由长方形的周长=2×(长+宽)可得另一边长为:故答案为:a+b 【点睛】本题考查了整式的加减长方形的周长公式列出代数式是解决此题的关键解析:+a b【分析】根据长方形的周长公式列出代数式求解即可.【详解】解:由长方形的周长=2×(长+宽)可得,另一边长为:()()68223a b a b a b +÷-+=+. 故答案为:a +b .【点睛】本题考查了整式的加减,长方形的周长公式列出代数式是解决此题的关键.11.仅当b =______,c =______时,325x y 与23b c x y 是同类项。
人教版七年级数学上册第二章《整式的加减》综合测试卷(含答案)一、单选题(每小题3分,共30分)1.下列各式2211241,,8,,26,,,25πx y x ymn m x xa y-+-++中,单项式有( )A.3个B.4个C.6个D.7个2.(安顺中考)下列计算正确的是 ( )A.3x2-x2=3B.-3a2-2a2=-a2C.3(a-1)=3a-1D.-2(x+1)=-2x-23.下列说法正确的是 ( )A.-22x3y 的次数6B. 0不是单项C.23x y的系数是13D.2πr的系数是14.(贵州安顺期末)下列各组中的两个项不属于同类项的是 ( )A. 3x2y和-2x2yB. -xy和2yxC. 1-和1D. -2x2y与xy25.整式x2-3x的值是4,则3x2-9x+8的值是 ( )A.20B.4C.16D.-46.下面四个代数式中,不能表示图中阴影部分面积的是 ( )A.(x+3)(x+2)-2xB.x2+5xC.3(x+2)+x2D. x(x+3)+67.一台轿车标价a万元,为了促销,每台降价10%销售,则每台轿车的售价为 ( )万元A. 10a%B.(1+10% )aC.90% aD.(1+.90%)a8.已知一个多项式与3x2+9x的和等于3x2+4x-1,则这个多项式是 ( )A.-5x-1B.5x+1C.-13x-1D.13x+19.如果多项式x2+8xy-y2-kxy+5不含xy项,则k的值为( )A.0B.7C.1D.810.(青岛期末)观察如图所示图形,则第n个图形中三角形的个数是 ( )A.22n +B.44n +C.4nD.44n -二、填空题(每小题3分,共24分) 11.写出一个系数为-2且含a,b 的五次单项式 。
12.多项式3235612x y x -+-是 次 项式,最高次项的系数是 。
13.若代数式3a m b n-1与-9a 3b 6的和是单项式,则m n += 。
人教版七年级数学上册第二章测试题一、选择题(每题3分,共30分)1. 下列式子中,整式为()A. x + 1B. (1)/(x + 1)C. √(x + 1)D. (1)/(x^2)解析:整式为单项式和多项式的统称。
单项式是数或字母的乘积,多项式是几个单项式的和。
A选项x + 1是多项式,属于整式;B选项(1)/(x+1)分母中含有字母,是分式不是整式;C选项√(x + 1)是根式不是整式;D选项(1)/(x^2)分母中有字母,是分式不是整式。
所以答案是A。
2. 单项式-3π xy^2z^3的系数和次数分别是()A. - 3π,5B. -3,6C. -3π,6D. -3,5.解析:单项式的系数是指单项式中的数字因数,所以单项式-3π xy^2z^3的系数是-3π;单项式的次数是指单项式中所有字母的指数和,这里x的次数是1,y的次数是2,z的次数是3,所以次数为1+2 + 3=6。
所以答案是C。
3. 下面计算正确的是()A. 3a - 2a = 1B. 3a^2+2a = 5a^3C. 3a + 3b = 6abD. 2xy - 3yx=-xy解析:A选项,3a-2a=a,不是1;B选项,3a^2与2a不是同类项不能合并;C选项,3a与3b不是同类项不能合并;D选项,2xy和3yx是同类项,合并同类项时系数相减,字母和字母的指数不变,2xy-3yx=(2 - 3)xy=-xy。
所以答案是D。
4. 一个多项式与x^2-2x + 1的和是3x - 2,则这个多项式为()A. -x^2+5x - 3B. -x^2+x - 1C. x^2-5x + 3D. x^2-5x - 13解析:所求多项式等于和减去另一个多项式,即(3x - 2)-(x^2-2x + 1)=3x-2 -x^2+2x - 1=-x^2+(3x + 2x)-(2 + 1)=-x^2+5x - 3。
所以答案是A。
5. 化简-(a - b + c)的结果是()A. -a + b + cB. -a + b - cC. a - b + cD. a - b - c解析:去括号法则:括号前面是负号,去掉括号后括号里的各项都变号。
新人教版七年级数学上册第二章整式的加减知识点和典型例题I 基本题型一、列单项式、多项式1.某次旅游分甲、乙两组,已知甲组a 名队员,平均门票m 元,乙组有b 名队员,平均门票n 元,则共要付门票___元. 2.某公司职员,月工资a 元,增加10%后达到________元.3.如果一个两位数,十位上数字为x ,个位上数字为y ,则这个两位数为________.4.甲车的速度为每小时x 千米,乙车的速度为每小时y 千米.若甲、乙两车由两地同时出发,相向而行,t 小时后相遇,则两地距离为________千米.若两车同时分别从两地出发,同向而行,t 小时甲车追上乙车,则两地距离为_____千米.5.有一棵树苗,刚栽下去时,树高2.1米,以后每年长0.3米,则n 年后树高________米.6.含盐20%的盐水x 千克,其中含盐________千克,含水________千克.7.某项工程甲独干a 天完成,乙独干b 天完成,则甲、乙合作每天完成工程的_____ 8.一种小麦磨成面粉后,重量减轻15%,要得到m 千克面粉,需要小麦______千克。
9.一辆汽车从A 地出发,先行驶了s 米之后,又以υ米/秒的速度行驶了t 秒.汽车行驶的全部路程等于 米 10.电影院第一排有a 个座位,后面每排都比前一排多一个座位,若第n 排有m 个座位,那么m=11.用含有字母的式子填空:(1)a 与b 的143倍的差是_.(2)某商品原价为a 元,提高了20%后的价格 . 12.已知三角形的第一边长是2a b +,第二边比第一边长(2)b -,第三边比第二边小5。
则三角形的周长为 。
13.某公园一块草坪的形状如图所示(阴影部分),用代数式表示它的面积为二、判断区分单项式、多项式、整式 1.在代数式21215,5,,,,,233x y z x y a x y xyz y π+---+-中有 ( )A .5个整式B .4个单项,3个多项式C .6个整式,4个单项式D .6个整式,单项式与多项式个数相同2.在代数式ba b a b a x a m +-+-,,2,31,0,21π中,整式有( )A 、3个 B 、4个 C 、5个 D 、6个 3.下列代数式中,是单项式的有 .①-15; ②32a ; ③π1x 2y; ④ abc32; ⑤3a+2b; ⑥0; ⑦ 7m4.单项式22ab 2c 的系数是 ,次数是 .5.πR 2是次单项式,-32是次单项式.6.把下列代数式分别填在相应的括号里:a 2b,,43,3,2,1ab y x x ---x 2-x-1 单项式:{ }多项式:{ }整 式:{ }7.整式21,3x -y 2,23x 2y ,a ,πx +21y ,522a π,x +1中,单项式有: 多项式有:8.在,中,单项式有: 。
人教版数学七年级上册。
第二章测试题含答案人教版数学七年级上册第二章测试题含答案2.1 整式一.选择题1.下列说法正确的是(B)。
A。
是单项式B。
x2+2x-1的常数项为1C。
的系数是2D。
xy的次数是2次2.在下面四个式子中,为单项式的是(A)。
A。
y=x2B。
C。
2D。
23.x3+x2(b+1)+1是关于x的二次多项式,则a,b的值可以是(C)。
A。
B。
C。
2,-1D。
4.下列说法中,正确的为(D)。
A。
单项式-的系数是-2,次数是3B。
单项式a的系数是,次数是1C。
是二次单项式D。
单项式-的系数是-,次数是35.多项式有(B)个。
A。
4B。
3C。
2D。
16.多项式2x5+4xy3-5x2-1的次数和常数项分别是(B)。
A。
5,-1B。
4,-1C。
10,-1D。
4,17.关于整式的概念,下列说法正确的是(B)。
A。
的系数是B。
32x3y的次数是6C。
的常数项是D。
-x2y+xy-7是5次三项式8.下列说法正确的是(D)。
A。
单项式的系数是B。
m的系数和次数都是1C。
m+n+1是一次单项式D。
多项式2m3+3m2-4的项数是49.下列式子:x2+2,+4,5x,中,整式的个数是(C)。
A。
3B。
4C。
5D。
610.下列说法正确的是(①,②,④)。
①-的相反数是-3;②a3b的次数是3;③多项式-5x+6x2-1是二次三项式;④-6.1是负分数;⑤的系数是-。
二.填空题11.多项式2x+3x2y-4的次数是3,次数最高的项是3x2y2,常数项是-4.12.若x2y3-πx4yn+xy2是关于x,y的六次多项式,则正整数n的值为4.13.同时符合下列条件:①同时含有字母a,b;②常数项是-1,且最高次项的系数是2的一个4次2项式,请你写出满足以上条件的一个整式。
答案:2a2b-1.14.已知(b-3)x2y|b|+(a+2)是关于x,y的五次单项式,a2-3ab+b2的值为-1.15.把多项式2x3y-4y2x+5x2-1重新排列:则按x降幂排列:5x2-4y2x+2x3y-1.三.解答题16.若关于x,y的多项式3x2-nxmy-x是一个三次三项式,且最高次项的系数是-3,求m-n的值。
七年级上册数学第二章测试卷知识要点一:单项式1.下列说法正确的是 ( ) A.x 不是单项式 B.x+2y 是单项式 C.-x 的系数是-1 D.0不是单项式2.在式子20a ,42t ,50,3.5x ,vt+1,-m 中,单项式的个数是 ( )A.3个B.4个C.5个D.6个3.单项式22yz x -的系数、次数分别是 ( )A.0,2B.0,4C.-1,5D.1,44.单项式(-1)m m ab 的 ( )A.系数是-1,次数是mB.系数是1,次数是m+1C.系数是-1,次数是2m+1D.系数是(-1)m ,次数是m+15.若单项式124+-m b a 与722+-m m b a 是同类项,则m 的值为 ( )A.4B.2或-2C.2D.-2 6.若y x x b a --2与525b a 的和仍是单项式,则x= ,y= .7.单项式5332yz x -的系数是 ,次数是 .8.四次单项式(m-n)x 3-m y 的系数为-3,求m ,n 的值.9.如果单项式3432-m b a 的次数与单项式22331z y x 的次数相同,试求m 的值。
知识要点二:多项式10.下列说法正确的是 ( )A.8-31是多项式 B.yz x 31-是三次单项式,系数为0C.123322-+-y x xy x 是五次多项式D.xb5-是单项式 11.多项式7234423-+-m y x x 的项数与次数分别是 ( ) A.4、9 B.4、6 C.3、9 D.3、1012.如果m 是三次多项式,n 是三次多项式,那么m+n 一定是 ( )A.六次多项式B.次数不高于3的整式C.三次多项式D.次数不低于3的整式13.一个五次多项式,它任何一项的次数 ( )A.都小于5B.都等于5C.都不小于5D.都不大于514.15223234-+--a ab b a a 是 次 项式,它的最高次项是 ,常数项是 。
把它按a 的升幂排列是 。
单项式与多项式例题及练习例:试用尽可能多的方法对下列单项式进行分类:3a 3x ,bxy ,5x 2,-4b 2y ,a 3,-b 2x 2,12axy 2解:(1)按单项式的次数分:二次式有5x ;三次式有bxy ,-4b 2y ,a 3;四次式有3a 3x ,•-b 2x 2,12axy 2。
(2)按字母x 的次数分:x 的零次式有-4b 2y ,a 3;x 的一次式有3a 3x ,bxy ,12axy 2;x 的二次式有5x 2,-b 2x 2。
(3)按系数的符号分:系数为正的有3a 3x ,bxy ,5x 2,a 3,12axy 2;系数为负的有-4b 2y ,-b 2x 2。
(4)按含有字母的个数分:只含有一个字母的有5x 2,a 3;•含有两个字母的有3a 3x ,•-4b 2y ,-b 2x 2;含有三个字母的有bxy ,12axy 2。
评析:对单项式进行分类的关键在于选择一个恰当的分类角度。
如按单项式的次数、按式中某个字母的次数、按系数的符号、按含有字母的个数等等。
1、把代数式222a b c 和32a b 的共同点填在下列横线上,例如:都是代数式。
①都是 式;②都是 。
2、写出一个系数为-1,含字母x 、y 的五次单项式 。
3、如果52)2(4232+---+-x x q x xp 是关于x 的五次四项式,那么p+q= 。
4、若(4a -4)x 2y b+1是关于x ,y 的七次单项式,则方程ax -b=x -1的解为 。
5、下列说法中正确的是( ) A 、x -的次数为0 B 、x π-的系数为1- C 、-5是一次单项式D 、b a 25-的次数是3次6、若12--b y ax 是关于x ,y 的一个单项式,且系数是722,次数是5,则a 和b 的值是多少 7、已知:12)2(+-m ba m 是关于a 、b 的五次单项式,求下列代数式的值,并比较(1)、(2)两题结果:(1)122+-m m , (2)()21-m●体验中考1、(2008年湖北仙桃中考题改编)在代数式a ,12mn -,5,xy a ,23x y-,7y 中单项式有 个。
七年级上册数学第二章重点题型一、单项式相关题型。
1. 若单项式-3x^3y^n与5x^m 1y^3是同类项,则m n的值是多少?解析:同类项是指所含字母相同,并且相同字母的指数也相同的项。
对于单项式-3x^3y^n与5x^m 1y^3是同类项,则m−1 = 3,n=3。
由m−1 = 3,可得m = 4。
所以m−n = 4 3=1。
2. 写出一个系数为-(2)/(3),且只含有x,y的四次单项式。
解析:单项式的次数是指单项式中所有字母的指数和。
设这个单项式为-(2)/(3)x^ay^b,a + b=4,可以令a = 2,b = 2,则这个单项式可以是-(2)/(3)x^2y^2。
3. 已知单项式2x^ay^b + 1的次数是5,则a + b=?解析:因为单项式的次数是所有字母指数和,所以a+(b + 1)=5,即a + b+1 = 5,那么a + b=4。
二、多项式相关题型。
4. 多项式3x^2y 4xy^2+x^3-5y^3按y的降幂排列是怎样的?解析:按y的降幂排列,就是按照y的指数从大到小的顺序排列。
多项式3x^2y 4xy^2+x^3-5y^3按y的降幂排列为5y^3-4xy^2+3x^2y+x^3。
5. 已知多项式A = 2x^2-3x + 1,B=-x^2+2x 3,求A B。
解析:A B=(2x^2-3x + 1)-(-x^2+2x 3)=2x^2-3x + 1+x^2-2x + 3=(2x^2+x^2)+(-3x-2x)+(1 + 3)=3x^2-5x + 4。
6. 若多项式x^2+kx 6分解因式的结果为(x 2)(x + 3),求k的值。
解析:因为(x 2)(x + 3)=x^2+3x-2x 6=x^2+x 6。
又因为x^2+kx 6=(x 2)(x + 3),所以k = 1。
三、整式加减综合题型。
7. 化简求值:(2x^3-3x^2y 2xy^2)-(x^3-2xy^2+y^3)+(-x^3+3x^2y y^3),其中x=(1)/(2),y = 1。
七年级数学上第二章《整式》测试题 班级 姓名 得分一、选择题(每小题3分,共30分) 1、在代数式:n2,33-m ,22-,32m -,22b π中,单项式得个数有( ) A 、 1个 B 、2个 C 、3个 D 、4个2、下列语句正确得就是( ) A.中一次项系数为-2 B.就是二次二项式 C.就是四次三项式 D.就是五次三项式3、下列各组中得两项,属于同类项得就是( ) A 、 y x 22-与2xy B 、5y x 2与—0、5z x 2C 、3mn 与—4nmD 、-05.ab 与abc 4、单项式-3224c ab 得系数与次数分别就是( ) A 、 -2, 6 B 、2, 7 C 、-32, 6 D 、-32, 7 5、下列合并同类项正确得就是( ) A 、 325a b ab += B 、770m m -=C 、33622ab ab a b +=D 、-+=a b a b ab 2226、)]([c b a ---去括号应得 ( )A 、 c b a -+-B 、 c b a +--C 、 c b a ---D 、c b a ++-7、化简)2()2()2(++---x x x 得结果等于 ( )A.63-x B 、 2-x C 、23-x D 、 3-x8、一个长方形得一边长就是b a 32+,另一边得长就是b a +,则这个长方形得周长就是 ( )A.b a 1612+ B 、 b a 86+ C 、 b a 83+ D 、b a 46+9、已知235x x ++得值为7,那么代数式2392x x +-得值就是( ) A.0 B.2 C.4 D.610、已知622x y 与-313m n x y 就是同类项,则29517m mn --得值就是 ( ) A:-1 B:-2 C:-3 D:-4二、填空题11、25ab π-得系数就是_____________、12、多项式223x x -+就是_______次________项式、13、一个多项式加上22x x -+-得21x -,则此多项式应为_________、14、如果-13m x y 与221n x y +就是同类项,则m=_______,n=________. 15、已知a 就是正数,则=-a a 73 __________、16、计算()()=+---xy y y xy 2 、17、观察下面得单项式:4328,4,2,x x x x --……根据您发现得规律,写出第6个式子就是 、18、单项式2237xy π-得系数就是 ,次数就是 。
19、三个连续奇数,中间得一个就是n,则这三个数得与就是___________________。
20、一个三位数,十位数字为x,个位数字比十位数字少3,百位数字就是十位数字得3倍,则这个三位数可表示为________________________。
三、解答题21、(12分)化简(1))69()3(522x x x +--++-、 (2))34()135(232a a a a --+-、22、(10分)化简求值::()()23523132a a a +---,其中31-=a 23、(10分)观察右面得图案,每条边上有n(n ≥2)个方点,每个图案中方点得总数就是S 、(1)请写出n=5时, S= ;s=12n=4s=8n=3s=4n=2(2)请写出n=18时,S= ; (3)按上述规律,写出S 与n 得关系式。
24、(10分)计算: (1)97-÷2)4(31)5132(-⨯-- (2)43-―(1―0、5)÷31×[2+(-4)2] 25、(12分)如图所示,就是两种长方形铝合金窗框已知窗框得长都就是y 米,窗框宽都就是x 米,若一用户需(1)型得窗框2个,(2)型得窗框5个,则共需铝合金多少米? 26、(12分)如图,在一个长方形休闲广场得四角都设计一块半径相同得四分之一圆形得花坛,若圆形得半径为r 米,广场得长为a 米,宽为b 米。
(1)请列式表示广场空地得面积;(2)若休闲广场得长为500米,宽为200米,圆形花坛得半径为20米,求广场空地得面积。
(计算结果保留π)2014--2015学年度第一学期七年级数学(第一、二)章测试卷一、填空题(每空3分,共30分)1、-5得相反数就是 、2、单项式-432y x 得系数就是___________,次数就是______________、 3、如果把收入30元记作+30元,那么支出20元可记作________________ 、4、x 得一半与y 得3倍得差得平方,可列式表示为__________________、5、计算:(-3)-(+7)=________.()72878-÷= 、 6、用四舍五入法把3、1415926精确到千分位就是________;近似数3、0×106精确到________位.7、 化简: ()323x x y -- = 、8、 23y x m -与n y x 35就是同类项,则n m =_____________、9、 三个连续偶数中,中间得一个就是2n,这三个数得与为 、(2) (1)y x10、若a a -=-11,则a 得取值范围就是 。
三、选择题(每小题4分,共40分)11、在0,-2,1,12这四个数中,最小得数就是( ) A 、 0 B 、 -2 C 、 1 D 、 1212、在汶川地震抗震救灾过程中,国内外社会各界纷纷伸出援助之手,截止2008年5月30日12时,共收到各类捐赠款物折合人民币约399亿元,这个数据用科学记数法表示为( )A. 3、99×109元B. 3、99×1010元C. 3、99×1011元D. 399×102元13、下列式子不成立得就是( )A.2x 2y -x 2y =x 2y B 、-3y 2+3y 2=0C 、11x -10y =xyD 、6mn +(-6mn)=014、下列各题去括号错误得就是( ) A.11(3)322x y x y --=-+ B.()m n a b m n a b +-+-=-+- C.1(463)2332x y x y --+=-++ D.112112()()237237a b c a b c +--+=++- 15、4604608取近似值,保留三个有效数字,结果就是( )A 、 4、60×106 B.4600000 C 、4、61×106 D 、4、605×10616、下列说法正确得就是( )A 、 0.5ab 就是二次单项式B 、1x 与2x 就是同类项C 、 259abc -得系数就是5- D 、 ()23a b +就是一次单项式 17、有下列各组数①225-5)与(-;②333-3-与)(;③ 552)2(与--;④20010000与;⑤231-1-)与()(,其中相等得共有( ) A 、1对 B 、2对 C 、3对 D 、4对18、计算)2()2(222---+-得正确结果就是( )A 、2B 、-2C 、6D 、1019、已知x 2+3x +5=7,那么代数式3x 2+9x -2得值就是( )A 、0B 、2C 、4D 、6a b c 20、如果3231y x a +与1233--b y x 就是同类项,那么a 、b 得值分别就是( )A 、a =1,b =2B 、a =0,b =2C 、a =2,b =1D 、a =1,b =1三、解答题(本大题共80分) 21、(4分)把下列各数填入它所属得大括号内、+8,0、275,2--,0,—1、04,()10--,227,13-,7%,π 正分数{ }; 正整数{ };整数{ }; 负数{ }.22、(30分)计算:(1)()()()()499159--+--+- (2) -5+ 6÷(-2)⨯12(3)、(-61+43-125)⨯)12(- (4)-42-12⨯(31-1)÷(-131) (5))1(2)39(31++-a a (6)()22373432x x x x ⎡⎤----⎣⎦ 23、(16分)化简求值、(1)2xy 2-[5x -3(2x -1)-2xy 2]+1,其中12,2x y ==-(2)22)1(2)(22222----+ab b a ab b a ,其中a =-2,b =2、24、(10分)某校校长暑假带领该校市级“三号学生”去北京旅游,甲旅行社说:“如果校长买全票一张,则其余学生享受半价优惠。
”乙旅行社说:“包括校长在内全部按全票价得6折优惠(即按全票价得60%收费)”。
全票价为240元。
(1)如果一共有10名学生,试分别计算甲、乙两家旅行社得收费?(2)当学生人数为多少时,两家旅行社收费一样?25、(10分)已知x 2+y 2=7,xy =-2,求多项式5x 2-3xy -4y 2-11xy -7x 2+2y 2得值。
26、(10分)已知有理数a 、b 、c 在数轴上得对应点如图,试化简c b a c b a a ++-++-、2014--2015学年度第一学期七年级数学期中测试卷班级 姓名 得分一、选择题(每小题4分,共40分)1、零上13℃记作+13℃,零下2℃可记作( )A 、2B 、-2C 、2℃D 、-2℃第3个第2个第1个2、下列说法中,正确得就是( )A 、零就是最小得整数B 、零就是最小得正数C 、零没有倒数D 、零没有绝对值3、已知有理数m,n 在数轴上得对应点得位置如图所示,则下列判断正确得就是( )A 、m >0B 、n <0C 、mn <0D 、m -n >0 4、如果a =a,那么a 就是( ) A 、0 B 、0与1 C 、正数 D 、非负数5、两个非零有理数得与为零,则它们得商就是( )A 、0B 、1C 、-1D 、不能确定6、计算(-1)÷(-5)×(-51)得结果就是( ) A 、-1 B 、1 C 、251 D 、-25 7、下列各对数中,值相等得就是( )A 、-32与-2 3B 、-2 3与(-2)3C 、-32与(-3)2D 、(-3)×2与-3×228、如图,用围棋按下面得规律摆图形,则摆第n 个图形需要围棋得枚数就是( )A 、5nB 、5n - 1C 、6n -D 、2n 2-1 9、用四舍五入法按要求对0、05049取近似值,其中错误得就是( )A 、0、1(精确到0、1)B 、0、05(精确到百分位)C 、0、05(精确到千分位)D 、0、050(精确到0、001)10、下列计算中,正确得就是( )A 、-2(a +b)=-2a +bB 、-2(a +b)=-2a -bC 、-2(a +b)=-2a -2bD 、-2(a +b)=-2a +2b二、填空题(每小题4分,共40分)11、-523得绝对值得相反数就是 。