若a+b<0,
则a<-b,b<-a,
又因为f(x)在(-≦,+≦)上是增函数,
所以f(a)<f(-b),f(b)<f(-a).
所以f(a)+f(b)<f(-a)+f(-b),
即逆否命题为真命题.
所以原命题为真命题.
【补偿训练】已知全集U的两个子集A,B,命题“若x∉A,则x∉B” 是真命题,则下列结论正确的是( A.B C.( A
【解析】(1)由于否命题是“若x2=1,则x=1”,是假命题.
答案:假
(2)由于原命题与其逆否命题等价,故命题p是真命题.
答案:真
(3)逆否命题为:若a2≤b2,则a≤b,由于原命题是假命题,故其 逆否命题也是假命题. 答案:若a2≤b2则a≤b 假命题
【要点探究】 知识点 四种命题间的关系
对四种命题相互关系的三点认识 (1)四种命题中原命题具有相对性,任意确定一个为原命题,其 逆命题、否命题、逆否命题就确定了,所以“互逆”“互 否”“互为逆否”具有对称性.
【审题】抓信息,找思路
【解题】明步骤,得高分
【点题】警误区,促提升
失分点1:解题时若在①处对原命题的等价命题写错 ,则会导致 本例不得分. 失分点2:本例若对不等式考虑不全面,即忽略②处对参数a的讨 论,漏掉一解,则本例最多得8分. 失分点3:若解题步骤不规范,漏掉③处最后的归纳,则本例最多 得10分
【方法技巧】“正难则反”的处理原则 (1)当原命题的真假不易判断,而逆否命题较容易判断真假时, 可通过判断其逆否命题的真假来判断原命题的真假. (2)在证明某一个命题的真假性有困难时,可以证明它的逆否命 题为真(假)命题,来间接地证明原命题为真(假)命题.