四种命题的相互关系
- 格式:ppt
- 大小:547.00 KB
- 文档页数:27
考点二命题及其关系、充分条件与必要条件知识梳理1.命题的概念可以判断真假、用文字或符号表述的语句,叫作命题.其中判断为真的语句叫真命题,判断为假的语句叫假命题.2.四种命题及相互关系(1) 四种命题命题表述形式原命题若p,则q逆命题若q,则p否命题若非p,则非q逆否命题若非q,则非p(2) 四种命题间的逆否关系3.四种命题的真假关系(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题互为逆命题或互为否命题,它们的真假性没有关系.4.充分条件与必要条件(1)如果p⇒q,则p是q的充分条件,q是p的必要条件;(2)如果p⇒q,q⇒p,则p是q的充要条件.(3) 如果p q,q p,那么称p是q的充分不必要条件.(4) 如果q p,p q,那么称p是q的必要不充分条件.(5) 如果p q,且q p,那么称p是q的既不充分也不必要条件.典例剖析题型一四种命题及其相互关系例1命题“若一个数是负数,则它的平方是正数”的逆命题是()A.“若一个数是负数,则它的平方不是正数”B.“若一个数的平方是正数,则它是负数”C.“若一个数不是负数,则它的平方不是正数”D.“若一个数的平方不是正数,则它不是负数”答案 B解析将原命题的条件与结论互换即得逆命题,故原命题的逆命题为“若一个数的平方是正数,则它是负数”.变式训练命题“若x,y都是偶数,则x+y也是偶数”的逆否命题是()A.若x+y是偶数,则x与y不都是偶数B.若x+y是偶数,则x与y都不是偶数C.若x+y不是偶数,则x与y不都是偶数D.若x+y不是偶数,则x与y都不是偶数答案 C解析由于“x,y都是偶数”的否定表达是“x,y不都是偶数”,“x+y是偶数”的否定表达是“x +y不是偶数”,故原命题的逆否命题为“若x+y不是偶数,则x,y不都是偶数”,故选C.解题要点 1.写一个命题的其他三种命题时,需注意:①对于不是“若p,则q”形式的命题,需先改写;②若命题有大前提,写其他三种命题时需保留大前提.2.一些常见词语的否定例2有下列几个命题:①“若a>b,则a2>b2”的否命题;②“若x+y=0,则x,y互为相反数”的逆命题;③“若x2<4,则-2<x<2”的逆否命题.其中真命题的序号是________.答案②③解析①原命题的否命题为“若a≤b,则a2≤b2”,错误.②原命题的逆命题为:“若x,y互为相反数,则x+y=0”,正确.③原命题的逆否命题为“若x≥2或x≤-2,则x2≥4”,正确.变式训练下列有关命题的说法正确的是________.(填序号)①命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”;②若一个命题是真命题,则其逆命题也是真命题;③命题“存在x∈R,使得x2+x+1<0”的否定是“对任意x∈R,均有x2+x+1<0”;④命题“若x=y,则sin x=sin y”的逆否命题为真命题.答案 ④解析 命题“若x 2=1,则x =1”的否命题为“若x 2≠1,则x ≠1”,所以①不正确;原命题与逆命题不等价,所以②不正确;命题“存在x ∈R ,使得x 2+x +1<0”的否定是“对任意x ∈R ,均有x 2+x +1≥0”,所以③不正确;命题“若x =y ,则sin x =sin y ”是真命题,所以逆否命题为真命题,④正确.解题要点 1.判断一个命题为真命题,要给出推理证明;判断一个命题是假命题,只需举出反例.2.根据“原命题与逆否命题是等价的,逆命题与否命题也是等价的”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.题型二 充分条件与必要条件例3 已知p :“a ,b ,c 成等比数列”,q :“b =ac ”,那么p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 D解析 若a ,b ,c 成等比数列,则有b 2=ac ,所以b =±ac ,所以充分性不成立.当a =b =c =0时,b =ac 成立,但此时a ,b ,c 不成等比数列,所以必要性不成立,所以p 是q 的既不充分也不必要条件.变式训练 在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,则“a ≤b ”是“sin A ≤sin B ”的( )A .充分必要条件B .充分非必要条件C .必要非充分条件D .非充分非必要条件答案 A解析 由正弦定理,知a ≤b ⇔2R sin A ≤2R sin B (R 为△ABC 外接圆的半径)⇔sin A ≤sinB . 例4 设函数f (x )=log 2x ,则“a >b ”是“f (a )>f (b )”的________(填“充分不必要”“必要不充分”“充要”或“既不充分又不必要”)条件.答案 必要不充分解析 因为f (x )=log 2x 在区间(0,+∞)上是增函数,所以当a >b >0时,f (a )>f (b );反之,当f (a )>f (b )时,a >b .故“a >b ”是“f (a )>f (b )”的必要不充分条件.变式训练 设x ∈R ,则“x >1”是“220x x +->”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 答案 A解析 由不等式220x x +->得(2)(1)0x x +->,即2x <-或1x >,所以由1x >可以得到不等式220x x +->成立,故充分性成立;但由220x x +->不一定得到1x >,所以必要性不成立,即“x >1”是“220x x +->”的充分而不必要条件.解题要点 1.充要条件问题应首先弄清问题中条件是什么,结论是什么,再进一步判断条件与结论的关系,解题过程分为三步:①确定条件是什么,结论是什么;②尝试从条件推结论,从结论推条件;③确定条件和结论是什么关系.2.充要条件的三种判断方法(1) 定义法:根据p q ,q p 进行判断; (2) 集合法:根据p 、q 成立的对象的集合之间的包含关系进行判断;(3) 等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断.当堂练习1. 设p :1<x <2,q :2x >1,则p 是q 成立的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件2.设,a b ∈R , 则 “2()0a b a -<”是“a b <”的 ( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件3.已知m ,n 是两条不同直线,α,β是两个不同平面,则下列命题正确的是( )A .若α,β垂直于同一平面,则α与β平行B .若m ,n 平行于同一平面,则m 与n 平行C .若α,β不平行,则在α内不存在与β平行的直线D .若m ,n 不平行,则m 与n 不可能垂直于同一平面4.已知i 是虚数单位,a ,b ∈R ,得“a =b =1”是“(a +b i)2=2i ”的 条件.5.U 为全集,A ,B 是集合,则“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅” 条件.课后作业一、 选择题1.下列语句中命题的个数是( )①2<1;②x <1;③若x <2,则x <1;④函数f (x )=x 2是R 上的偶函数.A.0B.1C.2D.32.“x =1”是“x 2-2x +1=0”的( )A .充要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件3.“1<x <2”是“x <2”成立的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.设p :x <3,q :-1<x <3,则p 是q 成立的( )A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件5.下列结论错误的是( )A .命题“若x 2-3x -4=0,则x =4”的逆否命题为“若x ≠4,则x 2-3x -4≠0”B .“x =4”是“x 2-3x -4=0”的充分条件C .命题“若m >0,则方程x 2+x -m =0有实根”的逆命题为真命题D .命题“若m 2+n 2=0,则m =0且n =0”的否命题是“若m 2+n 2≠0,则m ≠0或n ≠0”6.若m ∈R, 命题“若m >0,则方程x 2+x -m =0有实根”的逆否命题是( )A .若方程x 2+x -m =0有实根,则m >0B .若方程x 2+x -m =0有实根,则m ≤0C .若方程x 2+x -m =0没有实根,则m >0D .若方程x 2+x -m =0没有实根,则m ≤07.已知命题p :若x =-1,则向量a =(1,x )与b =(x +2,x )共线,则在命题p 的原命题、逆命题、否命题、逆否命题中,真命题的个数为( )A .0B .2C .3D .48.设α,β是两个不同的平面,m 是直线且m ⊂α.“m ∥β”是“α∥β”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件二、填空题9.x ≠3或y ≠5是x +y ≠8的____________条件.(选填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”)10.“若a ≤b ,则ac 2≤bc 2”,则命题的原命题、逆命题、否命题和逆否命题中真命题的个数是________.11.(1)“x >y >0”是“1x <1y”的________条件. (2) 设a ,b ∈R ,则“a >b ”是“a |a |>b |b |”的________条件.12.下列命题:①“若k >0,则方程x 2+2x +k =0有实根”的否命题;②“若1a >1b,则a <b ”的逆命题;③“梯形不是平行四边形”的逆否命题,其中是假命题的是________.13.“m <14”是“一元二次方程x 2+x +m =0有实数解”的____________条件.当堂练习答案1. 答案 A解析 当1<x <2时,2<2x <4,∴p ⇒q ;但由2x >1,得x >0,∴q p ,故选A.2答案 A解析 由(a -b )a 2<0⇒a ≠0且a <b ,∴充分性成立;由a <b ⇒a -b <0,当0=a <b 时 (a -b )·a 2<0,必要性不成立;故选A.3.答案 D解析 对于A ,α,β垂直于同一平面,α,β关系不确定,A 错;对于B ,m ,n 平行于同一平面,m ,n 关系不确定,可平行、相交、异面,故B 错;对于C ,α,β不平行,但α内能找出平行于β的直线,如α中平行于α,β交线的直线平行于β,故C 错;对于D ,若假设m ,n 垂直于同一平面,则m ∥n ,其逆否命题即为D 选项,故D 正确.4.答案 充分不必要条件解析 当a =b =1时,(a +b i)2=(1+i)2=2i ;当(a +b i)2=2i 时,得⎩⎪⎨⎪⎧a 2-b 2=0,ab =1, 解得a =b =1或a =b =-1,所以“a =b =1”是“(a +b i)2=2i ”的充分不必要条件.5.答案 充要条件解析 若存在集合C 使得A ⊆C ,B ⊆∁U C ,则可以推出A ∩B =∅;若A ∩B =∅,由Venn 图(如图)可知,存在A =C ,同时满足A ⊆C ,B ⊆∁U C .故“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅”的充要条件.课后作业答案二、 选择题1.答案 D2.答案 A解析 解x 2-2x +1=0得x =1,所以“x =1”是“x 2-2x +1=0”的充要条件.3.答案 A4.答案 C解析 ∵x <3-1<x <3,但-1<x <3⇒x <3,∴p 是q 的必要不充分条件,故选C.5.答案 C解析 C 项命题的逆命题为“若方程x 2+x -m =0有实根,则m >0”.若方程有实根,则Δ=1+4m ≥0,即m ≥-14,不能推出m >0.所以不是真命题,故选C. 6.答案 D解析 原命题为“若p ,则q ”,则其逆否命题为“若q ,则p ”.∴所求命题为“若方程x 2+x -m =0没有实根,则m ≤0”.7.答案 B解析 向量a ,b 共线⇔x -x (x +2)=0⇔x =0或x =-1,∴命题p 为真,其逆命题为假,故在命题p 的原命题、逆命题、否命题、逆否命题中,真命题的个数为2.8.答案 B解析 m ⊂α,m ∥βα∥β,但m ⊂α,α∥β⇒m ∥β,∴m ∥β是α∥β的必要而不充分条件. 二、填空题9.答案 必要不充分解析 设p :x =3且y =5,q :x +y =8,显然p 是q 的充分不必要条件,∴p 是q 的必要不充分条件,即x ≠3或y ≠5是x +y ≠8的必要不充分条件.10.答案 2解析 其中原命题和逆否命题为真命题,逆命题和否命题为假命题.11.答案 (1)充分不必要 (2)充要解析 (1)1x <1y⇒xy ·(y -x )<0, 即x >y >0或y <x <0或x <0<y .所以x >y >0 ⇒1x <1y ,但反过来1x <1y, 所以是充分不必要条件.(2) 构造函数f (x )=x |x |,则f (x )在定义域R 上为奇函数.因为f (x )=⎩⎪⎨⎪⎧x 2,x ≥0,-x 2,x <0,所以函数f (x )在R 上单调递增,所以a >b ⇔f (a )>f (b )⇔a |a |>b |b |. 所以是充要条件.12.答案 ①②解析 对于①其否命题为“若k ≤0,则方程x 2+2x +k =0无实根”,为假命题;②的逆命题为“若a <b ,则1a >1b”,为假命题;③中原命题为真命题,故其逆否命题也为真命题. 13.答案 充分不必要解析 x 2+x +m =0有实数解等价于Δ=1-4m ≥0,即m ≤14,因为m <14⇒m ≤14,反之不成立. 故“m <14”是“一元二次方程x 2+x +m =0有实数解”的充分不必要条件.。
命题及其关系、充分条件与必要条件1.命题2.四种命题及其相互关系 (1)四种命题间的相互关系:(2)四种命题中真假性的等价关系:原命题等价于逆否命题,原命题的否命题等价于逆命题.在四种形式的命题中真命题的个数只能是0,2,4.3.充要条件p ⇒q 且q ppq 且q ⇒p p ⇔qpq 且qp1.下列命题是真命题的为( ) A .若1x =1y ,则x =y B .若x 2=1,则x =1 C .若x =y ,则x =yD .若x <y ,则x 2<y 2解析:选A 由1x =1y 易得x =y ;由x 2=1,得x =±1;若x =y <0,则x 与y 均无意义; 若x =-2,y =1,虽然x <y ,但x 2>y 2. 所以真命题为A.2.已知集合A ={1,m 2+1},B ={2,4},则“m =3”是“A ∩B ={4}”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A A ∩B ={4}⇒m 2+1=4⇒m =±3,故“m =3”是“A ∩B ={4}”的充分不必要条件.3.已知命题:若m >0,则方程x 2+x -m =0有实数根.则其逆否命题为________________________________________________________________________.答案:若方程x 2+x -m =0无实根,则m ≤01.易混淆否命题与命题的否定:否命题是既否定条件,又否定结论,而命题的否定是只否定命题的结论.2.易忽视A 是B 的充分不必要条件(A ⇒B 且B ⇒/A )与A 的充分不必要条件是B (B ⇒A 且A ⇒/B )两者的不同.[小题纠偏]1.设x ∈R ,则“x >1”是“x 3>1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选C ∵x >1,∴x 3>1,又x 3-1>0,即(x -1)(x 2+x +1)>0,解得x >1,∴“x >1”是“x 3>1”的充要条件.2.“在△ABC 中,若∠C =90°,则∠A ,∠B 都是锐角”的否命题为:________________.解析:原命题的条件:在△ABC 中,∠C =90°, 结论:∠A ,∠B 都是锐角.否命题是否定条件和结论. 即“在△ABC 中,若∠C ≠90°,则∠A ,∠B 不都是锐角”. 答案:在△ABC 中,若∠C ≠90°,则∠A ,∠B 不都是锐角考点一 命题及其相互关系(基础送分型考点——自主练透)[题组练透]1.命题“若a2>b2,则a>b”的否命题是()A.若a2>b2,则a≤b B.若a2≤b2,则a≤bC.若a≤b,则a2>b2D.若a≤b,则a2≤b2解析:选B根据命题的四种形式可知,命题“若p,则q”的否命题是“若綈p,则綈q”.该题中,p为a2>b2,q为a>b,故綈p为a2≤b2,綈q为a≤b.所以原命题的否命题为:若a2≤b2,则a≤b.2.命题“若x2+3x-4=0,则x=-4”的逆否命题及其真假性为()A.“若x=4,则x2+3x-4=0”为真命题B.“若x≠4,则x2+3x-4≠0”为真命题C.“若x≠4,则x2+3x-4≠0”为假命题D.“若x=4,则x2+3x-4=0”为假命题解析:选C根据逆否命题的定义可以排除A,D,因为x2+3x-4=0,所以x=4或-1,故原命题为假命题,即逆否命题为假命题.3.(易错题)给出以下四个命题:①“若x+y=0,则x,y互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若q≤-1,则x2+x+q=0有实根”的逆否命题;④若ab是正整数,则a,b都是正整数.其中真命题是________.(写出所有真命题的序号)解析:①命题“若x+y=0,则x,y互为相反数”的逆命题为“若x,y互为相反数,则x+y=0”,显然①为真命题;②不全等的三角形的面积也可能相等,故②为假命题;③原命题正确,所以它的逆否命题也正确,故③为真命题;④若ab是正整数,但a,b不一定都是正整数,例如a=-1,b=-3,故④为假命题.答案:①③[谨记通法]1.写一个命题的其他三种命题时的2个注意点(1)对于不是“若p,则q”形式的命题,需先改写;(2)若命题有大前提,写其他三种命题时需保留大前提.如“题组练透”第3题②易忽视.2.命题真假的2种判断方法(1)联系已有的数学公式、定理、结论进行正面直接判断.(2)利用原命题与逆否命题,逆命题与否命题的等价关系进行判断.考点二充分必要条件的判定(重点保分型考点——师生共研)[典例引领]1.设a,b是非零向量,“a·b=|a||b|”是“a∥b”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解析:选A a·b=|a||b|cos〈a,b〉.而当a∥b时,〈a,b〉还可能是π,此时a·b=-|a||b|,故“a·b=|a||b|”是“a∥b”的充分而不必要条件.2.设x∈R,则“|x-2|<1”是“x2+x-2>0”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件解析:选A|x-2|<1⇔1<x<3,x2+x-2>0⇔x>1或x<-2.由于{x|1<x<3}是{x|x>1或x<-2}的真子集,所以“|x-2|<1”是“x2+x-2>0”的充分而不必要条件.3.已知条件p:x+y≠-2,条件q:x,y不都是-1,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A因为p:x+y≠-2,q:x≠-1,或y≠-1,所以綈p:x+y=-2,綈q:x=-1,且y=-1,因为綈q⇒綈p但綈p⇒/綈q,所以綈q是綈p的充分不必要条件,即p是q的充分不必要条件.[由题悟法]充要条件的3种判断方法(1)定义法:根据p⇒q,q⇒p进行判断;(2)集合法:根据p,q成立的对象的集合之间的包含关系进行判断;(3)等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断.这个方法特别适合以否定形式给出的问题,如“xy≠1”是“x≠1或y≠1”的某种条件,即可转化为判断“x=1且y=1”是“xy=1”的某种条件.[即时应用]1.若p:|x|=x,q:x2+x≥0.则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A设p:{x||x|=x}={x|x≥0}=A,q:{x|x2+x≥0}={x|x≥0或x≤-1}=B,∵A B,∴p是q的充分不必要条件.2.设四边形ABCD的两条对角线为AC,BD,则“四边形ABCD为菱形”是“AC⊥BD”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析:选A当四边形ABCD为菱形时,必有对角线互相垂直,即AC⊥BD;当四边形ABCD中AC⊥BD时,四边形ABCD不一定是菱形,还需要AC与BD互相平分.综上知,“四边形ABCD为菱形”是“AC⊥BD”的充分不必要条件.考点三充分必要条件的应用………………………(题点多变型考点——纵引横联) [典型母题]已知P={x|x2-8x-20≤0},非空集合S={x|1-m≤x≤1+m}.若x∈P是x∈S 的必要条件,求m的取值范围.[解]由x2-8x-20≤0,得-2≤x≤10,∴P={x|-2≤x≤10},由x∈P是x∈S的必要条件,知S⊆P.则{1-m≤1+m,1-m≥-2,1+m≤10,∴0≤m≤3.所以当0≤m≤3时,x∈P是x∈S的必要条件,即所求m的取值范围是[0,3].[类题通法]根据充要条件求参数的值或取值范围的关键:先合理转化条件,常通过有关性质、定理、图象将恒成立问题和有解问题转化为最值问题等,得到关于参数的方程或不等式(组),再通过解方程或不等式(组)求出参数的值或取值范围.[越变越明][变式1] 母题条件不变,问是否存在实数m ,使x ∈P 是x ∈S 的充要条件. 解:若x ∈P 是x ∈S 的充要条件,则P =S ,∴⎩⎪⎨⎪⎧ 1-m =-2,1+m =10,∴⎩⎪⎨⎪⎧m =3,m =9,即不存在实数m ,使x ∈P 是x ∈S 的充要条件.[变式2] 母题条件不变,若綈P 是綈S 的必要不充分条件,求实数m 的取值范围. 解:由母题知P ={x |-2≤x ≤10}, ∵綈P 是綈S 的必要不充分条件, ∴P ⇒S 且S ⇒/P .∴[-2,10][1-m,1+m ].∴⎩⎪⎨⎪⎧ 1-m ≤-2,1+m >10或⎩⎪⎨⎪⎧1-m <-2,1+m ≥10.∴m ≥9,即m 的取值范围是[9,+∞).本题运用等价法求解,也可先求綈P ,綈S ,再利用集合法列出不等式,求出m 的范围.的必要不充分条件,求m 的取值范围.解:记P ={x |(x -m )2>3(x -m )}={x |(x -m )(x -m -3)>0}={x |x <m 或x >m +3},S ={x |x 2+3x -4<0}={x |(x +4)(x -1)<0}={x |-4<x <1},p 是s 成立的必要不充分条件,即等价于SP .所以m +3≤-4或m ≥1,解得m ≤-7或m ≥1. 即m 的取值范围为(-∞,-7]∪[1,+∞).一抓基础,多练小题做到眼疾手快 1.“(2x -1)x =0”是“x =0”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件[破译玄机]解析:选B 若(2x -1)x =0,则x =12或x =0,即不一定是x =0;若x =0,则一定能推出(2x -1)x =0.故“(2x -1)x =0”是“x =0”的必要不充分条件.2.命题“若α=π4,则tan α=1”的逆否命题是( )A .若α≠π4,则tan α≠1B .若α=π4,则tan α≠1C .若tan α≠1,则α≠π4D .若tan α≠1,则α=π4解析:选C 命题“若α=π4,则tan α=1”的逆否命题是“若tan α≠1,则α≠π4”.3.原命题p :“设a ,b ,c ∈R ,若a >b ,则ac 2>bc 2”以及它的逆命题、否命题、逆否命题中,真命题的个数为( )A .0B .1C .2D .4解析:选C 当c =0时,ac 2=bc 2,所以原命题是错误的;由于原命题与逆否命题的真假一致,所以逆否命题也是错误的;逆命题为“设a ,b ,c ∈R ,若ac 2>bc 2,则a >b ”,它是正确的;由于否命题与逆命题的真假一致,所以逆命题与否命题都为真命题.综上所述,真命题有2个.4.已知p :|x |<2;q :x 2-x -2<0,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选B 由x 2-x -2<0,得(x -2)(x +1)<0,解得-1<x <2;由|x |<2得-2<x <2.注意到由-2<x <2不能得知-1<x <2,即由p 不能得知q ;反过来,由-1<x <2可知-2<x <2,即由q 可得知p .因此,p 是q 的必要不充分条件.5.已知集合A ,B ,全集U ,给出下列四个命题: ①若A ⊆B ,则A ∪B =B ; ②若A ∪B =B ,则A ∩B =B ; ③若a ∈(A ∩∁U B ),则a ∈A ; ④若a ∈∁U (A ∩B ),则a ∈(A ∪B ) 其中真命题的个数为( ) A .1B .2C.3D.4解析:选B①正确;②不正确,由A∪B=B可得A⊆B,所以A∩B=A;③正确;④不正确.二保高考,全练题型做到高考达标1.已知复数z=a+3ii(a∈R,i为虚数单位),则“a>0”是“z在复平面内对应的点位于第四象限”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选C z=a+3ii=-(a+3i)i=3-a i,若z位于第四象限,则a>0,反之也成立,所以“a>0”是“z在复平面内对应的点位于第四象限”的充要条件.2.命题“a,b∈R,若a2+b2=0,则a=b=0”的逆否命题是()A.a,b∈R,若a≠b≠0,则a2+b2=0B.a,b∈R,若a=b≠0,则a2+b2≠0C.a,b∈R,若a≠0且b≠0,则a2+b2≠0D.a,b∈R,若a≠0或b≠0,则a2+b2≠0解析:选D a=b=0的否定为a≠0或b≠0;a2+b2=0的否定为a2+b2≠0.3.如果x,y是实数,那么“x≠y”是“cos x≠cos y”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件解析:选C设集合A={(x,y)|x≠y},B={(x,y)|cos x≠cos y},则A的补集C={(x,y)|x=y},B的补集D={(x,y)|cos x=cos y},显然C D,所以B A.于是“x≠y”是“cos x≠cos y”的必要不充分条件.4.下列说法正确的是()A.命题“若x2=1,则x=1”的否命题是“若x2=1,则x≠1”B.“x=-1”是“x2-x-2=0”的必要不充分条件C.命题“若x=y,则sin x=sin y”的逆否命题是真命题D.“tan x=1”是“x=π4”的充分不必要条件解析:选C由原命题与否命题的关系知,原命题的否命题是“若x2≠1,则x≠1”,即A不正确;因为x2-x-2=0,所以x=-1或x=2,所以由“x=-1”能推出“x2-x-2=0”,反之,由“x 2-x -2=0”推不出“x =-1”,所以“x =-1”是“x 2-x -2=0”的充分不必要条件,即B 不正确;因为由x =y 能推得sin x =sin y ,即原命题是真命题,所以它的逆否命题是真命题,故C 正确;由x =π4能推得tan x =1,但由tan x =1推不出x=π4,所以“tan x =1”是“x =π4”的必要不充分条件,即D 不正确. 5.若条件p :|x |≤2,条件q :x ≤a ,且p 是q 的充分不必要条件,则a 的取值范围是( )A .a ≥2B .a ≤2C .a ≥-2D .a ≤-2解析:选A 因为|x |≤2,则p :-2≤x ≤2,q :x ≤a ,由于p 是q 的充分不必要条件,则p 对应的集合是q 对应的集合的真子集,所以a ≥2.6.在命题“若m >-n ,则m 2>n 2”的逆命题、否命题、逆否命题中,假命题的个数是________.解析:若m =2,n =3,则2>-3,但22<32,所以原命题为假命题,则逆否命题也为假命题,若m =-3,n =-2,则(-3)2>(-2)2,但-3<2,所以逆命题是假命题,则否命题也是假命题.故假命题的个数为3.答案:37.设等比数列{a n }的公比为q ,前n 项和为S n ,则“|q |=1”是“S 4=2S 2”的________条件.解析:∵等比数列{a n }的前n 项和为S n ,又S 4=2S 2, ∴a 1+a 2+a 3+a 4=2(a 1+a 2),∴a 3+a 4=a 1+a 2,∴q 2=1⇔|q |=1,∴“|q |=1”是“S 4=2S 2”的充要条件. 答案:充要8.已知p (x ):x 2+2x -m >0,若p (1)是假命题,p (2)是真命题,则实数m 的取值范围为________.解析:因为p (1)是假命题,所以1+2-m ≤0,解得m ≥3;又p (2)是真命题,所以4+4-m >0,解得m <8.故实数m 的取值范围是[3,8).答案:[3,8)9.已知α:x ≥a ,β:|x -1|<1.若α是β的必要不充分条件,则实数a 的取值范围为________. 解析:α:x ≥a ,可看作集合A ={x |x ≥a }, ∵β:|x -1|<1,∴0<x <2, ∴β可看作集合B ={x |0<x <2}. 又∵α是β的必要不充分条件, ∴B A ,∴a ≤0. 答案:(-∞,0]10.已知集合A =⎩⎨⎧⎭⎬⎫y ⎪⎪y =x 2-32x +1,x ∈⎣⎡⎦⎤34,2,B ={x |x +m 2≥1}.若“x ∈A ”是“x ∈B ”的充分条件,求实数m 的取值范围.解:y =x 2-32x +1=⎝⎛⎭⎫x -342+716, ∵x ∈⎣⎡⎦⎤34,2,∴716≤y ≤2, ∴A =⎩⎨⎧⎭⎬⎫y ⎪⎪716≤y ≤2. 由x +m 2≥1,得x ≥1-m 2, ∴B ={x |x ≥1-m 2}.∵“x ∈A ”是“x ∈B ”的充分条件, ∴A ⊆B ,∴1-m 2≤716, 解得m ≥34或m ≤-34,故实数m 的取值范围是⎝⎛⎦⎤-∞,-34∪⎣⎡⎭⎫34,+∞. 三上台阶,自主选做志在冲刺名校 1.下列结论错误的是( )A .命题“若x 2-3x -4=0,则x =4”的逆否命题为“若x ≠4,则x 2-3x -4≠0”B .“x =4”是“x 2-3x -4=0”的充分条件C .命题“若m >0,则方程x 2+x -m =0有实根”的逆命题为真命题D .命题“若m 2+n 2=0,则m =0且n =0”的否命题是“若m 2+n 2≠0,则m ≠0或n ≠0”解析:选C C 项命题的逆命题为“若方程x 2+x -m =0有实根,则m >0”. 若方程有实根,则Δ=1+4m ≥0,即m ≥-14,不能推出m >0,所以不是真命题.2.函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,-2x+a ,x ≤0有且只有一个零点的充分不必要条件是( ) A .a <0 B .0<a <12C.12<a <1 D .a ≤0或a >1解析:选A 因为函数f (x )过点(1,0),所以函数f (x )有且只有一个零点⇔函数y =-2x+a (x ≤0)没有零点⇔函数y =2x (x ≤0)与直线y =a 无交点.数形结合可得,a ≤0或a >1,即函数f (x )有且只有一个零点的充要条件是a ≤0或a >1,应排除D ;当0<a <12时,函数y =-2x +a (x ≤0)有一个零点,即函数f (x )有两个零点,应排除B ;同理,排除C.3.已知集合A ={x |x 2-4mx +2m +6=0},B ={x |x <0},若命题“A ∩B =∅”是假命题,求实数m 的取值范围.解:因为“A ∩B =∅”是假命题,所以A ∩B ≠∅.设全集U ={m |Δ=(-4m )2-4(2m +6)≥0},则U =⎩⎨⎧⎭⎬⎫m | m ≤-1或m ≥32. 假设方程x 2-4mx +2m +6=0的两根x 1,x 2均非负,则有⎩⎪⎨⎪⎧ m ∈U ,x 1+x 2≥0,x 1x 2≥0即⎩⎪⎨⎪⎧ m ∈U ,4m ≥0,2m +6≥0解得m ≥32.又集合⎩⎨⎧⎭⎬⎫m | m ≥32关于全集U 的补集是{m |m ≤-1},所以实数m 的取值范围是(-∞,-1].。
四种命题的相互关系
四种命题指原命题、逆命题、否命题和逆否命题,接下来给大家分享四种命题的相互关系,供参考。
四种命题的相互关系
四种命题的相互关系:原命题与逆命题互逆,否命题与原命题互否,原命题与逆否命题相互逆否,逆命题与否命题相互逆否,逆命题与逆否命题互否,逆否命题与否命题互逆。
四种命题的真假关系:①两个命题互为逆否命题,它们有相同的真假性。
②两个命题为互逆命题或互否命题,它们的真假性没有关系(原命题与逆否命题同真同假,逆命题与否命题同真同假)
命题的形式
1、对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题。
2、对于两个命题,如果一个命题的条件和结论分别是另外一个命题的条件的否定和结论的否定,那么这两个命题叫做互否命题,其中一个命题叫做原命题,另外一个命题叫做原命题的否命题。
3、对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论的否定和条件的否定,那么这两个命题叫做互为逆否命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆否命题。
1.1.3四种命题间的相互关系学习目标 1.认识四种命题之间的关系以及真假性之间的联系.2.会利用命题的等价性解决问题.知识点一四种命题间的关系思考原命题与其逆命题、否命题、逆否命题之间是什么关系?答案原命题与其逆命题是互逆关系;原命题与其否命题是互否关系;原命题与其逆否命题是互为逆否关系.梳理四种命题间的关系知识点二四种命题间的真假关系由上表可知四种命题的真假性之间有如下关系:(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题为互逆命题或互否命题,它们的真假性没有关系.(1)两个互逆命题的真假性相同.(×)(2)原命题的逆命题与原命题的否命题真假性相同.(√)(3)命题“若p,则q”的否命题是“若p,则綈q”.(×)类型一 四种命题间的关系及真假判断例1 判断下列命题的逆命题、否命题与逆否命题的真假. (1)若ab ≤0,则a ≤0或b ≤0; (2)若a 2+b 2=0,则a ,b 都为0. 考点 四种命题的概念 题点 判断四种命题的真假解 (1)逆命题:若a ≤0或b ≤0,则ab ≤0.它为假命题. 逆否命题:若a >0且b >0,则ab >0.它为真命题.所以原命题的逆命题与否命题为假命题,逆否命题为真命题.(2)原命题与其逆命题“若a ,b 都为0,则a 2+b 2=0”均为真命题,所以原命题的逆否命题与否命题也均为真命题.反思与感悟 互为逆否关系的两个命题真假性相同,准确判断两个命题之间的关系是解题的关键.跟踪训练1 下列命题为假命题的是( ) A .“若x 2+y 2≠0,则x ,y 不全为0”的否命题 B .“正三角形都相似”的逆命题C .“若m >0,则x 2+x -m =0有实根”的逆否命题D .“若x -2是有理数,则x 是无理数”的逆否命题 考点 四种命题的概念 题点 判断四种命题的真假 答案 B解析 A 中,原命题的否命题为“若x 2+y 2=0,则x ,y 全为0”,是真命题.B 中,原命题的逆命题为“若两个三角形相似,则这两个三角形是正三角形”,是假命题.C 中,原命题的逆否命题为“若x 2+x -m =0无实根,则m ≤0”,∵方程无实根,∴Δ=1+4m <0,∴m <-14,∴原命题的逆否命题是真命题.D 中,原命题的逆否命题为“若x 不是无理数,则x -2不是有理数”,∵x不是无理数,∴x是有理数,又2是无理数,∴x-2是无理数,不是有理数,∴原命题的逆否命题是真命题.类型二 等价命题的应用例2 设m ,n ∈R ,证明:若m 2+n 2=2,则m +n ≤2. 考点 反证法逆否证法 题点 逆否证法证明 将“若m 2+n 2=2,则m +n ≤2”视为原命题, 则它的逆否命题为“若m +n >2,则m 2+n 2≠2”. 因为m +n >2,所以m 2+n 2≥12(m +n )2>12×22=2.所以m 2+n 2≠2,所以原命题得证.反思与感悟 由于原命题和它的逆否命题有相同的真假性,即互为逆否命题的命题具有等价性,因此我们在直接证明某一个命题为真命题有困难时,可以通过证明它的逆否命题为真命题,来间接地证明原命题为真命题.跟踪训练2 证明:若a 2-4b 2-2a +1≠0,则a ≠2b +1. 考点 反证法和逆否证法 题点 逆否证法证明 命题“若a 2-4b 2-2a +1≠0,则a ≠2b +1”的逆否命题为“若 a =2b +1,则a 2-4b 2-2a +1=0”.由a =2b +1,得a 2-4b 2-2a +1=(2b +1)2-4b 2-2×(2b +1)+1=4b 2+4b +1-4b 2-4b -2+1=0,显然原命题的逆否命题为真命题,所以原命题也为真命题.故原命题得证.1.命题“若(綈p ),则q ”的逆否命题为( ) A .若p ,则(綈q ) B .若(綈q ),则(綈p ) C .若(綈q ),则pD .若q ,则p考点 四种命题的概念 题点 按要求写命题 答案 C2.下列命题为真命题的是( ) A .命题“若x >y ,则x >|y |”的逆命题 B .命题“若x =1,则x 2>1”的否命题 C .命题“若x =1,则x 2+x -2=0”的否命题 D .命题“若x 2>1,则x >1”的逆否命题 考点 四种命题间的相互关系题点 写出四种命题利用四种命题的关系判断真假 答案 A解析 对A ,即判断:若x >|y |,则x >y 的真假,显然是真命题.3.命题“若x >1,则x >0”的逆命题是________________,逆否命题是__________________. 考点 四种命题的概念 题点 按要求写命题答案 若x >0,则x >1 若x ≤0,则x ≤1 4.有下列命题:①“若k >0,则方程x 2+2x +k =0有实根”的否命题; ②“若1a >1b ,则a <b ”的逆命题;③“梯形不是平行四边形”的逆否命题. 其中是假命题的是________. 考点 四种命题间的相互关系题点 利用四种命题的关系判断真假命题的个数 答案 ①②解析 对于①,其否命题为:若k ≤0,则方程x 2+2x +k =0无实根,显然为假命题;对于②,若a <b ,则1a >1b ,为假命题;③则为真命题,故假命题为①②.5.已知命题p :“若ac ≥0,则二次不等式ax 2+bx +c >0无解”. (1)写出命题p 的否命题; (2)判断命题p 的否命题的真假. 考点 四种命题间的相互关系题点 写出四种命题利用四种命题的关系判断真假解 (1)命题p 的否命题为:“若ac <0,则二次不等式ax 2+bx +c >0有解”. (2)命题p 的否命题是真命题.判断如下: 因为ac <0,所以-ac>0,Δ=b2-4ac>0⇒二次方程ax2+bx+c=0有实根⇒ax2+bx+c>0有解,所以该命题是真命题.写一个命题的否命题时,要对命题的条件和结论都进行否定,避免出现不否定条件,而只否定结论的错误.若由p经逻辑推理得出q,则命题“若p,则q”为真;确定“若p,则q”为假时,则只需举一个反例说明即可.一、选择题1.以下说法错误的是()A.如果一个命题的逆命题为真命题,那么它的否命题也必为真命题B.如果一个命题的否命题为假命题,那么它本身一定为真命题C.原命题、否命题、逆命题、逆否命题中,真命题的个数一定为偶数D.一个命题的逆命题、否命题、逆否命题可以同为假命题考点四种命题间的相互关系题点利用四种命题的关系判断真假答案 B2.一个命题和它的逆命题、否命题、逆否命题中,真命题的个数不可能为()A.0 B.1C.2 D.4考点四种命题间的相互关系题点利用四种命题的关系判断真假命题的个数答案 B解析互为逆否关系的两个命题的真假性相同.3.“若x2-3x+2=0,则x=2”为原命题,则它的逆命题、否命题与逆否命题中真命题的个数是()A.0 B.1C.2 D.3考点四种命题间的相互关系题点利用四种命题的关系判断真假命题的个数答案 C解析只有其逆命题、否命题为真命题.4.若命题p的否命题为q,命题p的逆否命题为r,则q与r的关系是()A.互逆命题B.互否命题C.互为逆否命题D.以上都不正确考点四种命题间的相互关系题点利用四种命题的关系判断真假答案 A解析设p为“若A,则B”,那么q为“若綈A,则綈B”,r为“若綈B,则綈A”.故q与r为互逆命题.5.命题“若x2>y2,则x>y”的逆否命题是()A.若x<y,则x2<y2B.若x≤y,则x2≤y2C.若x>y,则x2>y2D.若x≥y,则x2≥y2考点四种命题的概念题点按要求写命题答案 B解析根据原命题和其逆否命题的条件和结论的关系,得命题“若x2>y2,则x>y”的逆否命题是“若x≤y,则x2≤y2”.6.给出下列四个命题:①如果一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;②如果一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④如果两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中为真命题的是()A.①②B.②③C.③④D.②④考点反证法和逆否证法题点逆否证法答案 D解析根据面面垂直的判定定理可知②是真命题;根据面面垂直的性质定理“若两个平面垂直,则在一个平面内垂直于它们的交线的直线必垂直于另一个平面”,可知④是真命题.7.原命题为“若a n+a n+12<a n,n∈N*,则{an}为递减数列”,关于其逆命题、否命题、逆否命题真假性的判断依次如下,正确的是( ) A .真、真、真 B .假、假、真 C .真、真、假D .假、假、假考点 四种命题间的相互关系 题点 利用四种命题的关系判断真假 答案 A解析 从原命题、逆命题的真假入手,a n +a n +12<a n ⇔a n +1<a n ⇔{a n }为递减数列,即原命题、逆命题都为真命题,则其逆否命题、否命题也为真命题. 8.有下列四个命题:①“若x +y =0,则x ,y 互为相反数”的逆命题; ②“全等三角形的面积相等”的否命题;③“若q ≤1,则x 2+2x +q =0有实根”的逆否命题; ④“不等边三角形的三个内角相等”的逆命题. 其中真命题为( )A .①②B .②③C .①③D .③④ 考点 四种命题间的关系题点 利用四种命题的关系判断真假 答案 C解析 ①逆命题为“若x ,y 互为相反数,则x +y =0”,真命题;②否命题为“不全等的三角形的面积不相等”,假命题;③当q ≤1时,Δ=4-4q ≥0,所以原命题是真命题,其逆否命题也是真命题;④逆命题为“三个内角相等的三角形是不等边三角形”,假命题.故选C. 二、填空题9.命题“若a >b ,则ac 2>bc 2(a ,b ∈R )”的否命题的真假性为________.(填“真”或“假”) 考点 四种命题的概念 题点 判断四种命题的真假 答案 真解析 其否命题为:若a ≤b ,则ac 2≤bc 2,它为真命题.10.已知命题p :若a >b >0,则12log a <12log b +1,则命题p 及其逆命题、否命题、逆否命题中真命题的个数为________. 考点 四种命题间的相互关系题点 利用四种命题的关系判断真假命题的个数答案 2解析 ∵a >b >0,∴12log a <12log b ,∴命题p 为真命题,其逆命题为“若12log a <12log b +1,则a >b >0”,∵当a =2,b =2时,12log a <12log b +1成立,而a =b ,∴逆命题为假命题.∵原命题与其逆否命题的真假相同,逆命题与否命题互为逆否命题, ∴命题p 及其逆命题、否命题、逆否命题中真命题的个数为2.11.在空间中,①若四点不共面,则这四点中任何三点都不共线;②若两条直线没有公共点,则这两条直线是异面直线.以上两个命题中,逆命题为真命题的是________.(只填序号) 考点 四种命题间的相互关系 题点 利用四种命题的关系判断真假 答案 ②解析 ①的逆命题是:若四点中任何三点都不共线,则这四点不共面.我们用正方体AC 1为模型来观察:上底面A 1B 1C 1D 1中任何三个顶点都不共线,但A 1,B 1,C 1,D 1四点共面,所以①的逆命题是假命题.②的逆命题是:若两条直线是异面直线,则这两条直线没有公共点.易知其是真命题. 三、解答题12.判断下列命题的真假.(1)对角线不相等的四边形不是等腰梯形; (2)若x ∉A ∩B ,则x ∉A 且x ∉B ; (3)若x 2+y 2≠0,则xy ≠0. 考点 四种命题间的相互关系 题点 利用四种命题的关系判断真假解 (1)该命题的逆否命题是“若一个四边形是等腰梯形,则它的对角线相等”,它为真命题,故原命题为真.(2)该命题的逆否命题是“若x ∈A 或x ∈B ,则x ∈A ∩B ”,它为假命题,故原命题为假. (3)该命题的逆否命题是“若xy =0,则x 2+y 2=0”,它为假命题,故原命题为假. 13.判断命题:“若b ≤-1,则关于x 的方程x 2-2bx +b 2+b =0有实根”的逆否命题的真假.考点四种命题间的相互关系题点利用四种命题的关系判断真假解方法一(利用原命题)因为原命题与逆否命题真假性一致,所以只需判断原命题真假即可.方程判别式为Δ=4b2-4(b2+b)=-4b,因为b≤-1,所以Δ≥4>0,故此方程有两个不相等的实根,即原命题为真,故它的逆否命题也为真.方法二(利用逆否命题)原命题的逆否命题为“若关于x的方程x2-2bx+b2+b=0无实根,则b>-1”.方程判别式为Δ=4b2-4(b2+b)=-4b,因为方程无实根,所以Δ<0,即-4b<0,所以b>0,所以b>-1成立,即原命题的逆否命题为真.四、探究与拓展14.已知命题“非空集合M 中的元素都是集合P 中的元素”是假命题,那么下列命题中真命题的个数为( )①M 中的元素都不是P 的元素;②M 中有不属于P 的元素;③M 中有属于P 的元素;④M 中的元素不都是P 的元素.A .1B .2C .3D .4考点 四种命题间的相互关系题点 利用四种命题的关系判断真假命题的个数答案 B解析 由于“M ⊆P ”为假命题,故M 中至少有一个元素不属于P ,∴②④正确.M 中可能有属于P 的元素,也可能都不是P 的元素,故①③错误.故选B.15.已知条件p :|5x -1|>a >0,其中a 为实数,条件q :12x 2-3x +1>0,请选取一个适当的a 值,利用所给出的两个条件p ,q 分别作为集合A ,B ,构造命题“若A ,则B ”,并使得构造的原命题为真命题,而其逆命题为假命题,这样的一个原命题可以是什么? 考点 四种命题间的相互关系题点 利用四种命题的关系判断真假解 由|5x -1|>a >0,得5x -1<-a 或5x -1>a ,即x <1-a 5或x >1+a 5. 由12x 2-3x +1>0,得2x 2-3x +1>0, 解得x <12或x >1. 为使“若A ,则B ”为真命题,而其逆命题为假命题,则需A B .令a =4,得p :x <-35或x >1, 满足题意,故可以选取a =4,此时原命题是“若|5x -1|>4,则12x 2-3x +1>0”.。
四种命题四种命题间的相互关系1.了解四种命题的概念,会写出某命题的逆命题、否命题和逆否命题.重点2.认识四种命题之间的关系以及真假性之间的关系.难点3.利用命题真假的等价性解决简单问题.难点、易错点教材整理1 四种命题阅读教材P4~P6,完成下列问题.1.四种命题的概念一般地,对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么我们把这样的两个命题叫做互逆命题.如果是另一个命题条件的否定和结论的否定,那么把这样的两个命题叫做互否命题.如果是另一个命题结论的否定和条件的否定,那么把这样的两个命题叫做互为逆否命题.把第一个叫做原命题时,另三个可分别称为原命题的逆命题、否命题、逆否命题.2.四种命题的形式原命题:若p,则q.逆命题:若q,则p.否命题:若﹁p,则﹁q.逆否命题:若﹁q,则﹁p.判断正确的打“√”,错误的打“×”1有的命题没有逆命题.2四种命题中,原命题是固定的.3“对顶角相等”的否命题为“对顶角不相等”.解:1只要原命题确定了,它的逆命题就确定了,故1错.2四种命题中原命题具有相对性,故2错.3“对顶角相等”的否命题为“若两个角不是对顶角,则这两个角不相等”,故3错.答案:1×2×3×教材整理2 四种命题间的相互关系阅读教材P6~P8,完成下列问题.1.四种命题之间的相互关系2.四种命题的真假关系1四种命题的真假性,有且仅有下面四种情况2四种命题的真假性之间的关系①两个命题互为逆否命题,它们有相同的真假性.②两个命题为互逆命题或互否命题,它们的真假性没有关系.判断正确的打“√”,错误的打“×”1对于一个命题的四种命题,可以一个真命题都没有.2两个互逆命题的真假性相同.3命题“若a>-3,则a>-6”以及它的逆命题,否命题,逆否命题中,真命题的个数有3个. 解:1若原命题为假命题,则其逆否命题为假命题,逆命题和否命题可都为假命题,故1对.2两个互逆命题的真假性无关,故2错.3原命题和逆否命题正确,否命题和逆命题错误,故3错.答案:1√2×3×小组合作探究四种命题的概念例1、写出以下命题的逆命题、否命题和逆否命题:1如果直线垂直于平面内的两条相交直线,那么这条直线垂直于平面;2如果x>10,那么x>0;3当x=2时,x2+x-6=0.根据四种命题的结构写出所求命题.自主解答:1逆命题:如果直线垂直于平面,那么直线垂直于平面内的两条相交直线;否命题:如果直线不垂直于平面内的两条相交直线,那么直线不垂直于平面;逆否命题:如果直线不垂直于平面,那么直线不垂直于平面内的两条相交直线.2逆命题:如果x>0,那么x>10;否命题:如果x≤10,那么x≤0;逆否命题:如果x≤0,那么x≤10.3逆命题:如果x2+x-6=0,那么x=2;否命题:如果x≠2,那么x2+x-6≠0;逆否命题:如果x2+x-6≠0,那么x≠2.1.写出一个命题的其他三种命题的步骤1分析命题的条件和结论;2将命题写成“若p,则q”的形式;3根据逆命题、否命题、逆否命题各自的结构形式写出这三种命题.注意:如果原命题含有大前提,在写出原命题的逆命题、否命题、逆否命题时,必须注意各命题中的大前提不变.2.常见词语的否定再练一题1.1命题“若m>n,则m-1>n-2”的逆否命题为________. 2分别写出下列命题的逆命题、否命题、逆否命题:①正数的平方根不等于0;②若x2+y2=0x,y∈R,则x,y全为0.解:1若m-1≤n-2,则m≤n.2①逆命题:若一个数的平方根不等于0,则这个数是正数;否命题:若一个数不是正数,则这个数的平方根等于0;逆否命题:若一个数的平方根等于0,则这个数不是正数.②逆命题:若x,y全为0,则x2+y2=0x,y∈R;否命题:若x2+y2≠0x,y∈R,则x,y不全为0;逆否命题:若x,y不全为0,则x2+y2≠0x,y∈R.四种命题真假的判断例2、把下列命题改写成“若p,则q”的形式,并写出它的逆命题、否命题、逆否命题,然后判断它们的真假:1正偶数不是素数;2平行于同一条直线的两条直线平行.错误!→错误!→错误!自主解答:1原命题:若一个数是正偶数,则这个数不是素数,是假命题;逆命题:若一个数不是素数,则这个数是正偶数,是假命题;否命题:若一个数不是正偶数,则这个数是素数,是假命题;逆否命题:若一个数是素数,则这个数不是正偶数,是假命题.2原命题:若两条直线平行于同一条直线,则这两条直线平行,是真命题.逆命题:若两条直线平行,则这两条直线平行于同一条直线,是真命题.否命题:若两条直线不平行于同一条直线,则这两条直线不平行,是真命题.逆否命题:若两条直线不平行,则这两条直线不平行于同一条直线,是真命题.在判断一个命题的真假时,可以有两种方法:一是分清原命题的条件和结论,直接对原命题的真假进行判断;二是不直接写出命题,而是根据命题之间的关系进行判断,即原命题和逆否命题同真同假,逆命题和否命题同真同假.再练一题2.下列命题:①“若xy=1,则x、y互为倒数”的逆命题;②“四边相等的四边形是正方形”的否命题;③“梯形不是平行四边形”的逆否命题.其中是真命题的是________.解:①“若xy=1,则x,y互为倒数”的逆命题是“若x,y互为倒数,则xy=1”,是真命题;②“四边相等的四边形是正方形”的否命题是“四边不都相等的四边形不是正方形”,是真命题;③“梯形不是平行四边形”本身是真命题,所以其逆否命题也是真命题.所以真命题是①②③.答案:①②③探究共同研讨等价命题的应用探究 1 我们学习了四种命题的关系,那么在直接证明某一个命题为真命题有困难时,该怎么办提示可以通过证明它的逆否命题为真命题,来间接地证明原命题为真命题.探究2 根据互为逆否命题的真假性相同来判断命题的真假,是哪种证明方法的理论基础提示是反证法的理论基础.例3判断命题“已知a,x为实数,若关于x的不等式x2+2a+1x+a2+2≤0的解集不是空集,则a≥1”的逆否命题的真假.法一:错误!→错误!→错误!→错误!法二:错误!→错误!自主解答法一:原命题的逆否命题:已知a,x为实数,若a<1,则关于x的不等式x2+2a+1x+a2+2≤0的解集为空集.真假判断如下:∵抛物线y=x2+2a+1x+a2+2开口向上,判别式Δ=2a+12-4a2+2=4a-7,若a<1,则4a-7<0.即抛物线y=x2+2a+1x+a2+2与x轴无交点.所以关于x的不等式x2+2a+1x+a2+2≤0的解集为空集.故原命题的逆否命题为真.法二:先判断原命题的真假.因为a,x为实数,且关于x的不等式x2+2a+1x+a2+2≤0的解集不是空集,所以Δ=2a+12-4a2+2≥0,即4a-7≥0,解得a≥错误!.因为a≥错误!,所以a≥1,所以原命题为真.又因为原命题与其逆否命题等价,所以逆否命题为真.这种问题的解决通常有两种方法:一是直接法,先写出逆否命题,后判断,如法一;二是间接法,不写逆否命题,从判断原命题的真假证明逆否命题的真假,如法二.再练一题3.证明:已知函数fx是-∞,+∞上的增函数,a、b∈R,若fa+fb≥f-a+f-b,则a+b≥0.解:原命题的逆否命题为“已知函数fx是-∞,+∞上的增函数,a,b∈R,若a+b<0,则fa+fb<f-a+f-b.”∵当a+b<0时,a<-b,b<-a,又∵fx在-∞,+∞上是增函数,∴fa<f-b,fb<f-a.∴fa+fb<f-a+f-b,即逆否命题为真命题.∴原命题为真命题.1.命题“若一个数是负数,则它的相反数是正数”的逆命题是A.“若一个数是负数,则它的相反数不是正数”B.“若一个数的相反数是正数,则它是负数”C.“若一个数不是负数,则它的相反数不是正数”D.“若一个数的相反数不是正数,则它不是负数”解:若原命题记作“若p,则q”,则A为“若p,则﹁q”;B为“若q,则p”;C为“若﹁p,则﹁q”;D为“若﹁q,则﹁p”.故B正确.答案:B2.命题“如果x2<1,则-1<x<1”的逆否命题是A.如果x2≥1,则x≥1,或x≤-1B.如果-1<x<1,则x2<1C.如果x>1或x<-1,则x2>1D.如果x≥1或x≤-1,则x2≥1解:“-1<x<1”的含义是“x>-1且x<1”,故“-1<x<1”的否定是“x≥1或x≤-1”,故选D.答案:D3.已知命题:“若x≥0,y≥0,则xy≥0”,则原命题、逆命题、否命题、逆否命题这四个命题中,真命题的个数是解:由题意可判断原命题为真命题,故逆否命题也为真命题,其逆命题为“若xy≥0,则x≥0,y≥0”,为假命题,所以否命题也为假命题,故四个命题中,真命题的个数为2.答案:B4.有下列四个命题:①命题“若x+y=0,则x,y互为相反数”的逆命题;②命题“面积相等的三角形全等”的否命题;③命题“若m≤1,则x2-2x+m=0有实根”的逆否命题;④命题“若A∩B=B,则AB”的逆否命题.其中是真命题的是________填上你认为正确的命题的序号.解:④中由A∩B=B,应该得出BA,原命题为假命题,所以逆否命题为假命题. 答案:①②③5.判断命题:“若b≤-1,则关于x的方程x2-2bx+b2+b=0有实根”的逆否命题的真假.解:利用原命题因为原命题与逆否命题真假性一致,所以只需判断原命题真假即可.方程判别式为Δ=4b2-4b2+b=-4b,因为b≤-1,所以Δ≥4>0,故此方程有两个不相等的实根,即原命题为真,故它的逆否命题也为真.。
四种命题四种命题间的相互关系1、四种命题的概念,写出某个命题的逆命题、否命题和逆否命题。
2、四种命题之间的关系以及真假性之间的联系。
3、会用命题的等价性解决问题。
【核心扫描】:1、结合命题真假的判定,考查四种命题的结构。
(重点)2、掌握四种命题之间的相互关系。
(重点)3、等价命题的应用。
(难点)1、四种命题的概念(1) 互逆命题:对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这样的两个命题叫做互逆命题。
其中一个命题叫原命题,另一个叫做原命题的逆命题。
若原命题为“若p,则q”则逆命题为“若q,则P”(2) 互否命题:对于两个命题,其中一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,这样的两个命题叫做互否命题。
如果把其中的一个命题叫做原命题,那么另一个叫做原命题的否命题。
也就是说,若原命题为若p,则q”则否命题为若非p,则非q。
(3) 互为逆否命题:对于两个命题,其中一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,这样的两个命题叫做互为逆否命题。
如果把其中的一个命题叫做原命题,那么另一个叫做原命题的逆否命题•也就是说,若原命题为若p,则q”,则逆否命题为若非q,则非p。
任何一个命题的结构都包含条件和结论,通过条件和结论的不同变换都可以得到这个命题的逆命题、否命题和逆否命题,因而任何一个命题都有逆命题、否命题和逆否命题。
2、四种命题的相互关系3、四种命题的真假性(1)四种命题的真假性,有且仅有下面四种情况:⑵四种命题的真假性之间的关系:①两个命题互为逆否命题,它们有相同的真假性.②两个命题为互逆命题或互否命题,它们的真假性没有关系.在四种命题中,真命题的个数可能会有几种情况?因为原命题与逆否命题,逆命题和否命题互为逆否命题,它们同真同假,所以真命题的个数可能为0, 2, 4.一般地,用p和q分别表示原命题的条件和结论,用非p和非q分别表示p与q的否定,则四种命题的形式可表示为:原命题:若P,则q;逆命题:若q,则p;否命题:若非P,则非q;逆否命题:若非q,则非p.(1) 关于四种命题也可叙述为:①交换命题的条件和结论,所得的新命题就是原命题的逆命题;②同时否定命题的条件和结论,所得的新命题就是原命题的否命题;③交换命题的条件和结论,并且同时否定,所得的新命题就是原命题的逆否命题.(2) 已知原命题,写出它的其他三种命题:首先,将原命题写成若p,则q”的形式,然后找出条件和结论,再根据定义写出其他命题。