4-4 平抛运动、圆周运动的临界问题
- 格式:ppt
- 大小:2.52 MB
- 文档页数:36
圆周运动中的“临界问题”总结一、“绳”模型——“最高点处有临界,最低点时无选择”一轻绳系一小球在竖直平面内做圆周运动.小球“刚好”“恰好”过最高点的条件是:此时,只有小球的 提供向心力,即 =m rv 2,这时的速度是做圆周运动的最小速度,vmin = . V= 是“绳”模型中小球能否顺利通过最高点继续做圆周运动的临界速度。
类此模型:竖直平面内的内轨道巩固1:游乐园里过山车原理的示意图如图所示。
设过山车的总质量为m =60kg ,由静止从斜轨顶端A 点开始下滑,恰好过半径为r=2.5m 的圆形轨道最高点B 。
求在圆形轨道最高点B 时的速度大小。
巩固2:杂技演员在做水流星表演时,用绳系着装有水的水桶,在竖直平面内做圆周运动,若水的质量m =0.5 kg ,绳长l=60cm ,求:(1)最高点水不流出的最小速率。
(2)水在最高点速率v =3 m /s 时,水对桶底的压力.巩固3:公路在通过小型水库的泄洪闸的下游时,常常要修建凹形桥,也叫“过水路面”。
如图所示,汽车通过凹形桥的最低点时A .车的加速度为零,受力平衡B .车对桥的压力比汽车的重力大C .车处于超重状态D .车的速度越大,车对桥面的压力越小二、“杆”模型————“最高点处有临界,最低点时无选择” 一轻杆系一小球在竖直平面内做圆周运动,注意v=0和v=gr 两个速度。
①当v =0时,杆对小球的支持力 小球的重力;②当0<v <gr 时,杆对小球产生 力,且该力 于小球的重力;③当v =gr 时,杆对小球的支持力 于零;④当v >gr 时,杆对小球产生 力。
V= 是“杆”模型中杆对小球是“推”“拉”的临界。
类此模型:竖直平面内的管轨道.巩固4:如图所示,长为L 的轻杆一端有一个质量为m 的小球,另一端有光滑的固定轴O ,现给球一初速度,使球和杆一起绕O 轴在竖直平面内转动,不计空气阻力,则( )A.小球到达最高点的速度必须大于gLB .小球到达最高点的速度要大于0C.小球到达最高点受杆的作用力一定为拉力D.小球到达最高点受杆的作用力一定为支持力 三、“拱形桥”模型——“最高点处有临界”小球沿球面运动,轨道对小球只能支撑,而不能产生拉力.在最高点时,若小球与球面间弹力为零,则有 = ,v= 。
圆周运动中的临界问题一、水平面内圆周运动的临界问题关于水平面内匀速圆周运动的临界问题,涉及的是临界速度与临界力的问题,具体来说,主要是与绳的拉力、弹簧的弹力、接触面的弹力和摩擦力有关。
1、与绳的拉力有关的临界问题例1 如图1示,两绳系一质量为的小球,kg m 1.0=上面绳长,两端都拉直时与轴的夹角分别为m l 2=与,问球的角速度在什么范围内,两绳始终张紧,o 30o45当角速度为时,上、下两绳拉力分别为多大?s rad /32、因静摩擦力存在最值而产生的临界问题例2 如图2所示,细绳一端系着质量为kg M 6.0=的物体,静止在水平面上,另一端通过光滑小孔吊着质量为的物体,的中心与圆孔距离为kg m 3.0=M m 2.0并知与水平面间的最大静摩擦力为,现让此平面M N 2绕中心轴匀速转动,问转动的角速度满足什么条件ω可让处于静止状态。
()m 2/10s m g =3、因接触面弹力的有无而产生的临界问题二、竖直平面内圆周运动的临界问题对于物体在竖直平面内做变速圆周运动,中学物理中只研究物体通过最高点和最低点的情况,并且也经常会出现临界状态。
1、轻绳模型过最高点如图所示,用轻绳系一小球在竖直平面内做圆周运动过最高点的情况,与小球在竖直平面内光滑轨道内侧做圆周运动过最到点的情况相似,都属于无支撑的类型。
临界条件:假设小球到达最高点时速度为,此时绳子的拉力(轨道的弹力)0v C图1图2刚好等于零,小球的重力单独提供其做圆周运动的向心力,即,rvm mg 20=,式中的是小球过最高点的最小速度,即过最高点的临界速度。
gr v =00v (1) (刚好到最高点,轻绳无拉力)0v v =(2) (能过最高点,且轻绳产生拉力的作用)0v v >(3) (实际上小球还没有到最高点就已经脱离了轨道)0v v <例4、如图4所示,一根轻绳末端系一个质量为的小球,kg m 1=绳的长度, 轻绳能够承受的最大拉力为,m l 4.0=N F 100max =现在最低点给小球一个水平初速度,让小球以轻绳的一端为O 圆心在竖直平面内做圆周运动,要让小球在竖直平面内做完整的圆周运动且轻绳不断,小球的初速度应满足什么条件?(10m g =2、轻杆模型过最高点如图所示,轻杆末端固定一小球在竖直平面内做圆周运动过最高点的情况,与小球在竖直放置的圆形管道内过最到点的情况相似,都属于有支撑的类型。
[A组·基础题]1. 如图所示,一倾斜的匀质圆盘绕垂直于盘面的固定对称轴以恒定角速度ω转动,盘面上离转轴距离2.5 m处有一小物体与圆盘始终保持相对静止.物体与盘面间的动摩擦因数为32(设最大静摩擦力等于滑动摩擦力),盘面与水平面的夹角为30°,g取10 m/s2.则ω的最大值是( )A. 5 rad/s B. 3 rad/sC.1.0 rad/s D.5 rad/s2. 一圆盘可以绕其竖直轴在水平面内转动,圆盘半径为R,甲、乙两物体的质量分别为M与m(M>m),它们与圆盘之间的最大静摩擦力均为正压力的μ倍,两物体用一根长为l(l<R)的轻绳连在一起,如图所示,若将甲物体放在转轴的位置上,甲、乙之间接线刚好沿半径方向拉直,要使两物体与转盘之间不发生相对滑动,则转盘旋转的角速度最大值不得超过( )A.μ(M-m)gml B.μ(M-m)gMlC.μ(M+m)gMl D.μ(M+m)gml3. (2019·河南中原名校考评)如图所示,半径分别为R、2R的两个水平圆盘,小圆盘转动时会带动大圆盘不打滑的一起转动.质量为m的小物块甲放置在大圆盘上距离转轴R处,质量为2m的小物块放置在小圆盘的边缘处.它们与盘面间的动摩擦因数相同,当小圆盘以角速度转动时,两物块均相对圆盘静止,设最大静摩擦力等于滑动摩擦力,下列说法正确的是( )A .二者线速度大小相等B .甲受到的摩擦力大小为14mω2RC .在ω逐渐增大的过程中,甲先滑动D .在ω逐渐增大但未相对滑动的过程中,物块所受摩擦力仍沿半径指向圆心4. (2018·广东七校联考)如图所示,半径为R 的圆轮在竖直面内绕O 轴匀速转动,轮上A 、B 两点各粘有一小物体,当B 点转至最低位置时,此时O 、A 、B 、P 四点在同一竖直线上,已知:OA =AB ,P 是地面上的一点.此时A 、B 两点处的小物体同时脱落,最终落到水平地面上同一点.不计空气阻力,则OP 的距离是( )A.76RB .52RC .5RD .7R5.(多选) 水平面上有倾角为θ、质量为M 的斜面体,质量为m 的小物块放在斜面上,现用一平行于斜面、大小恒定的拉力F 作用于小物块上,绕小物块旋转一周,这个过程中斜面体和小物块始终保持静止状态.下列说法中正确的是( )A .小物块受到斜面的最大摩擦力为F +mg sin θB .小物块受到斜面的最大摩擦力为F -mg sin θC .斜面体受到地面的最大摩擦力为FD .斜面体受到地面的最大摩擦力为F cos θ6.(多选) (2018·山西省吕梁市期中)如图所示,小球在竖直放置的光滑圆形管道内做圆周运动,内侧壁半径为R,小球半径为r,则下列说法正确的是( )A.小球通过最高点时的最小速度v min=g(R+r)B.小球通过最高点时的最小速度v min=0C.小球在水平线ab以下的管道中运动时,内侧管壁对小球一定无作用力D.小球在水平线ab以上的管道中运动时,外侧管壁对小球一定有作用力7. 如图所示,水平屋顶高H=5 m,围墙高h=3.2 m,围墙到房子的水平距离L =3 m,围墙外空地宽x=10 m,为使小球从屋顶水平飞出落在围墙外的空地上,g取10 m/s2.求:(1)小球离开屋顶时的速度v0的大小范围;(2)小球落在空地上的最小速度.[B组·能力题]8. (多选)如图所示,两物块A、B套在水平粗糙的CD杆上,并用不可伸长的轻绳连接,整个装置能绕过CD中点的轴转动,已知两物块质量相等,杆CD对物块A、B的最大静摩擦力大小相等,开始时绳子处于自然长度(绳子恰好伸直但无弹力),物块B到轴的距离为物块A到轴距离的两倍,现让该装置从静止开始转动,使转速逐渐慢慢增大,在从绳子处于自然长度到两物块A、B即将滑动的过程中,下列说法正确的是( )A.A受到的静摩擦力一直增大B.B受到的静摩擦力先增大后保持不变C.A受到的静摩擦力先增大后减小再增大D.B受到的合外力先增大后保持不变9. (多选)(2016·浙江卷)如图所示为赛车场的一个水平“梨形”赛道,两个弯道分别为半径R=90 m的大圆弧和r=40 m的小圆弧,直道与弯道相切.大、小圆弧圆心O、O′距离L=100 m.赛车沿弯道路线行驶时,路面对轮胎的最大径向静摩擦力是赛车重力的2.25倍,假设赛车在直道上做匀变速直线运动,在弯道上做匀速圆周运动,要使赛车不打滑,绕赛道一圈时间最短(发动机功率足够大,重力加速度g=10 m/s2,π=3.14),则赛车( )A.在绕过小圆弧弯道后加速B.在大圆弧弯道上的速率为45 m/sC.在直道上的加速度大小为5.63 m/s2D.通过小圆弧弯道的时间为5.58 s10.如图为“快乐大冲关”节目中某个环节的示意图,参与游戏的选手会遇到一个人造山谷AOB,AO是高h=3 m的竖直峭壁,OB是以A点为圆心的弧形坡,∠OAB=60°,B点右侧是一段水平跑道.选手可以自A点借助绳索降到O点后再爬上跑道,但身体素质好的选手会选择自A点直接跃上跑道.选手可视为质点,忽略空气阻力,重力加速度g=10 m/s2.(1)若选手以速度v0水平跳出后,能跳在水平跑道上,求v0的最小值;(2)若选手以速度v1=4 m/s水平跳出,求该选手在空中的运动时间.11. (2017·河南开封模拟)如图所示,一块足够大的光滑平板放置在水平面上,能绕水平固定轴MN调节其与水平面所成的倾角.板上一根长为l=0.60 m的轻细绳,它的一端系住一质量为m的小球P,另一端固定在板上的O点.当平板的倾角固定为α时,先将轻绳平行于水平轴MN拉直,然后给小球一沿着平板并与轻绳垂直的初速度v0=3.0 m/s.若小球能保持在板面内做圆周运动,倾角α的值应在什么范围内?(取重力加速度g=10 m/s2)。
2021年高考物理【热点·重点·难点】专练(新高考专用)重难点04 平抛运动与圆周运动【知识梳理】考点一 平抛运动基本规律的理解 1.飞行时间:由ght 2=知,时间取决于下落高度h ,与初速度v 0无关. 2.水平射程:x =v 0t =v 0 gh 2,即水平射程由初速度v 0和下落高度h 共同决定,与其他因素无关. 3.落地速度:gh v v v v x y x 2222+=+=,以θ表示落地速度与x 轴正方向的夹角,有2tan v ghv v xy ==θ,所以落地速度也只与初速度v 0和下落高度h 有关. 4.速度改变量:因为平抛运动的加速度为恒定的重力加速度g ,所以做平抛运动的物体在任意相等时间间隔Δt 内的速度改变量Δv =g Δt ;相同,方向恒为竖直向下,如图所示.5.两个重要推论(1)做平抛(或类平抛)运动的物体任一时刻的瞬时速度的反向延长线一定通过此时水平位移的中点,如图中A 点和B 点所示.(2)做平抛(或类平抛)运动的物体在任意时刻任一位置处,设其末速度方向与水平方向的夹角为α,位移与水平方向的夹角为θ,则tan α=2tan θ. 【重点归纳】1.在研究平抛运动问题时,根据运动效果的等效性,利用运动分解的方法,将其转化为我们所熟悉的两个方向上的直线运动,即水平方向的匀速直线运动和竖直方向的自由落体运动.再运用运动合成的方法求出平抛运动的规律.这种处理问题的方法可以变曲线运动为直线运动,变复杂运动为简单运动,是处理曲线运动问题的一种重要的思想方法. 2.常见平抛运动模型的运动时间的计算方法 (1)在水平地面上空h 处平抛: 由221gt h =知ght 2=,即t 由高度h 决定. (2)在半圆内的平抛运动(如图),由半径和几何关系制约时间t :221gt h =t v h R R 022=-+联立两方程可求t . (3)斜面上的平抛问题: ①顺着斜面平抛(如图)方法:分解位移 x =v 0t221gt y =x y=θtan可求得gv t θtan 20=②对着斜面平抛(如图)方法:分解速度 v x =v 0 v y =gttan v gt v v xy ==θ 可求得gv t θtan 0=(4)对着竖直墙壁平抛(如图)水平初速度v 0不同时,虽然落点不同,但水平位移相同.vd t =3.求解多体平抛问题的三点注意(1)若两物体同时从同一高度(或同一点)抛出,则两物体始终在同一高度,二者间距只取决于两物体的水平分运动.(2)若两物体同时从不同高度抛出,则两物体高度差始终与抛出点高度差相同,二者间距由两物体的水平分运动和竖直高度差决定.(3)若两物体从同一点先后抛出,两物体竖直高度差随时间均匀增大,二者间距取决于两物体的水平分运动和竖直分运动.考点二 圆周运动中的运动学分析描述圆周运动的物理量主要有线速度、角速度、周期、频率、转速、向心加速度、向心力等,现比较如下表:1.传动装置(1)高中阶段所接触的传动主要有:①皮带传动(线速度大小相等);②同轴传动(角速度相等);③齿轮传动(线速度大小相等);④摩擦传动(线速度大小相等).(2)传动装置的特点:(1)同轴传动:固定在一起共轴转动的物体上各点角速度相同;(2)皮带传动、齿轮传动和摩擦传动:皮带(或齿轮)传动和不打滑的摩擦传动的两轮边缘上各点线速度大小相等.2.圆周运动各物理量间的关系(1)对公式v =ωr 的理解 当r 一定时,v 与ω成正比. 当ω一定时,v 与r 成正比. 当v 一定时,ω与r 成反比.(2)对a =rv 2=ω2r =ωv 的理解在v 一定时,a 与r 成反比;在ω一定时,a 与r 成正比. 考点三 竖直平面内圆周运动的绳模型与杆模型问题1.在竖直平面内做圆周运动的物体,按运动到轨道最高点时的受力情况可分为两类:一是无支撑(如球与绳连接、沿内轨道运动的过山车等),称为“绳(环)约束模型”,二是有支撑(如球与杆连接、在弯管内的运动等),称为“杆(管道)约束模型”. 2.绳、杆模型涉及的临界问题均是没有支撑的小球均是有支撑的小球竖直面内圆周运动的求解思路(1)定模型:首先判断是轻绳模型还是轻杆模型,两种模型过最高点的临界条件不同. (2)确定临界点:gr v =临,对轻绳模型来说是能否通过最高点的临界点,而对轻杆模型来说是F N表现为支持力还是拉力的临界点.(3)研究状态:通常情况下竖直平面内的圆周运动只涉及最高点和最低点的运动情况.(4)受力分析:对物体在最高点或最低点时进行受力分析,根据牛顿第二定律列出方程,F 合=F 向. (5)过程分析:应用动能定理或机械能守恒定律将初、末两个状态联系起来列方程. 【限时检测】(建议用时:30分钟) 一、单项选择题:本题共4小题。
圆周运动中的临界问题教学设计汕头市潮阳实验学校叶建森一.教学任务分析以圆盘和滑块为载体的圆周运动问题经常作为高考座上的“座上宾”,它是考试的热点和学习的难点;而竖直面内的圆周运动是曲线运动的重要知识点,更是高考中的重点考查内容之一,高考中有关圆周运动的试题往往涉及临界或极值问题,出题的方式既可以是计算题也可以是选择题,对考生的要求较高,所以弄清不同模型的临界条件是分析解决这类问题的关键。
二.学情分析与设计思想物理学中的临界问题一直是学生难以掌握的知识难点,虽然高一到高二我们在很多方面都讲过临界问题,比如追及与相遇中有临界问题、牛顿第二定律的综合应用中有临界问题、平抛有临界问题等等。
但是学生在碰到这些临界问题时往往无从下手,因为他们对临界状态的分析能力不足,他们缺乏感性认识,所以对临界点的把握处于一个比较模糊的状态。
本节课我们想借助圆周运动中的临界问题,以基本模型为原型,进行拓展、延伸和变化,从题目中的难题进行拆解然后一步一步还原,在每一步的还原中架设一级一级的台阶,带领学生领悟圆周运动中的力的渐变过程和解题奥妙,再加上现场实验的演示,更近一步促进学生对临界问题的感悟和认识,从而帮助学生解决相应的问题。
三.教学重难点如何分析和解决圆周运动中的临界问题四.教学设计本节课在课前根据老师们以往的教学经验精心组编和筛选了三道经典例题先发给学生去完成,教师对学生可能出现的错误情况进行预估预判,可能出现的问题有哪些,然后根据可能出现的错误进行课程内容的设计,特别是给学生的第一道题,难度较大,学生的解题情况可能各式各样的都有,出现的原因是学生对圆台上连接体临界问题认识不到位,导致分析思路较为混乱,学生也很想知道这类问题的解题技巧及分析思路是什么,从而激起了学生的求知欲望,然后老师通过难题的拆解,一步一步带领学生认识达到临界状态前的一个受力的渐变过程,从而让学生掌握处理此类问题的技巧。
五.教学流程(一)课题引入展示例题,该题是昨天留给学生的作业的第一题例1:如图,质量为m的小木块A和质量为2m的小木块B(可视为质点)放在水平圆盘上,A、B与转轴O的距离分别为l和2l,A、B与转盘间的动摩擦因数为μ,A与B用一根不可伸长的细线连接(初始状态拉力为0),现让转盘角速度从零开始缓慢增加,若要使A、B与转台保持相对静止,则角速度的最大值为多少?(最大静摩擦力等于滑动摩擦力)此例题的作用是让学生根据自己以往学过的知识大胆去处理,并从中发现不足,这个例题的难度系数是比较大的,学生的解答肯定是乱七八糟的什么样的答案和结果都有。
圆周运动中的临界问题教学目的:会运用受力分析及向心力公式解决圆周运动的临界问题 教学重点:掌握解决圆周运动的两种典型的临界问题 教学难点:会分析判断临界时的速度或受力特征 教学内容一、 有关概念1、向心加速度的概念2、向心力的意义 (由一个力或几个力提供的效果力) 二、内容1、在竖直平面内作圆周运动的临界问题(1)如图4-2-2和图4-2-3所示,没有物体支撑的小球,在竖直平面内做圆周运动过最高点的情况:图4-2-2 图4-2-3①临界条件:绳子或轨道对小球没有力的作用:mg =m Rv 2v 临界=Rg ; ②能过最高点的条件:v ≥Rg ,当v >Rg 时,绳对球产生拉力,轨道对球产生压力; ③不能过最高点的条件:v <v 临界(实际上球还没到最高点时就脱离了轨道). (2)如图4-2-4的球过最高点时,轻质杆对球产生的弹力情况: ①当v =0时,F N =mg (F N 为支持力);②当0<v <Rg 时,F N 随v 增大而减小,且mg >F N >0,F N 为支持力; ③当v =Rg 时,F N =0; ④当v >Rg 时,F N 为拉力,F N 随v 的增大而增大.图4-2-4图4-2-5若是图4-2-5的小球在轨道的最高点时,如果v ≥Rg ,此时将脱离轨道做平抛运动,因为轨道对小球不能产生拉力.例1 长L =0.5m ,质量可以忽略的的杆,其下端固定于O 点,上端连接着一个质量m =2kg 的小球A ,A 绕O 点做圆周运动(同图5),在A 通过最高点,试讨论在下列两种情况下杆的受力:①当A 的速率v 1=1m /s 时 ②当A 的速率v 2=4m /s 时解析: V 0=gL =10×0.5 m /s = 5 m /s小球的速度大于 5 m /s 时受拉力,小于 5 m /s 时受压力。
解法一:①当v 1=1m /s < 5 m /s 时,小球受向下的重力mg持力N 由牛顿第二定律 mg -N =m v 2LN =mg -m v 2L =16N即杆受小球的压力16N 。
第4讲微专题——平抛运动与圆周运动的综合问题核心考点·分类突破——析考点 讲透练足此类问题往往是物体先做水平面内的匀速圆周运动,后做平抛运动,有时还要结合能量关系分析求解,多以选择题或计算题形式考查。
2.解题关键(1)明确水平面内匀速圆周运动的向心力来源,根据牛顿第二定律和向心力公式列方程。
(2)平抛运动一般是沿水平方向和竖直方向分解速度或位移。
(3)速度是联系前后两个过程的关键物理量,前一个过程的末速度是后一个过程的初速度。
[典题1] (2016·厦门质检)如图所示,置于圆形水平转台边缘的小物块随转台加速转动,当转速达到某一数值时,物块恰好滑离转台开始做平抛运动。
现测得转台半径R =0.5 m ,离水平地面的高度H =0.8 m ,物块平抛落地过程水平位移的大小s =0.4 m 。
设物块所受的最大静摩擦力等于滑动摩擦力,取重力加速度g =10 m/s 2。
求:(1)物块做平抛运动的初速度大小v 0; (2)物块与转台间的动摩擦因数μ。
[解析] (1)设物块做平抛运动所用时间为t ,竖直方向有H =12gt 2①水平方向有s =v 0t ②联立①②两式得v 0=s g2H=1 m/s ③(2)物块离开转台时,最大静摩擦力提供向心力,有μmg =m v 20R④联立③④得μ=v 20gR=0.2⑤[答案] (1)1 m/s (2)0.21.小明撑一雨伞站在水平地面上,伞面边缘点所围圆形的半径为R ,现将雨伞绕竖直伞杆以角速度ω匀速旋转,伞边缘上的水滴落到地面,落点形成一半径为r 的圆形,当地重力加速度的大小为g ,根据以上数据可推知伞边缘距地面的高度应为( )A.g (r 2-R 2)2ω2R 2B.g (r 2-R 2)2ω2r 2C.g (r -R )22ω2R 2D.gr 22ω2R2解析:选A 设伞边缘距地面的高度为h ,伞边缘水滴的速度v=ωR ,水滴下落时间t =2h g ,水滴平抛的水平位移x =v t =ωR 2hg,如图所示。
圆周运动的临界问题圆周运动的临界问题圆周运动中的临界问题的分析方法是首先明确物理过程,对研究对象进行正确的受力分析,然后确定向心力,根据向心力公式列出方程,由方程中的某个力的变化与速度变化的对应关系,从而分析找到临界值。
竖直平面内作圆周运动的临界问题是典型的变速圆周运动。
一般情况下,只讨论最高点和最低点的情况,常涉及过最高点时的临界问题。
在绳模型中,小球在竖直平面内做圆周运动过最高点的情况如图6-11-1所示。
小球能过最高点的临界条件为绳子和轨道对小球刚好没有力的作用,即mg=mv^2/R,从而得到小球能过最高点的条件为v≥√(Rg),不能过最高点的条件为v<√(Rg)。
在杆模型中,小球在竖直平面内做圆周运动过最高点的情况如图6-11-2所示。
小球能过最高点的临界条件为v=0,F=mg(F为支持力),当0F>0(F为支持力),当v=Rg时,F=0,当v>Rg时,F随v增大而增大,且F>0(F为拉力)。
拱桥模型与杆模型类似,但因可以离开支持面,在最高点当物体速度达v=√(Rg)时,F_N=0,物体将飞离最高点做平抛运动。
若是从半圆顶点飞出,则水平位移为s=2R。
细线模型中,如图6-11-5所示,细线的一端有一个小球,现给小球一初速度,使小球绕细线另一端O在竖直平面内转动,不计空气阻力,用F表示球到达最高点时细线对小球的作用力,则F可能是拉力、推力或等于零。
最后,对于一个质量为0.5kg的小杯里盛有1kg的水,用绳子系住小杯在竖直平面内做“水流星”表演,转动半径为1m,小杯通过最高点的速度为4m/s,g取210m/s。
可以利用向心力公式和受力分析,求出小杯通过最高点的临界条件。
1.长度为0.5m的细杆OA,A端挂着一个质量为3.0kg的小球,在竖直平面内做圆周运动。
求小球通过最高点时细杆OA所受的力。
答案:C。
24N的拉力2.在竖直放置的光滑圆形管道内,质量为m的小球做圆周运动。
尖子生的自我修养系列(一)曲线运动中的一个难点——双临界问题(细化题型)平抛运动和圆周运动是两种典型的曲线运动模型,均是高考的重点,两者巧妙地结合对学生的推理能力提出更高要求,成为高考的难点。
双临界问题能有效地考查学生的分析能力和创新能力,从而成为高考命题的重要素材。
下面分三类情况进行分析。
[例1] [多选](2020·将一锅水烧开,拿一块面团放在锅旁边较高处,用刀片飞快地削下一片片很薄的面片儿,面片便水平飞向锅里,若面团到锅上沿的竖直距离为0.8 m ,面团离锅上沿最近的水平距离为0.4 m ,锅的直径为0.4 m 。
若削出的面片能落入锅中,则面片的水平初速度可能是(g =10 m/s 2)( )A .0.8 m/sB .1.2 m/sC .1.8 m/sD .3.0 m/s【解析】水平飞出的面片发生的运动可看成平抛运动,根据平抛运动规律,水平方向:x =v 0t ①,竖直方向:y =12gt 2 ②,其中水平位移大小的范围是0.4 m≤x ≤0.8 m ,联立①②代入数据解得1 m/s≤v 0≤2 m/s ,故B 、C 项正确。
【答案】BC[方法规律] 解决平抛运动中双临界问题的一般思路(1)从题意中提取出重要的临界条件,如“恰好”“不大于”等关键词,准确理解其含义。
(2)作出草图,确定物体的临界位置,标注速度、高度、位移等临界值。
(3)在图中画出临界轨迹,运用平抛运动的规律进行解答。
[集训冲关]1.(2020·济南模拟)套圈游戏是一项很受欢迎的群众运动,要求每次从同一位置水平抛出圆环,套住与圆环前端水平距离为3 m 的20 cm 高的竖直细杆,即为获胜。
一身高1.7 m 的人从距地面1 m 高度水平抛出圆环,圆环半径为8 cm ,要想套住细杆,他水平抛出圆环的速度可能为(g 取10 m/s 2)( ) A .7.4 m/s B .7.8 m/s C .8.2 m/s D .8.6 m/s 【解析】选B 根据h 1-h 2=12gt 2得,t =2(h 1-h 2)g=2×(1.0-0.2)10s =0.4 s 。
圆周运动中的临界问题一.竖直面内的临界问题: a 无支撑模型:1、如图所示,没有物体支撑的小球,在竖直平面内做圆周运动过最高点的情况:①临界条件:小球达最高点时绳子的拉力(或轨道的弹力)刚好等于零,小球的重力提供其做圆周运动的向心力,即mg=rmv 2临界上式中的v 临界是小球通过最高点的最小速度,通常叫临界速度,v 临界=rg .②能过最高点的条件:v ≥v 临界. 此时小球对轨道有压力或绳对小球有拉力mg rv m N -=2③不能过最高点的条件:v<v 临界(实际上小球还没有到最高点就已脱离了轨道). b 有支撑模型:2、如图所示,有物体支持的小球在竖直平面内做圆周运动过最高点的情况:①临界条件:由于硬杆和管壁的支撑作用,小球恰能达到最高点的临界速度 v 临界=0.②图(a )所示的小球过最高点时,轻杆对小球的弹力情况是当v=0时,轻杆对小球有竖直向上的支持力N ,其大小等于小球的重力,即N=mg ;当0<v<rg 时,杆对小球有竖直向上的支持力rv m mg N 2-=,大小随速度的增大而减小;其取值范围是mg>N>0. 当v=rg 时,N=0;当v>rg 时,杆对小球有指向圆心的拉力mg rv m N -=2,其大小随速度的增大而增大. ③图(b )所示的小球过最高点时,光滑硬管对小球的弹力情况是当v=0时,管的下侧内壁对小球有竖直向上的支持力,其大小等于小球的重力,即N=mg.当0<v<rg 时,管的下侧内壁对小球有竖直向上的支持力rv m mg N 2-=,大小随速度的增大而减小,其取值范围是mg>N>0. 当v=gr 时,N=0.当v>gr 时,管的上侧内壁对小球有竖直向下指向圆心的压力mg rv m N -=2,其大小随速度的增大而增大.④图(c)的球沿球面运动,轨道对小球只能支撑,而不能产生拉力.在最高点的v 临界=gr .当v>gr 时,小球将脱离轨道做平抛运动.c 类似问题扩展如图所示,在倾角为θ的光滑斜面上,有一长为l 的细线,细线的一端固定在O 点,另一端拴一质量为m 的小球,现使小球恰好能在斜面上做完整的圆周运动,已知O 点到斜面底边的距离s OC =L ,求:小球通过最高点A 时的速度v A .二.平面内的临界问题 如图所示,用细绳一端系着的质量为M=0.6kg 的物体A 静止在水平转盘上,细绳另一端通过转盘中心的光滑小孔O 吊着质量为m=0.3kg 的小球B ,A 的重心到O 点的距离为0.2m .若A 与转盘间的最大静摩擦力为f=2N ,为使小球B 保持静止,求转盘绕中心O 旋转的角速度ω的取值范围.(取g=10m/s 2)三.绳的特性引发的临界问题如图所示,质量为m =0.1kg 的小球和A 、B 两根细绳相连,两绳固定在细杆的A 、B 两点,其中A 绳长L A =2m ,当两绳都拉直时,A 、B 两绳和细杆的夹角θ1=30°,θ2=45°,g =10m/s 2.求: (1)当细杆转动的角速度ω在什么范围内,A 、B 两绳始终张紧? (2)当ω=3rad/s 时,A 、B 两绳的拉力分别为多大?模型一 圆周运动中的渐变量和突变量例1:如图所示,细线栓住的小球由水平位置摆下,达到最低点的速度为v ,当摆线碰到钉子P 的瞬时( )A .小球的速度突然增大B .线中的张力突然增大P 小球C O B A θ θ ωAB 30°45°CC .小球的向心加速度突然增大D .小球的角速度突然增大模型二 圆周运动与平抛运动相结合例2:如图所示,竖直平面内的3/4圆弧形光轨道半径为R ,A 端与圆心O 等高,AD 为水平面,B 点在O 的正上方,一个小球在A 点正上方由静止释放,自由下落至A 点进入圆轨道并恰能到达B 点。
秘籍05圆周运动(水平面内、转盘模型、绳球模型、杆球模型等)中的临界问题一、水平面内圆周运动的临界问题1.物体间恰好不发生相对滑动的临界条件是物体间恰好达到最大静摩擦力。
如果只是摩擦力提供向心力,则有F=m v2R,静摩擦力的方向一定指向圆心;汽车转弯时,只由摩擦力提供向心力F fm=m v2 R2.水平转盘上运动物体模型(1)如果只有摩擦力提供向心力,物体间恰好不发生相对滑动的临界条件是物体间恰好达到最大静摩擦力,则最大静摩擦力F m=mv2r,方向指向圆心。
(2)如果水平方向除受摩擦力以外还有其他力,如绳两端连接物体随水平面转动,其临界情况要根据题设条件进行判断,如判断某个力是否存在以及这个力存在时的方向(特别是一些接触力,如静摩擦力、绳的拉力等)。
二、竖直面内圆周运动的临界问题1.轻绳模型(轨道模型):轻绳(或内轨道)——小球组成无支撑的物理模型(称为“轻绳模型”)(注:“轻绳”只能对小球产生拉力,不能产生支持力。
(内轨道约束类似))(1)实例:球与绳连接、水流星、沿内轨道的“过山车”等。
(2)临界条件:小球能到达最高点(刚好做圆周运动)的条件是:小球的重力恰好提供向心力(绳子的拉力或轨道的弹力都恰好为零),即,这时的速度是做圆周运动的最小速度(3)推导过程rv mG N F 2合Grv m N 2N=0时临界情况水恰好不掉出,grv min 临界速度(4)弹力随速度大小的变化不能过最高点的条件:,能过最高点的条件:,绳对球产生拉力,轨道对球产生压力2.轻杆模型(管道模型):轻杆(或管道)——小球组成有支撑的物理模型(称为“轻杆模型”)(注:“轻杆”既能对小球产生拉力,也能产生支持力。
(管道约束类似))(1)临界条件:当V=0时,F N =mg(F N 为硬杆或管壁对小球的支持力)(2)推导过程:球过最高点时,设轻杆对小球产生的弹力FN方向向上,由牛顿第二定律得:(3)弹力随速度大小的变化当,弹力F N 表现为支持力,方向竖直向上当,没有弹力F N =0作用当,弹力F N 表现为拉力,方向竖直向下3.两类模型对比轻绳模型(最高点无支撑)轻杆模型(最高点有支撑)实例球与绳连接、水流星、沿内轨道运动的“过山车”等球与杆连接、球在光滑管道中运动等图示受力示意图F 弹向下或等于零F 弹向下、等于零或向上力学方程mg +F 弹=mv 2Rmg ±F 弹=mv 2R临界特征F 弹=0mg =mv min2R即v min =gRv =0即F 向=0F 弹=mg讨论分析(1)最高点,若v ≥gR ,F 弹+mg =m v 2R ,绳或轨道对球产生弹力F 弹(1)当v =0时,F 弹=mg ,F 弹背离圆心(2)当0<v <gR 时,mg -F 弹=m v 2R ,F 弹背离圆心并(2)若v<gR ,则不能到达最高点,即到达最高点前小球已经脱离了圆轨道随v 的增大而减小(3)当v =gR 时,F 弹=0(4)当v >gR 时,mg +F 弹=m v 2R,F 弹指向圆心并随v的增大而增大三、生活中的圆周运动1.拱形桥和凹形桥模型特点概述如图所示为凹形桥模型.当汽车通过凹形桥的最低点时,向心力F 向=F N -mg=mv 2r规律桥对车的支持力F N =mg +m v 2r>mg ,汽车处于超重状态概述如图所示为拱形桥模型.当汽车通过拱形桥的最高点时,向心力F 向=mg -F N=mv 2r规律桥对车的支持力F N =mg -m v 2r<mg ,汽车处于失重状态.若v =gr ,则F N =0,汽车将脱离桥面做平抛运动2.水平路面车辆转弯模型水平路面车辆转弯模型3.火车转弯模型火车转弯模型则L gRh v0;若火车经过弯道时的速度LgRhv >,外轨将受到挤压;若火车经过弯道时的速度LgRhv <,内轨将受到挤压。
圆周运动的临界问题临界问题是高考考查的热点,特别是圆周运动中的临界问题,知识覆盖面广,题型多样,并且与生活实际息息相关,是同学们必须重点掌握的知识.1.圆周运动中的临界问题的分析方法首先明确物理过程,对研究对象进行正确的受力分析,然后确定向心力,根据向心力公式列出方程,由方程中的某个力的变化与速度变化的对应关系,从而分析找到临界值.2.竖直平面内作圆周运动的临界问题(1)绳模型如图所示,没有物体支撑的小球,在竖直平面做圆周运动过最高点。
①临界条件:绳子或轨道对小球没有力的作用:mg=m v2/R→v临=(可理解为恰好转过或恰好转不过的速度)界②能过最高点的条件:v≥,当v>时,绳对球产生拉力,轨道对球产生压力.③不能过最高点的条件:v<v临界(实际上球还没到最高点时就脱离了轨道)注意:绳对小球只能产生沿绳收缩方向的拉力(2)杆模型如图,球过最高点时,轻质杆(管)对球产生的弹力情况:①当v=0时,N=mg(N为支持力)②当 0<v<时,N随v增大而减小,且mg>N>0,N为支持力.③当v=时,N=0④当v>时,N为拉力,N随v的增大而增大(此时N为拉力,方向指向圆心)注意:管壁支撑情况与杆一样。
杆与绳不同,杆对球既能产生拉力,也能对球产生支持力.(3)拱桥模型如图所示,此模型与杆模型类似,但因可以离开支持面,在最高点当物体速度达v=时,F N=0,物体将飞离最高点做平抛运动。
若是从半圆顶点飞出,则水平位移为s= R。
例1长度为L=0.5 m的轻质细杆OA,A端有一质量为m=3.0kg的小球,如图所示,小球以O点为圆心在竖直平面内做圆周运动,通过最高点时小球的速率是2.0m/s,g取10m/s2,则此时细杆OA受到( )A.6.0N的拉力B.6.0N的压力C.24N的拉力D.24N的压力解析 小球在A点的速度大于时,杆受到拉力,小于时,杆受压力。
v0==m/s=m/s由于v=2.0 m/s<m/s,我们知道过最高点时,球对细杆产生压力。
圆周运动中的临界问题圆周运动中的临界问题的分析方法:首先明确物理过程,对研究对象进行正确的受力分析,然后确定向心力,根据向心力公式列出方程,由方程中的某个力的变化与速度变化的对应关系,从而分析找到临界值. 一、竖直面内圆周运动的临界问题(1)如图所示,没有物体支撑的小球,在竖直平面做圆周运动过最高点的情况: 特点:绳对小球,轨道对小球只能产生指向圆心的弹力 ① 临界条件:绳子或轨道对小球没有力的作用:mg=mv 2/R →v 临界=(可理解为恰好转过或恰好转不过的速度)即此时小球所受重力全部提供向心力 注意1能过最高点的条件:v ≥,当v >时,绳对球产生拉力,轨道对球产生压力.2不能过最高点的条件:v <V 临界(实际上球还没到最高点时就脱离了轨道做斜抛运动) 【例题1】如图所示,半径为R 的竖直光滑圆轨道内侧底部静止着一个光滑小球,现给小球一个冲击使其在瞬时得到一个水平初速v 0,若v 0≤,则有关小球能够上升到最大高度(距离底部)的说法中正确的是( )A、一定可以表示为 B 、可能为 C 、可能为R D 、可能为R答案:BC【延展】汽车过拱形桥时会有限速,也是因为当汽车通过半圆弧顶部时的速度时,汽车对弧顶的压力F N =0,此时汽车将脱离桥面做平抛运动, 因为桥面不能对汽车产生拉力.【例5】如图所示,赛车在水平赛道上作900转弯,其内、外车道转弯处的半径分别为r1和r2,车与路面间的动摩擦因数和静摩擦因数都是μ.试问:竞赛中车手应选图中的内道转弯还是外道转弯?在上述两条弯转路径中,车手做正确选择较错误选择所赢得的时间是多少?分析:赛车在平直道路上行驶时,其速度值为其所能达到的最大值,设为v m。
转弯时,车做圆周运动,其向心力由地面的静摩擦力提供,则车速受到轨道半径和向心加速度的限制,只能达到一定的大小.为此,车在进入弯道前必须有一段减速过程,以使其速度大小减小到车在弯道上运行时所允许的速度的最大值,走完弯路后,又要加速直至达到v m。
2023届高三物理一轮复习重点热点难点专题特训专题22 平抛运动的图像问题、相遇问题、临界问题、与圆周运动结合问题特训目标特训内容目标1 平抛运动的图像问题(1T—4T)目标2 平抛运动的相遇问题(5T—8T)目标3 平抛运动的临界问题(9T—12T)目标4 平抛运动与周期性圆周运动相结合问题(13T—16T)一、平抛运动的图像问题1.如图,在倾角为 的斜面顶端,将小球以v0的初速度水平向左抛出,经过一定时间小球发生第一次撞击。
自小球抛出至第一次撞击过程中小球水平方向的位移为x,忽略空气阻力,则下列图像正确的是()A.B.C .D .【答案】D【详解】如果小球落在斜面上,小球位移方向与水平方向夹角为α,则有0tan 2y gt x v α==则水平位移200002tan v x v t v v gα==∝小球落水平面上,小球飞行时间恒定,水平位移正比于0v ,故D 正确,ABC 错误。
故选D 。
2.如图甲所示,挡板OA 与水平面的夹角为θ,小球从O 点的正上方高度为H 的P 点以水平速度0v 水平抛出,落到斜面时,小球的位移与斜面垂直;让挡板绕定的O 点转动,改变挡板的倾角θ,小球平抛运动的初速度0v 也改变,每次平抛运动,使小球的位移与斜面总垂直,22011tan v θ-函数关系图像如图乙所示,重力加速度210m/s g =,下列说法正确的是( )A .图乙的函数关系图像对应的方程式220111tan 2gH v θ=⨯+ B .图乙中a 的数值2-C .当图乙中1b =,H 的值为0.1mD .当45θ=︒,图乙中1b =2【答案】D 【详解】A .设平抛运动的时间为t ,如图所示把平抛运动的位移分别沿水平和竖直方向分解,由几何关系02tan 12v tgt θ=解得0an 2t v t g θ=根据几何关系有201tan 2H gt v t θ-=⨯联立整理220111tan 2gH v θ=⨯-故A 错误; B .结合图乙22011tan v θ-函数关系图像可得1a =-故B 错误; C .由图乙可得22011tan v θ-函数关系图像的斜率2a gH kb =-=又有1a =-,1b =可得0.2m H =故C 错误;D .当45θ︒=,0.2m H =根据220111tan 2gH v θ=⨯-解得02v =根据0an 2t v t g θ=解得2t =故D 正确。