基于群体平衡模型计算气泡大小分布
- 格式:pdf
- 大小:116.22 KB
- 文档页数:7
velocity-verlet算法求得气泡系统的平衡状态python案例文章标题:探究气泡系统平衡状态:基于velocity-verlet算法的Python案例在科学研究领域中,气泡系统的平衡状态一直是一个备受关注的话题。
通过基于velocity-verlet算法的Python案例,我们可以更加深入地理解气泡系统平衡状态的相关理论和方法。
本文将从简单到复杂,由浅入深地讨论气泡系统平衡状态的研究过程,共享对这一主题的全面理解和个人观点。
一、气泡系统的基本原理气泡系统是由气泡和液相组成的多相体系,其平衡状态可以通过气泡的分布、形状和动力学行为来描述。
在研究气泡系统的平衡状态时,我们需要考虑气泡间的相互作用、液相的粘性和密度等因素。
通过velocity-verlet算法,我们可以模拟气泡系统在不同条件下的平衡状态,并进一步探讨其动态特性。
二、velocity-verlet算法的原理和应用velocity-verlet算法是一种常用的分子动力学模拟算法,通过同时更新位置和速度的方式来模拟粒子系统的运动。
该算法具有较好的数值稳定性和计算效率,在研究气泡系统平衡状态时得到了广泛的应用。
通过velocity-verlet算法,我们可以模拟气泡系统的动力学行为,探究气泡与液相之间的相互作用和平衡态的演化过程。
三、基于Python的气泡系统平衡状态模拟在进行气泡系统平衡状态的模拟时,我们可以借助Python编程语言中的相关库和工具来实现。
通过编写相应的程序和算法,我们可以对气泡系统的平衡状态进行模拟和分析。
在实际操作中,我们可以通过定义系统的能量函数、计算粒子间的相互作用力以及实现velocity-verlet算法来模拟气泡系统在不同条件下的平衡态,并对其进行深入的研究和分析。
四、案例分析与结论以一个具体的案例为例,我们将基于velocity-verlet算法的Python 模拟结果进行分析,并得出相应的结论。
通过对气泡系统的平衡状态进行模拟和分析,我们可以更加深入地理解气泡间的相互作用、液相的动力学行为以及平衡态的演化过程。
水下排气两相流动及气泡粒径分布的数值模拟王治云;李永胜;杨茉【摘要】对某内燃机水下排气管道的排气过程进行了数值模拟,以预测CO2经过排气管道处理后的气泡直径分布,期为管道的优化设计提供参考.气液两相流动模型采用Euler模型,湍流模型采用Realizable k-ε模型,考虑了气泡的分裂与聚合的粒径分布采用群体平衡方程计算.计算结果表明:在所研究的几何条件与流动参数范围内,CO2气泡在管道中的非连续流动会因为有浮力作用使其逐渐集中到管道上方从而导致气泡粒径变大,孔板下部开孔对气泡破碎效果有限.管道出口处粒径在4 mm 以下的气泡体积分数的时均值为0.466.【期刊名称】《能源工程》【年(卷),期】2017(000)006【总页数】4页(P49-52)【关键词】气液两相流;湍流;群体平衡方程;粒径分布【作者】王治云;李永胜;杨茉【作者单位】上海理工大学能源与动力工程学院,上海200093;上海理工大学能源与动力工程学院,上海200093;上海理工大学能源与动力工程学院,上海200093【正文语种】中文【中图分类】TK413.4众所周知,内燃机在运行时会排放出含有大量二氧化碳的尾气,造成温室效应。
为了减轻尾气中CO2所造成的温室效应,需要对内燃机排气管道进行优化处理。
对于海上船舶,现有的方法之一是将内燃机排出的尾气排入海水中使得CO2溶于海水。
由于CO2在水中的溶解度有限,为了达到更好的溶解效果可将CO2处理成一定直径的小气泡,以增大CO2与海水的接触面积,促进气体的溶解。
CHEN等[1]对从海床泄漏的CO2的研究表明,气泡的粒径决定了其在海水中的存在时间,粒径越小气泡越易于在海水中溶解。
因此,要准确预测气泡的溶解效果,必须对气泡粒径分布和气液两相的空间分布结构进行研究。
在对气泡粒径分布预测的计算方法中,群体平衡模型(Population Balance Model,PBM)广泛应用于结晶、医药制造、在火焰中形成的污染物以及微生物和细胞群的生长等工程计算中。
基于 EMMS 模型的搅拌釜内气液两相流数值模拟肖颀;杨宁【摘要】3D Eulerian-Eulerian model was applied to simulate the flow in a gas-liquid stirred tank. Simulation results with different drag models were evaluated at the discharge flow region. CFD simulation could correctly predict the liquid velocity distribution around the impeller, but the traditional Schiller-Naumann drag model under-estimates the drag force, leading to the relatively lower gas holdup at the region under the impellers and gas distributor. The DBS-Global drag model derived from the gas-liquid EMMS model could obtain more reasonable gas holdup distribution at the complete dispersion regime and significantly improved the prediction accuracy of the gas holdup distribution at the discharge flow region.%采用欧拉-欧拉模型对搅拌釜内气液两相流进行了三维 CFD 模拟,重点研究了采用不同曳力模型时CFD 模拟对搅拌桨附近排出流区两相流动的预测能力。
基于气泡数密度模型的气体穿越液池过程气泡特性数值模拟吴晅;焦晶晶;王丽芳;金光【摘要】An average bubble number density (ABND) transport equation considering bubbles breakup and coalescence was merged with the Euler-Euler turbulence two-fluid model in the Computational Fluid Dynamics (CFD) to establish the CFD-ABND coupling model which was used to study the bubble size distribution and the interfacial area concentration (IAC) distribution in the pool when the gas-solid flow passed through the pool. The quantitative results of bubbles size and IAC distribution were observed, and the influence of gas velocity on the distribution of the bubble and the IAC was analyzed. It was found that the present model had a better performance for predicting the bubble size and IAC distribution. The results showed that the larger bubble and the higher IAC mainly existed near the exit and outer wall of the cooling tube. The separator inserter IAC in the pool was very helpful to strengthen the disturbance between gas and liquid, which could effectively reduce the bubble size and increase the IAC.%采用考虑了气泡破碎和聚并的平均气泡数密度(ABND)输运方程,并与计算流体力学(CFD)中的湍流双流体模型相结合,建立 CFD-ABND 耦合计算模型。
pbm中bin的粒径计算
在粉体工程和材料科学领域,粒度(或粒径)是指颗粒的大小。
在PBM (Population Balance Model,群体平衡模型)中,通常用于描述多相系统中颗粒大小分布的演化。
粒度的计算在PBM 中通常涉及到将粒度分布函数与系统中的宏观性质联系起来。
以下是一些与PBM 中粒度计算相关的概念和步骤:
1.粒度分布函数(Distribution Function):
•PBM 中常用的粒度分布函数包括数密度函数、体积密度函数、质量密度函数等,它们描述了在不同尺寸范围内颗粒的分布。
2.数学形式:
•粒度分布函数的数学形式取决于系统和所使用的PBM 模型。
一些常见的粒度分布函数包括Rosin-Rammler、Nukiyama-
Tanasawa、Gaudin-Schuhmann等。
3.数值解法:
•PBM 的求解通常涉及到数值方法,如有限元法、有限体积法等。
通过将分布函数的微分方程离散化,并使用适当的边界条件,
可以得到系统中颗粒尺寸的演化。
4.实验数据对比:
•为了验证PBM 的模拟结果,通常需要与实验数据进行比较。
实验数据可能包括颗粒大小分布的测量值,例如激光粒度仪、扫描
电子显微镜等测量的数据。
5.后处理:
•通过数值模拟获得的结果可能需要进行后处理,以提取感兴趣的信息,比如平均颗粒大小、颗粒尺寸的百分位数等。
在具体的PBM 模型中,以上步骤可能会有所不同。
要深入了解如何在特定PBM 模型中进行粒度计算,建议查阅相关的文献、模型手册或软件文档。
两相流是指在同一系统中同时存在两种以上的流体,并且这些流体之间会产生相互作用。
在两相流中,气泡是一种常见的形态,其尺寸分布对流体性质和流动特性具有重要影响。
针对两相流中气泡尺寸分布的计算模型成为了研究的热点之一。
在传统的气泡尺寸分布计算模型中,主要采用了经验公式和实验数据拟合的方法来得到气泡尺寸分布。
虽然这种方法在一定程度上能够反映气泡尺寸分布的特征,但是其局限性也相当明显。
一方面是由于不同流体系统和流动条件的差异,导致使用经验公式得到的结果无法准确反映实际情况。
另实验数据的获取成本较高,且实验条件的控制也较为困难,这也限制了传统方法在工程领域的应用。
针对传统方法的局限性,近年来,国内外学者开始尝试利用数值模拟和计算机仿真技术来建立新的气泡尺寸分布计算模型。
这种方法通过对流体动力学和气泡运动规律的数值模拟,得到了更为准确的气泡尺寸分布结果。
主要的数值模拟方法包括欧拉-拉格朗日方法和欧拉-欧拉方法,其中欧拉-拉格朗日方法更适用于较小气泡的尺寸分布计算,而欧拉-欧拉方法则更适用于大气泡的尺寸分布计算。
除了数值模拟方法,还有一些学者尝试使用人工智能技术来建立气泡尺寸分布的计算模型。
神经网络和深度学习技术在模式识别和数据挖掘领域的优势被引入气泡尺寸分布的研究中,通过对大量实验数据的训练和学习,得到了更加精确的气泡尺寸分布计算模型。
目前,基于数值模拟和人工智能技术的气泡尺寸分布计算模型正在逐渐成为研究的热门方向。
通过这些先进的技术手段,研究者们可以更加准确地预测和控制两相流中气泡的尺寸分布,为工程实践提供了更可靠的理论依据。
然而,这些新方法的应用仍面临着一些挑战,例如数值模拟的计算量大、计算精度的影响因素较多等问题,需要在今后的研究中进一步解决。
气泡尺寸分布计算模型的研究不断在向前发展,传统方法的局限性逐渐被新技术所突破。
随着数值模拟和人工智能技术的不断进步,相信气泡尺寸分布的计算模型会在未来得到更加精确和可靠的发展,为两相流领域的研究和应用带来新的突破和进展。
气泡扩散的流体力学模型
气泡扩散的流体力学模型主要有两种。
(1)建立并验证单气泡气升式环流反应器数学模型。
采用Euler一Euler双流体方法,建立气液两相流体湍流数学模型。
研究了不同表观气速下(0.01一0.075m/s)反应器内气含率和液速的变化情况,并与实验数据进行对比,验证模型准确性。
然后,分别采用Pressureoutlet边界和Degassing 边界条件进行计算模拟,曳力系数模型分别采用Schiller一Naumann、Grace 模型和Tomiyama 模型,比较不同边界条件和曳力模型对气含率及液体速度分布的预测结果。
结果衣明,Degassing边界和Tomiyama曳力模型可以得到与实验数据更加吻合的模拟结果。
(2)建立了气升式环流反应器的双气泡模型(大气泡、小气泡)和PBM群体平衡模型,并与单气泡模型的模拟结果比较。
详细考察了在均匀鼓泡区和非均匀鼓泡区中大气泡气含率、小气泡气含率、液速和气泡尺寸的分布情况和变化规律,分析了气泡尺寸对流体力学特性的影响。
通过对比模拟结果得到更优的气泡模型,并对新的反应器模型进行建模,验证气泡模型影响结论的准确性。
结果表明,双气泡模型和PBM模型相比单气泡模型可以更好的描述反应器内气泡的实际
分布情况,尤其对于下降管中的气含率,双气泡模型和PBM模型的模拟结果明显更贴近于实验值。
实验五群体遗传平衡分析和基因频率的估算群体遗传平衡是指在一定环境条件下,基因型频率在群体内保持稳定的状态。
实验五要求对一群昆虫进行遗传平衡分析和基因频率的估算。
在进行这样的分析和估算之前,我们需要了解一些相关的概念和方法。
首先,基因型频率是指在群体中特定基因型的个体数除以总个体数得到的比例。
在一个群体中,不同基因型的个体会以一定的频率存在,这是由基因型的遗传规律所决定的。
基因型频率的估算可以通过群体中个体基因型的统计来获得。
其次,遗传平衡是指在没有变异、选择、迁移和随机漂变的情况下,基因型频率在群体中保持稳定的状态。
具体来说,当以下条件同时满足时,群体处于遗传平衡状态:基因的转座、突变、选择和迁移的影响很小,群体中的交配是随机的,群体的大小足够大以减小随机漂变的影响。
在实验中,我们将使用遗传平衡模型来分析一个昆虫群体的遗传平衡状态和基因型频率。
我们首先需要收集一定数量的个体样本,然后通过观察样本中不同基因型的个体数来估算基因型频率。
接下来,我们根据遗传平衡模型,假设该群体中没有变异、选择、迁移和随机漂变的影响,利用基因型频率计算出理论上的遗传平衡状态下的基因型频率。
最后,我们将观测到的基因型频率与理论上的基因型频率进行比较,以判断该群体是否处于遗传平衡状态。
在实际操作中,我们可以使用硬件或软件工具进行基因型频率的估算和遗传平衡分析。
常用的软件工具包括HWE (Hardy-Weinberg equilibrium)、PLINK等。
这些工具能够根据给定的数据对基因型频率和遗传平衡状态进行估算,并提示是否存在遗传平衡失衡的情况。
在实验过程中,我们需要注意以下几点。
首先,样本数量要足够大,以确保估算的准确性。
通常来说,样本数量越大,样本的代表性越高,估算的准确性越高。
其次,选择适当的基因标记来进行估算和分析。
基因标记的选择应该能够准确地区分不同基因型,以确保估算和分析的准确性。
最后,实验过程中的数据处理应尽量避免误差的引入,例如在数据收集和记录过程中要保持准确性,以及在数据分析过程中要遵循正确的统计方法。
(抄阅)群体平衡模型(PBM)在ANSYS Fluent中,群体平衡模型是ANSYS Fluent软件的附加模块。
工业上,一些工况的第二相具有粒径(大小)的分布。
这些粒子,如固体颗粒、气泡、液滴的粒径分布会随着多相体系的反应、传递现象的发生而随着时间发生变化。
粒径的变化过程主要和成核、增长、分散、溶解、聚并以及破碎有关。
因此,在需要考虑粒径分布的多相体系中,除了动量、质量以及能量守恒,需要添加一个平衡方程来描述粒子的平衡。
这个平衡方程通常称为群体平衡模型(PBM)。
结晶、气液反应、鼓泡床、喷雾、流化床、造粒、液液乳化分离,以及气溶胶方面的研究经常需要引入群体平衡模型。
为了更好地了解和使用这些模型,我们引入数量密度函数(NDF)来表示粒子群。
通过粒子的性质(比如尺寸,成分),可以分辨出群体平衡模型中的不同粒子,进而也可以描述他们的行为。
ANSYS Fluent提供三种方法来求解群体平衡模型:离散法、标准矩方法(SMM)、积分矩方法(QMOM)。
1.1. 均一离散法1.2. 非均一离散法 1.3. 标准矩方法1.4. 积分矩方法• 1.1.均一离散法在均一离散法中,颗粒群的粒径范围被离散为有限的粒径间隔。
这种方法的优点在于可以直接计算粒径分布。
如果在求解前,粒径分布就已经可以大体的进行预估且数值的波动处于2-3倍之间的时候,均一离散法非常有效。
在这种情况下,颗粒群被离散为相对小的粒径间隔并和计算流体动力学(CFD)耦合求解。
这个方法的缺点就是如果需要很大数量的粒径间隔,占用计算资源较多。
• 1.2. 非均一离散法均一离散法的一个限制就是所有bins依附于第二相,因此其动量和为第二相的动量相同。
实际上,在某些情况下,一些过大的以及过小的粒子会由于动量的偏差引起分离,均一离散法并不适用于这些情况。
非均一离散法有效的处理了这个问题。
在非均一离散法中,bins 群可以调用不同的相速度,因此如果非均一离散法激活,群体平衡模型可以应用于多个离散相的体系。
加压气液鼓泡塔的CFD数值模拟与ERT实验验证张博;秦玉建;靳海波;杨索和;何广湘;罗国华;徐新;郭晓燕【摘要】在内径0.3 m,高6.6 m的加压鼓泡塔内,采用计算流体力学(CFD)数值模拟与气泡群平衡模型(PBM)耦合法进行塔内流体力学模拟,并将数值模拟结果与基于电阻层析成像技术(ERT)的实验结果对比分析,将通过ERT实时采集的横截面气含率分布和时间序列图与模拟结果进行比较.结果表明:ERT技术测量结果与CFD计算结果吻合良好,能很好地表示鼓泡塔内气液流动状态,进一步表明ERT技术对加压鼓泡塔内气液两相流进行可视化与实时测量是可行的.%The computational fluid dynamics (CFD) numerical simulation and the population balance model (PBM) coupling method were used to simulate the fluid dynamics in the pressurized bubble column with the diameter of 0.3 m and the height of 6.6 m.The results of numerical simulation were compared with the experimental results based on electrical resistance tomography (ERT), and the comparison of the gas holdup distribution and time series diagram of the cross-section collected by ERT in real time was compared with the simulation results.The results showed that the results measured by the electrical resistance tomography techniques were in good agreement with the calculated results of computational fluid dynamics, which could well represent the gas-liquid flow state in the bubble column. It was further demonstrated that ERT technique was feasible for visualization and real-time measurement of gas-liquid two phase flow in the pressurized bubble column.【期刊名称】《化学反应工程与工艺》【年(卷),期】2017(033)004【总页数】8页(P335-342)【关键词】加压鼓泡塔;电阻层析成像技术;计算流体力学模拟;气泡群平衡模型【作者】张博;秦玉建;靳海波;杨索和;何广湘;罗国华;徐新;郭晓燕【作者单位】北京石油化工学院化学工程系,北京 102617;北京石油化工学院化学工程系,北京 102617;北京石油化工学院化学工程系,北京 102617;北京石油化工学院化学工程系,北京 102617;北京石油化工学院化学工程系,北京 102617;北京石油化工学院化学工程系,北京 102617;北京石油化工学院化学工程系,北京 102617;北京石油化工学院化学工程系,北京 102617【正文语种】中文【中图分类】TQ021.1鼓泡塔反应器因具有结构简单、产能大、易操作、传热传质好和床层压降小等优点,被广泛应用于化学工程、生物工程、环境及能源等工业领域[1-4]。
群体断裂-平衡模型是群体心理学中一种重要的理论,用来解释群体如何在不断变化的条件下维持稳定。
该模型由美国心理学家约瑟夫·菲利普斯和他的同事提出。
该模型的特点包括:
1.群体的活力:群体断裂-平衡模型认为群体是一个具有活力的系统,它会不断变化并寻求
稳定。
2.群体的断裂: 群体断裂-平衡模型认为群体在面对不稳定因素时会产生断裂,这可能导
致群体的分裂或重组。
3.群体的平衡: 群体断裂-平衡模型认为群体会在断裂后寻求平衡,通过内部或外部因素
来维持稳定。
4.群体的多样性: 群体断裂-平衡模型认为群体中存在多种不同的观点和利益,这是群体
活力和稳定的重要来源。
5.群体的自我调整: 群体断裂-平衡模型认为群体具有自我调整的能力,能够通过自身的
力量来维持稳定。
fluent population balance model -回复什么是流体群体平衡模型(英语:Fluent population balance model)?流体群体平衡模型(Fluent population balance model),简称PBM,是一种数学模型,用于描述群体变化的动力学过程。
该模型通过考虑粒子、颗粒或其他细小实体的数量分布,来解释在流体中发生的各种物理、化学或生物反应。
这些颗粒可以是液滴、颗粒、气泡、细菌或其他粒子,其尺寸和特性相对较小,可以在流体中移动和相互作用。
流体群体平衡模型在多个领域中应用广泛,如生物医学、化工、环境科学和材料科学等。
PBM的核心概念是基于群体中粒子数量的分布函数。
该分布函数描述了在特定条件下不同尺寸或其他属性的粒子在群体中的相对数量。
这个分布函数是时间和空间的函数,可以通过微分方程或积分方程来表示。
PBM模型利用这个分布函数来建立群体内部的动力学过程,以预测群体中粒子数量的变化。
PBM的建模过程包括以下几个关键步骤:1. 定义粒子属性:首先需要定义粒子的各种属性,如尺寸、密度、形状和表面性质等。
这些属性对于描述粒子的相互作用和运动行为非常重要。
2. 粒子数分布函数:建立描述粒子数量分布的函数。
可以使用基于尺寸的分布函数,也可以使用其他属性进行建模。
这个分布函数将用于推断群体中不同粒子的相对数量。
3. 质量守恒方程:建立质量守恒方程,用于描述群体中粒子数量的变化。
这个方程通常是通过对流、扩散和反应等过程的建模得到的。
4. 动力学方程:基于质量守恒方程和其他相互作用过程,建立描述粒子变化动力学的微分或积分方程。
这些方程描述了粒子数量分布函数随时间和空间的变化。
5. 模型求解:根据建立的方程组,使用数值方法求解。
常见的求解方法包括离散元素方法、有限差分法和有限元法等。
PBM模型的应用非常广泛。
在生物医学领域,PBM模型被用于描述药物输送、细胞培养和生物体内反应等过程。
CHEMICAL INDUSTRY AND ENGINEERING PROGRESS 2018年第37卷第8期·2912·化 工 进展管道流动体系中水合物颗粒粒径分布特性数值模拟宋光春1,李玉星1,王武昌1,姜凯1,施政灼1,姚淑鹏1,魏丁2,史培玉3(1中国石油大学(华东)山东省油气储运安全省级重点实验室,山东 青岛 266580;2泰能天然气有限公司,山东 青岛 266580;3中国石油化工股份有限公司胜利油田分公司,山东 东营 257000)摘要:研究管道内水合物颗粒的粒径分布特性对深水流动安全保障具有十分重要的意义。
为模拟管道流动体系中水合物颗粒的粒径分布特性,本文首先建立了基于水合物颗粒聚集动力学的群体平衡模型。
该模型重点考虑水合物颗粒在流动过程中的碰撞频率、聚并效率、破碎频率及破碎后子颗粒的粒径分布函数,可较好地刻画管内水合物颗粒的流动行为。
随后,根据文献中的实验装置建立三维几何模型,利用FLUENT 14.5软件对上述群体平衡模型和相关固液两相流模型进行联合求解,借此模拟水合物颗粒初始粒径分布、水合物体积分数、管内流速和水合物颗粒初始粒径大小对管内水合物颗粒粒径分布类型及分布规律的影响。
本文模拟结果与文献中相关实验数据吻合良好,可为水合物防治技术的发展提供技术支持。
关键词:管道;水合物;群体平衡;数值模拟;粒径分布中图分类号:TE88 文献标志码:A 文章编号:1000–6613(2018)08–2912–07 DOI :10.16085/j.issn.1000-6613.2017-1858Numerical simulation of hydrate particle size distribution characteristicsin pipeline flowing systemsSONG Guangchun 1, LI Yuxing 1, WANG Wuchang 1, JIANG Kai 1, SHI Zhengzhuo 1, YAO Shupeng 1,WEI Ding 2,SHI Peiyu 3(1Shandong Key Laboratory of Oil-Gas Storage and Transportation Safety, China University of Petroleum, Qingdao 266580, Shandong, China; 2Taineng Natural Gas Co., Ltd., Qingdao 266580, Shandong, China; 3Shengli Oilfield BranchCompany, Sinopec Group, Dongying 257000, Shandong, China )Abstract: The investigation on hydrate particle size distribution characteristics is of great importancefor the assurance of deep water flow. In order to simulate hydrate particle size distribution characteristics in pipeline flowing systems, a population balance model based on the dynamics of hydrate particle agglomeration was established first. This model concentrated on the collision frequency, agglomeration efficiency, breakage frequency and particle size distribution of the sub-hydrate-particles, and could well describe the flow behavior of hydrate particles. Subsequently, a three-dimensional geometric model was built according to an experimental setup in the literature and then solved using software FLUENT 14.5 together with several relevant solid-liquid two-phase flow models. In this way, the influences of initial hydrate particle size distribution, hydrate volume fraction, flow rate and initial hydrate particle size on the types and regularities of hydrate particle size distribution第一作者:宋光春(1992—),男,博士研究生,主要从事深水流动安全保障方向的研究。