八年级数学全等三角形2
- 格式:pdf
- 大小:900.47 KB
- 文档页数:8
全等三角形的判定(二)(SAS)(人教版)(基础)一、单选题(共7道,每道14分)1.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于( )A.150°B.180°C.210°D.225°答案:B解题思路:由题意得:AB=ED,BC=DC,∠B=∠D=90°,∴△ABC≌△EDC(SAS),∴∠BAC=∠1,∴∠1+∠2=∠BAC+∠2=180°.故选B试题难度:三颗星知识点:略2.如图,将两根钢条,的中点O连在一起,使,可以绕着点自由旋转,就做成了一个测量工件,则的长等于内槽宽,那么判定的理由是( )A.SSSB.ASAC.SASD.AAS答案:C解题思路:∵AA′,BB′的中点O连在一起,∴OA=OA′,OB=OB′,在△OAB和△OA′B′中,,∴(SAS).故选C试题难度:三颗星知识点:略3.如图,已知AB∥DE,AB=DE,BE=CF,∠B=32°,∠A=78°,则∠F等于( )A.55°B.65°C.60°D.70°答案:D解题思路:∵AB∥DE∴∠B=∠DEF∵BE=CF∴BC=EF在△ABC和△DEF中∴△ABC≌△DEF(SAS)∴∠F=∠ACB=180°-32°-78°=70°故选D试题难度:三颗星知识点:略4.如图,线段AD,CE相交于点B,BC=BD,AB=EB,则下列说法不正确的是( )A.△ABC≌△EBDB.AC=EDC.∠CBD=∠ED.∠ACB=∠EDB答案:C解题思路:在△ABC和△EBD中∴△ABC≌△EBD(SAS)所以AC=ED,∠ACB=∠EDB故选项A,B,D正确,选项C错误故选C试题难度:三颗星知识点:略5.如图,已知∠ABC=∠DEF,AB=DE,若以“SAS”为依据来证明△ABC≌△DEF,还要添加的条件为( )A.∠A=∠DB.AC=DFC.∠ACB=∠FD.BC=EF或BE=CF答案:D解题思路:在△ABC和△DEF中,已知∠ABC=∠DEF,AB=DE要以“SAS”为依据来证明△ABC≌△DEF,只需要BC=EF故需添加的条件为BC=EF或BE=CF故选D试题难度:三颗星知识点:略6.如图所示,要测量池塘两岸相对的两点A,B之间的距离,可先在平地上取一个可以直接到达A和B的点C,连接AC并延长到点D,使CD=CA,连接BC并延长到E,使CE=CB,连接DE.可以说明△DEC≌△ABC,得ED=AB,那么量出DE的长,就能求A,B两点间的距离.判定△DEC≌△ABC最恰当的理由是( )A.SSSB.ASAC.SASD.ASS答案:C解题思路:要证两个三角形全等要找三组条件,由题意知CD=CA,CE=CB,根据对顶角相等,又有∠DCE=∠ACB,所以可以根据SAS得到△DEC≌△ABC.故选C试题难度:三颗星知识点:略7.如图所示,要测量池塘AB宽度,在池塘外选取一点P,连接AP,BP并分别延长,使PC=PA,PD=PB,连接CD,测得CD长为10m,则池塘宽度AB为________m,理由是________.上述两个空格处应填( )A.5,SSSB.10,SASC.5,SASD.10,SSS答案:B解题思路:由题意可得,在△APB和△CPD中∴△APB≌△CPD(SAS)∴AB=CD=10m故选B试题难度:三颗星知识点:略。
第二单元全等三角形本单元的学习目标①重点:全等三角形的性质;三角形全等的判定;角平分线的性质及应用②难点:三角形全等的判断方法及应用;角平分线的性质及应用在中考中的重要性:①中考热点,初中数学中的重点内容②考察内容多样化,有的独立考三角形全等,有的考全等三角形结合其他知识点综合,有的探究三角形全等条件或结论的开放性题目③题型以选择题、填空题、解答题为主【知识归纳】1.全等三角形的基本概念:(1)全等图形的定义:能够完全重合的两个图形叫做全等图形。
(2)全等三角形的定义:能够完全重合的两个三角形叫做全等三角形。
重合的顶点叫做对应顶点。
重合的边叫做对应边。
重合的角叫做对应角。
(3)全等三角形的表示方法:△ABC≌△A’B’C’(如图1)A’B C ’图12.全等三角形的性质:(1)全等三角形的对应边相等(2)全等三角形的对应角相等3.全等三角形的判定方法(1)三边相等(SSS);(2)两边和它们的夹角相等(SAS);(3)两角和其中一角的对应边相等(AAS);(4)两角和它们的夹边相等(ASA);(5)斜边和直角边相等的两直角三角形(HL).(该判定只适合直角三角形)注意:没有“AAA”和“SSA”的判定方法,这是因为“三角对应相等的两个三角形”和“两边及其中一边的对角对应相等的两个三角形”未必全等。
如图2,△ABC和△ADE中,∠A=∠A,∠1=∠3,∠2=∠4,即三个角对应相等,但它们只是形状相同而大小并不相等,故它们不全等;如图3,△ABC和△ABD中,AB=AB,AC=AD,∠B=∠B,即两边及其中一边的对角对应相等,但它们并不全等。
4.角平分线的性质:角平分线平分这个角,角平分线上的点到角两边的距离相等。
5.角平分线推论:角的内部到角的两边距离相等的点在角的平分线上。
判定三角形全等常用思路公理及定理练笔1、一般三角形全等的判定(如图)(1) 边角边(SSS) AAB=A′B′ BC=B′C ′ _______=_____∴△ABC≌△A′B′C′(2)边角边(SAS)AB=A′B′∠B=∠B′ _______=_____ B C∴△ABC≌△A′B′C′A′(3) 角边角(ASA)∠B=∠B′ ____=_____ ∠C=∠C′∴△ABC≌△A′B′C′B ′ C′(4) 角角边(AAS)∠A=∠A′∠C=∠C′ _______=_____∴△ABC≌△A′B′C′2、直角三角形全等的判定:斜边直角边定理(HL)AB=AB _____=_____∴Rt△ABC≌Rt△A′B′C′B C B′ C′二、全等三角形的性质1、全等三角形的对应角_____2、全等三角形的对应边、对应中线、对应高、对应角平分线_______注意:1、斜边、直角边公理(HL)只能用于证明直角三角形的全等,对于其它三角形不适用。
2022-2023学年人教版数学八年级上册压轴题专题精选汇编专题02 全等三角形考试时间:120分钟试卷满分:100分姓名:__________ 班级:__________考号:__________题号一二三总分得分评卷人得分一.选择题(共10小题,满分20分,每小题2分)1.(2分)如图,在△ABC中,AB>AC,AD是△ABC的角平分线,点E在AC上,过点E作EF⊥BC于点F,延长CB至点G,使BG=2FC,连接EG交AB于点H,EP平分∠GEC,交AD的延长线于点P,连接PH,PB,PG,若∠C=∠EGC+∠BAC,则下列结论:①∠APE=∠AHE;②PE=HE;③AB=GE;④S△P AB=S△PGE.其中正确的有()A.①②③B.①②③④C.①②D.①③④2.(2分)如图,在Rt△ABC中,∠ABC=90°,以AC为边,作△ACD,满足AD=AC,E为BC上一点,连接AE,∠CAD=2∠BAE,连接DE,下列结论中:①∠ADE=∠ACB;②AC⊥DE;③∠AEB=∠AED;④DE=CE+2BE.其中正确的有()A.①②③B.③④C.①④D.①③④3.(2分)如图,Rt△ACB中,∠ACB=90°,△ABC的角平分线AD、BE相交于点P,过P作PF⊥AD交BC的延长线于点F,交AC于点H,则下列结论:①∠APB=135°;②BF=BA;③PH=PD;④连接CP,CP平分∠ACB.其中正确的是()A.1个B.2个C.3个D.4个4.(2分)如图,在△ABC和△ADE中,∠CAB=∠DAE=36°,AB=AC,AD=AE.连接CD,连接BE并延长交AC,AD于点F,G.若BE恰好平分∠ABC,则下列结论错误的是()A.∠ADC=∠AEB B.CD∥AB C.DE=GE D.CD=BE5.(2分)如图,已知AB∥CD,AB+CD=BC,点G为AD的中点,GM⊥CD于点M,GN⊥BC于点N,连接AG、BG.张宇同学根据已知条件给出了以下几个结论:①∠BGC=90°;②GM=GN;③BG平分∠ABC;④CG平分∠BCD.其中正确的个数有()A.1个B.2个C.3个D.4个6.(2分)如图,在Rt△ABC中,∠A=90°,M为BC的中点,H为AB上一点,过点C作CG∥AB,交HM 的延长线于点G,若AC=8,AB=6,则四边形ACGH周长的最小值是()A.24B.22C.20D.187.(2分)习题课上,张老师和同学们一起探究一个问题:“如图,在△ABC中,D、E分别是AC、AB上的点,BD与CE相交于点O,OB=OC,添加下列哪个条件能判定△ABC是等腰三角形?”请你判断正确的条件应为()A.AE=BE B.BE=CD C.∠BEO=∠CDO D.∠BEO=∠BOE8.(2分)如图,在△ABC中,AB=AC,点D是OABC外一点,连接AD、BD、CD,且BD交AC于点O,在BD上取一点E,使得AE=AD,∠EAD=∠BAC,若∠ABC=62°,则∠BDC的度数为()A.56°B.60°C.62°D.64°9.(2分)在如图所示的3×3网格中,△ABC是格点三角形(即顶点恰好是网格线的交点),则与△ABC有一条公共边且全等(不含△ABC)的所有格点三角形的个数是()A.4个B.3个C.2个D.1个10.(2分)如图,在Rt△ABC中,∠CBA=90°,∠CAB的角平分线AP和∠MCB的平分线CF相交于点D,AD交CB于点P,CF交AB的延长线于点F,过点D作DE⊥CF交CB的延长线于点G,交AB的延长线于点E,连接CE并延长交FG于点H,则下列结论:①∠CDA=45°;②AF﹣CG=CA;③DE=DC;④CF=2CD+EG;其中正确的有()A.②③B.②④C.①②③④D.①③④评卷人得分二.填空题(共10小题,满分20分,每小题2分)11.(2分)已知:如图,△ABC中,E在BC上,D在BA上,过E作EF⊥AB于F,∠B=∠1+∠2,AE=CD,BF=,则AD的长为.12.(2分)如图,在△ABC中,AB=BC,BE、CF分别是AC、AB边上的高,在BE上取点D,使BD=CA,在射线CF上取点G,使CG=BA,连接AD、AG,若∠DAE=38°,∠EBC=20°,则∠GAB=°.13.(2分)如图,在△ABC中,AB=AC,D为BC上的一点,∠BAD=28°,在AD的右侧作△ADE,使得AE=AD,∠DAE=∠BAC,连接CE,DE,DE交AC于点O,若CE∥AB,则∠DOC的度数为.14.(2分)如图,已知四边形ABCD中,AB=10cm,BC=8cm,CD=12cm,∠B=∠C,点E为AB的中点.如果点P在线段BC上以3cm/s的速度沿B﹣C﹣B运动,同时,点Q在线段CD上由C点向D点运动.当点Q的运动速度为cm/s时,能够使△BPE与△CQP全等.15.(2分)如图,在Rt△ABC中,∠C=90°,两锐角的角平分线交于点P,点E、F分别在边BC、AC上,且都不与点C重合,若∠EPF=45°,连接EF,当AC=6,BC=8,AB=10时,则△CEF的周长为.16.(2分)如图,在Rt△ABC中,∠ACB=90°,BD平分∠ABC,E是AB上一点,且AE=AD,连接DE,过E作EF⊥BD,垂足为F,延长EF交BC于点G.现给出以下结论:①EF=FG;②CD=DE;③∠BEG =∠BDC;④∠DEF=45°.其中正确的是.(写出所有正确结论的序号)17.(2分)如图,在△ABC中,∠ACB=90°,BE⊥CE于点E,AD⊥CE于点D,请你添加一个条件,使△BEC≌△CDA(填一个即可).18.(2分)如图,E是△ABC的边AC的中点,过点C作CF∥AB,过点E作直线DF交AB于D,交CF 于F,若AB=9,CF=6.5,则BD的长为.19.(2分)如图,在正方形方格中,各正方形的顶点叫做格点,三个顶点都在格点上的三角形称为格点三角形.图中△ABC是格点三角形,请你找出方格中所有与△ABC全等,且以A为顶点的格点三角形.这样的三角形共有个(△ABC除外).20.(2分)如图,Rt△ABC中,∠C=90°,AC=8cm,BC=15cm,AB=17cm,∠CAB与∠CBA的角平分线相交于点O,过点O作OD⊥AB,垂足为点D,则线段OD的长为cm.评卷人得分三.解答题(共8小题,满分60分)21.(8分)综合与探究如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,CE的延长线交BD于点F.(1)求证:△ACE≌△ABD.(2)若∠BAC=∠DAE=50°,请直接写出∠BFC的度数.(3)过点A作AH⊥BD于点H,求证:EF+DH=HF.22.(8分)在△ABC中,点D、E分别在AB、AC边上,设BE与CD相交于点F.(1)如图①,设∠A=60°,BE、CD分别平分∠ABC、∠ACB,证明:DF=EF.(2)如图②,设BE⊥AC,CD⊥AB,点G在CD的延长线上,连接AG、AF;若∠G=∠6,BD=CD,证明:GD=DF.23.(6分)如图①:△ABC中,AC=BC,延长AC到E,过点E作EF⊥AB交AB的延长线于点F,延长CB到G,过点G作GH⊥AB交AB的延长线于H,且EF=GH.(1)求证:△AEF≌△BGH;(2)如图②,连接EG与FH相交于点D,若AB=4,求DH的长.24.(8分)在Rt△ABC中,∠ABC=90°,点D是CB延长线上一点,点E是线段AB上一点,连接DE.AC =DE,BC=BE.(1)求证:AB=BD;(2)BF平分∠ABC交AC于点F,点G是线段FB延长线上一点,连接DG,点H是线段DG上一点,连接AH交BD于点K,连接KG.当KB平分∠AKG时,求证:AK=DG+KG.25.(9分)在直线m上依次取互不重合的三个点D,A,E,在直线m上方有AB=AC,且满足∠BDA=∠AEC=∠BAC=α.(1)如图1,当α=90°时,猜想线段DE,BD,CE之间的数量关系是;(2)如图2,当0<α<180时,问题(1)中结论是否仍然成立?如成立,请你给出证明;若不成立,请说明理由;(3)拓展与应用:如图3,当α=120°时,点F为∠BAC平分线上的一点,且AB=AF,分别连接FB,FD,FE,FC,试判断△DEF的形状,并说明理由.26.(6分)如图,线段AB上两点C,D,AC=BD,∠A=∠B,AE=BF,连结DE并延长至点M,连结CF并延长至点N,DE、CF交于点P,MN∥AB.求证:△PMN是等腰三角形.27.(6分)如图,△AOB≌△COD,OD与AB交于点G,OB与CD交于点E.(1)∠AOD与∠COB的数量关系是:∠AOD∠COB;(2)求证:△AOG≌△COE;(3)若OA=OB,当A,O,C三点共线时,恰好OB⊥CD,则此时∠AOB=°.28.(9分)如图,在△ABC中,AC=BC,∠ACB=90°,点D为△ABC内一点,且BD=AD.(1)求证:CD⊥AB;(2)∠CAD=15°,E为AD延长线上的一点,且CE=CA.①求证:DE平分∠BDC;②若点M在DE上,且DC=DM,请判断ME、BD的数量关系,并给出证明;③若N为直线AE上一点,且△CEN为等腰三角形,直接写出∠CNE的度数.11/ 1212/ 12。
八年级数学上册 全等三角形练习1、如果△ABC ≌△DEF ,且△ABC 的周长是100cm ,A 、B 分别与D 、E 对应,并且AB=30cm ,DF=25cm ,则BC 的长等于_____cm.2、如图4,已知⊿ABC ≌⊿ADE ,D 是∠BAC 的平分线上一点,且∠BAC=60°,则 ∠CAE= 。
图4EDC BAC3、如图5,⊿ABC ≌⊿ADE ,若∠B=40°,∠EAB=80°,∠C=45°,则∠EAC= ,∠D= ,∠DAC= 。
4、如图,⊿ABC ≌⊿DEF ,∠A=70°,∠B=50°,BF=4,求∠DEF 的度数和EC 的长。
FDECB A5、五条长度分别为1、2、3、4、5的线段任选3条,可以组成 个三角形。
6、等腰三角形的两边长分别是6cm 和3cm ,则其周长等于 .7、 一个三角形的三边为2、5、x ,另一个三角形的三边为y 、2、6,若这两个三角形全等,则x+y=__________.全等三角形 同步练习(二)【知识巩固】1、如图,∠AOB 是一直角,∠AOC =40°,OD 平分∠BOC ,则∠AOD 等于( ) OBACD(A )65° (B )50° (C )40° (D )25°2、已知△ABC 中,∠A =n °,角平分线BE 、CF 相交于O ,则∠BOC 的度数应为( )(A)90°-n21°(B)90°+n21°(C)180°-n°(B)180°-n21°3、如图,已知AB∥CD,直线EF分别交AB,CD于点E,F,EG平分∠BEF,若∠1=5O°,则∠2的度数为( ).(A)50°(B)6O°(C)65°(D)7O°4、如图,AC=AB,AD平分∠CAB,E在AD上,则图中能全等的三角形有______对。