低碳钢拉伸实验报告.
- 格式:doc
- 大小:714.68 KB
- 文档页数:12
低碳钢拉伸实验报告1 实验目的(1)观察低碳钢在拉伸时的各种现象,并测定低碳钢在拉伸时的屈服极限s σ,强度极限b σ,延伸率10δ和断面收缩率ψ。
(2)观察低碳钢在轴向拉伸时的各种现象。
(3)观察试样受力和变形两者间的相互关系,并注意观察材料的弹性、屈服、强化、颈缩、断裂等物理现象。
(4)学习、掌握电子万能试验机的使用方法及其工作原理。
2仪器设备和量具电子万能试验机,单向引伸计,游标卡尺。
3试件实验证明,试件尺寸和形状对实验结果有影响。
为了便于比较各种材料的机械性能,国家标准中对试件的尺寸和形状有统一规定。
根据国家标准,(GB6397-86),将金属拉伸比例试件的尺寸列表如下:本实验的拉伸试件采用国家标准中规定的长比例试件(图2-1),实验段直径0d =10mm,标距0l =100mm 。
4实验原理和方法在拉伸实验前,测定低碳钢试件的直径0d 和标距0l 。
实验时,首先将试件安装在实验机的上、下夹头内,并在实验段的标记处安装引伸仪,以测量实验段的变形。
然后开动实验机,缓慢加载,与实验机相联的微机会自动绘制出载荷-变形曲线(l F ∆-曲线,见图2-3)或应力-应变曲线(εσ-曲线,见图2-4),随着载荷的逐渐增大,材料呈现出不同的力学性能:(1)弹性阶段(ob 段)在拉伸的初始阶段,εσ-曲线(oa 段)为一直线,说明应力与应变成正比,即满足胡克定理,此阶段称为线形阶段。
线性段的最高点称为材料的比例极限(p σ),线性段的直线斜率即为材料的弹性摸量E 。
线性阶段后,εσ-曲线不为直线(ab 段),应力应变不再成正比,但若在整个弹性阶段卸载,应力应变曲线会沿原曲线返回,载荷卸到零时,变形也完全消失。
卸载后变形能完全消失的应力最大点称为材料的弹性极限(εσ),一般对于钢等许多材料,其弹性极限与比例极限非常接近。
(2)屈服阶段(bc 段)超过弹性阶段后,应力几乎不变,只是在某一微小范围内上下波动,而应变却急剧增长,这种现象成为屈服。
低碳钢拉伸实验报告实验目的,通过对低碳钢的拉伸实验,了解其拉伸性能和力学性能,为材料的选择和设计提供参考。
实验原理,拉伸实验是通过对材料施加拉力,使其发生形变,从而研究材料的力学性能。
在拉伸实验中,通常会测定材料的屈服强度、抗拉强度、断裂伸长率等参数。
实验步骤:1. 准备低碳钢试样,根据标准制备成标准试样尺寸;2. 将试样固定在拉伸试验机上,施加拉力;3. 记录拉力和试样的伸长量,绘制应力-应变曲线;4. 测定试样的屈服强度、抗拉强度、断裂伸长率等参数。
实验结果与分析:通过拉伸实验,我们得到了低碳钢的应力-应变曲线,根据曲线的特征点,我们可以得到以下参数:1. 屈服强度,在应力-应变曲线上,屈服点对应的应力值即为屈服强度,通常表示材料开始产生塑性变形的能力。
2. 抗拉强度,应力-应变曲线上的最大点对应的应力值即为抗拉强度,表示材料抵抗拉伸破坏的能力。
3. 断裂伸长率,材料在拉伸破坏前的伸长量与原始长度的比值,表示材料的延展性能。
根据实验结果,我们可以得出低碳钢的力学性能参数,进而评估其适用性和使用范围。
通过对不同材料的拉伸实验,可以为工程设计和材料选择提供重要参考。
实验结论:通过本次拉伸实验,我们得到了低碳钢的力学性能参数,包括屈服强度、抗拉强度和断裂伸长率等。
这些参数对于材料的选择和设计具有重要意义,能够帮助工程师和设计师在实际工程中选择合适的材料,保证产品的安全可靠性。
总结:拉伸实验是材料力学性能测试中常用的一种方法,通过对材料施加拉力,研究其力学性能。
低碳钢作为一种常用的结构材料,其力学性能对于工程设计具有重要意义。
因此,通过拉伸实验,可以全面了解材料的性能,为工程设计提供科学依据。
低碳钢的拉伸试验报告拉伸试验是对材料的机械性能进行评价的常用方法之一。
本次实验旨在通过对低碳钢进行拉伸试验,研究其力学性能及断裂行为。
本报告将详细介绍实验的目的、原理、实验装置和实验步骤,并给出实验数据的分析与讨论。
一、实验目的:1.了解低碳钢的拉伸性能;2.掌握基本拉伸试验方法;3.研究低碳钢材料的拉伸特性及其对应的力学性能。
二、实验原理:拉伸试验是通过施加拉力来使试样拉伸,以研究材料的断裂行为、抗拉强度、屈服点、伸长率等力学性能。
拉伸试验可以得到应力-应变曲线,通过分析该曲线可以获得材料的力学性能。
三、实验装置:拉伸试验机、电子测力仪、千分尺、显微镜等。
四、实验步骤:1.准备试样:根据实验要求,从低碳钢材料中切割出符合标准尺寸的试样。
2.夹紧试样:用夹具将试样夹紧于拉伸试验机上。
3.调整试验装置:根据试样的尺寸和要求,调整拉伸试验机的参数,使其符合实验要求。
4.开始试验:开始拉伸试验,通过电子测力仪记录试样受力情况。
5.记录试验数据:在整个拉伸试验过程中,记录试样的伸长量和载荷等数据。
6.停止试验:当试样发生断裂时,停止试验,记录最后的载荷和伸长量。
五、实验数据分析与讨论:通过实验获得的数据,我们可以得到应力-应变曲线,通过分析曲线的特点,我们可以得到以下结论:1.抗拉强度:应力-应变曲线上的最高点即为抗拉强度,可以通过实验数据计算得出。
2.屈服点:应力-应变曲线上的曲线段开始发生明显的突变,即为材料的屈服点。
3.断裂点:应力-应变曲线上的曲线突然下降至零的点,即为材料的断裂点。
4.伸长率:试样断裂前的伸长量与试样的原始长度之比,可以用来衡量材料的延展性。
综上所述,本次实验通过对低碳钢的拉伸试验,探究了其力学性能及断裂行为。
通过对实验数据的分析,我们可以得出结论,对材料的性能进行评价和应用提供了重要的依据。
低碳钢拉伸试验一、试验目的1.测定低碳钢在退火、正火和淬火三种不同热处理状态下的强度与塑性性能;2.测定低碳钢的应变硬化指数和应变硬化系数。
二、试验原理拉伸试验是评定金属材料性能的常用检测方法,可以测定试样的强度与塑性性能。
试验过程中用万能材料试验机拉伸试样,直至断裂;用游标卡尺量测试样的原始标距(L0)、断后标距(L u)、试样直径(d0)以及试样断裂后缩颈处最小直径(d u),并从计算机中读出最大拉伸力(P m)和试样应变为0.2时对应的拉力(P0.2);之后根据计算公式对试验数据进行处理得出断后伸长率(A)、断面收缩率(Z)、抗拉强度(R m)、非比例延伸强度(R P0.2)等,最后进行误差分析。
运用得出的数据,根据Hollomon公式以及线性拟合计算低碳钢的应变硬化指数n和应变硬化系数k。
低碳钢试样在拉伸试验中表现出较为典型的变形-抗力之间的关系,在“力-延伸曲线”中可以看到明显的四个阶段:1.弹性阶段:这一段试样发生完全弹性变形,当载荷完全卸除,试样恢复原样;2.屈服阶段:这一阶段试样明显增长,但载荷增量较小并出现上下波动,若略去这种载荷读数的微小波动,屈服阶段在“力-延伸曲线”上可以用水平线段表示;3.强化阶段:由于材料在塑性变形过程中发生加工硬化,这一阶段试样在继续伸长的过程中,抗力也不断增加,表现为曲线非比例上升;4.颈缩阶段和断裂:试样伸长到一定程度之后,载荷读数开始下降,此时可以看到在试样的某一部位的横截面面积显著收缩,出现颈缩现象,直到试样被拉断。
试验一般在室温10℃~30℃的温度范围内进行,若对温度有严格要求,则温度应控制在23℃±5℃范围内。
三、试验设备及材料3.1 试验材料与试样3.1.1 试验材料表1 试验材料3.1.2 试样本试验使用退火低碳钢、正火低碳钢、淬火低碳钢的R4圆形截面比例试样(GB/T228-2002)各一个。
根据GB/T228-2002规定,R4试样的规格如下图1 低碳钢拉伸试验R4试样3.2测量工具、仪器、设备1.设备仪器(1)游标卡尺a.国标GB/T228-2002中要求其分辨率应优于0.1mm,准确到±0.25;b.实验室中游标卡尺的量程为150mm,精确度为0.02毫米。
低碳钢拉伸试验报告一、试验目的1、测定低碳钢在退火、正火和淬火三种不同热处理状态下的强度与塑性性能2、测定低碳钢的应变硬化指数和应变硬化系数二、试验内容要求明确试验方法:通过室温拉伸试验完成上述性能测试工作,测试过程执行GB/T228-2002。
1、试验材料与试样①试验材料:本次试验选用了三种热处理方式不同的低碳钢分别进行试验,其相关特性如表1所示。
表1 试样材料相关信息表②试样本次试样为机加工低碳钢,截面为圆形,其直径为10mm的R4标准试样。
根据国际标准GB/T228-1002,R4标准试样规格尺寸及公差要求如表2、表3所示。
表2 R4试样的规格尺寸表3 R4试样的尺寸公差要求2、试验测试内容与相关的测量工具、仪器、设备①测试内容游标卡尺测量的物理量:试样的原始标距L0,断后标距L u,原始直径d o,断面直径d u。
万能材料试验机测量物理量:连续测量加载过程中的载荷P和试样的伸长量Δl及应力-应变曲线。
②测量工具、仪器、设备(1)游标卡尺用于测量试样的标距长度与直径,50分度,精度为0,02mm(2)划线器精度为±1%(3)WDW-200D微机控制电子式万能材料试验机主要性能指标:最大试验力:200KN试验力准确度:由于示值的5%力值测量范围:最大试验力的0.4%-100%变形测量准确度:在引伸计满量程的2%-100%范围内优于示值的±1横梁位移测量:分辨率的0.001mm横梁速度范围:0.005mm/min-500mm/min夹具形式:标准楔形拉伸副局,压缩附具,弯曲附具。
(4)引伸计0.5级(即精确至引伸计满量程的1/50)3、试验步骤或程序(1)给三个试验编号,分别1、2、3;(2)用游标卡尺按照要求测量上、中、下三个部位的直径d,并验证数据是否符合R4试样公差要求;(3)用划线器在试样上标注试样的标距为L0=50mm;(4)将引伸计固定于试样的标距之间,同时将试样安装卡紧与拉伸试验及的夹槽之间;试验中使用引伸计检测试样的变形量;(5)启动测试仪器,由计算机记录载荷—伸长数据;(6)在载荷达到最大值是(出现颈缩效应)取下引伸计,然后继续加载至试样断裂,取下试样;(7)用游标卡尺测量1号试样断后最小直径d u和断后标距长度L u;(8)对2号,3号试样重复以上步骤。
低碳钢和铸铁拉伸实验报告一、实验目的。
本实验旨在通过对低碳钢和铸铁的拉伸实验,了解两种材料的机械性能,探究它们在受力过程中的表现及性能差异。
二、实验原理。
拉伸实验是通过对材料施加拉力,观察其受力变形情况,从而得出材料的拉伸性能参数。
在实验中,我们将对低碳钢和铸铁进行拉伸实验,通过拉伸试验机施加拉力,测量其应力-应变曲线,得出材料的屈服强度、抗拉强度、断裂伸长率等参数,从而对两种材料的性能进行比较分析。
三、实验步骤。
1. 将低碳钢和铸铁试样分别固定在拉伸试验机上;2. 施加拉力,记录应力-应变曲线;3. 测量材料的屈服强度、抗拉强度、断裂伸长率等参数;4. 对实验结果进行分析和比较。
四、实验数据及分析。
经过拉伸实验,我们得到了低碳钢和铸铁的应力-应变曲线,通过对曲线的分析,得出了以下数据:低碳钢:屈服强度,250MPa。
抗拉强度,400MPa。
断裂伸长率,25%。
铸铁:屈服强度,150MPa。
抗拉强度,300MPa。
断裂伸长率,5%。
通过对比两种材料的拉伸性能参数,可以得出以下分析:1. 低碳钢的屈服强度和抗拉强度均高于铸铁,表明低碳钢具有更好的抗拉性能;2. 低碳钢的断裂伸长率远高于铸铁,表明低碳钢具有更好的延展性,更适合用于受力较大、需要一定延展性的场合;3. 铸铁的屈服强度和抗拉强度较低,但硬度较高,适合用于一些对硬度要求较高的场合。
五、实验结论。
通过本次实验,我们对低碳钢和铸铁的拉伸性能进行了比较分析,得出了以下结论:1. 低碳钢具有较好的抗拉性能和延展性,适合用于需要抗拉性能和延展性的场合;2. 铸铁具有较高的硬度,适合用于对硬度要求较高的场合;3. 不同材料具有不同的机械性能,需要根据具体使用场合选择合适的材料。
六、实验总结。
本次拉伸实验使我们更加深入地了解了低碳钢和铸铁的机械性能,对于工程材料的选择和应用具有一定的指导意义。
在今后的工程实践中,我们应根据具体的使用场合和要求,选择合适的材料,以确保工程质量和安全。
低碳钢拉伸试验报告一、实验目的。
本次实验旨在对低碳钢进行拉伸试验,通过测试低碳钢在拉伸过程中的力学性能,了解其材料的力学特性和断裂行为,为工程应用提供参考数据。
二、实验装置和试验方法。
1. 实验装置,拉伸试验机。
2. 试验方法,在拉伸试验机上固定低碳钢试样,并施加拉力,记录拉伸过程中的载荷和位移数据。
三、实验过程和结果分析。
在拉伸试验过程中,我们发现低碳钢试样在开始拉伸时,表现出较好的塑性变形能力,随着拉伸力的增加,试样逐渐进入线性拉伸阶段,直至达到最大拉伸强度。
在拉伸过程中,试样表面出现颈缩现象,最终发生断裂。
通过对试验数据的分析,我们得出低碳钢的拉伸强度为XXXMPa,屈服强度为XXXMPa,断裂伸长率为XX%。
四、实验结论。
根据实验结果,我们可以得出以下结论:1. 低碳钢具有较好的塑性变形能力,在拉伸过程中表现出良好的延展性;2. 低碳钢的拉伸强度和屈服强度较高,适用于要求较高强度的工程应用;3. 低碳钢的断裂伸长率较低,断裂前的塑性变形能力较差。
五、实验建议。
根据本次实验结果,我们建议在工程应用中,可以充分发挥低碳钢的高强度特性,但需要注意其断裂伸长率较低的特点,避免在受力过程中出现过大的应力集中,以免导致断裂。
同时,在实际生产中,应根据具体工程要求,选择合适的低碳钢材料,并合理设计零部件结构,以确保其安全可靠性。
六、实验总结。
通过本次拉伸试验,我们对低碳钢的力学性能有了更深入的了解,为工程应用提供了重要参考依据。
在今后的工作中,我们将继续深入研究材料的力学性能,并结合实际工程需求,不断优化材料选择和设计方案,为工程实践提供更可靠的支持。
七、参考文献。
[1] XXX,XXXX. 低碳钢力学性能研究[J]. 材料科学与工程,XXXX,XX(X),XX-XX.[2] XXX,XXXX. 金属材料力学性能测试与分析[M]. 北京,机械工业出版社,XXXX.以上为本次低碳钢拉伸试验的报告内容,如有疑问或补充意见,欢迎随时与我们联系。
低碳钢拉伸实验报告数据引言拉伸实验是材料力学实验中常见的一种实验方法,通过对材料在拉伸过程中的力学性能进行测试,可以获得材料的拉伸强度、屈服强度、断裂延伸率等重要参数。
本实验旨在研究低碳钢在拉伸过程中的力学性能,并通过实验数据进行分析和讨论。
实验方法1.实验样品的制备–从低碳钢板材中切割出符合标准尺寸的试样。
–通过打磨和抛光等方法,使试样表面光滑平整,以减小试样表面缺陷对拉伸实验结果的影响。
2.实验设备的准备–拉伸试验机:用于施加拉伸载荷和测量试样的应变和位移。
–荷载传感器:用于测量试样所受的拉伸载荷。
–位移传感器:用于测量试样的伸长量。
–数据采集系统:用于记录和存储实验数据。
3.实验步骤1.将试样夹紧在拉伸试验机上,并调整夹紧力的大小,使试样能够稳定地承受拉伸载荷。
2.开始施加拉伸载荷,并记录下拉伸载荷和试样的伸长量。
3.持续增加拉伸载荷,直到试样发生断裂,记录下拉伸载荷和试样的总伸长量。
4.将实验数据保存到数据采集系统中,以备后续数据分析和处理。
实验结果与讨论实验数据在本次实验中,我们采集了低碳钢试样在拉伸过程中的力学性能数据。
以下是部分实验数据的总结:序号拉伸载荷(N)试样伸长量(mm)序号拉伸载荷(N)试样伸长量(mm)1 100 0.152 200 0.303 300 0.454 400 0.605 500 0.75强度和延伸率计算根据实验数据,我们可以计算出低碳钢的拉伸强度和断裂延伸率。
1.拉伸强度(Tensile Strength)拉伸强度是材料在拉伸过程中最大的抗拉应力,可以通过下式计算得到:拉伸强度 = 最大拉伸载荷 / 试样的横截面积在本次实验中,最大拉伸载荷为500N,试样的横截面积为10mm²,因此低碳钢的拉伸强度为50MPa。
2.断裂延伸率(Elongation at Break)断裂延伸率是材料在拉伸过程中发生断裂前的延伸量与原始试样长度之比,可以通过下式计算得到:断裂延伸率 = (试样的总伸长量 - 原始试样长度)/ 原始试样长度 * 100%在本次实验中,原始试样长度为50mm,试样的总伸长量为0.75mm,因此低碳钢的断裂延伸率为1.5%。
材料力学实验报告低碳钢拉伸引言在材料力学实验中,拉伸实验是一种常见且重要的方法。
通过对材料的拉伸试验,我们可以得到材料在受力下的应力-应变关系,从而了解材料的力学性能和变形行为。
本实验旨在通过对低碳钢的拉伸试验,研究其拉伸性能和断裂特征。
实验目的1.测量低碳钢的拉伸强度、屈服强度、延伸率和断裂伸长率。
2.分析低碳钢的应力-应变曲线,并探讨其力学性能。
3.观察低碳钢在拉伸过程中的断裂特征。
实验原理1. 拉伸强度拉伸强度是指材料在拉伸过程中最大的抗拉应力。
在拉伸试验中,拉伸强度可以通过断裂之前所承受的最大载荷除以原始横截面积来计算。
2. 屈服强度屈服强度是指材料开始出现塑性变形时所承受的应力。
在拉伸试验中,材料会先经历线弹性阶段,然后进入塑性阶段。
屈服强度可以通过应力-应变曲线的0.2%偏移法来确定。
3. 延伸率延伸率是指材料在断裂时的伸长程度。
它是通过初始标距和断裂标距的比值乘以100%来计算的,常用来评估材料的塑性。
4. 断裂伸长率断裂伸长率是指材料在断裂前的伸长程度。
它是通过初始标距和断裂标距的比值乘以100%来计算的,常用来评估材料的韧性。
实验步骤1.制备低碳钢试样,并对其尺寸进行测量。
2.将试样固定在拉伸试验机上,并设置好拉伸速度。
3.开始拉伸试验,记录加载过程中的载荷和试样伸长。
4.当试样断裂后,停止拉伸试验,并记录试样断裂前的标距。
5.根据实验数据计算低碳钢的拉伸强度、屈服强度、延伸率和断裂伸长率。
实验结果与分析1. 实验数据根据实验记录,得到了如下数据:•断裂前标距:50 mm•断裂后标距:57 mm•最大载荷:6500 N•试样初始横截面积:20 mm²2. 计算结果根据上述数据,我们可以得到以下结果:•拉伸强度 = 最大载荷 / 初始横截面积•屈服强度 = 0.2%偏移处的应力•延伸率 = (断裂后标距 - 断裂前标距) / 断裂前标距 * 100%•断裂伸长率 = (断裂后标距 - 断裂前标距) / 断裂前标距 * 100%根据上述公式计算得到的结果如下:•拉伸强度 = 325 MPa•屈服强度 = 280 MPa•延伸率 = 14%•断裂伸长率 = 14%3. 分析与讨论由于低碳钢具有良好的可塑性和强韧性,因此在拉伸过程中,材料会经历明显的塑性变形和延展。
材料力学实验报告低碳钢拉伸实验目的本次实验的主要目的是通过对低碳钢进行拉伸试验,探究其力学性能,包括抗拉强度、屈服强度、断裂伸长率等指标。
实验原理拉伸试验是一种常见的材料力学试验方法,通过施加外力使试样在轴向方向上发生变形,并记录施加外力与试样变形之间的关系,从而推导出材料的力学性能。
在拉伸试验中,常用的指标包括抗拉强度、屈服强度、断裂伸长率等。
实验步骤1. 制备低碳钢试样:将低碳钢锻造成直径为10mm、长度为50mm的圆柱形试样,并在两端加工成螺纹状以便夹紧。
2. 安装试样:将制备好的低碳钢试样夹紧于万能材料测试机上,并调整夹紧力以确保试样不会滑动或扭曲。
3. 施加载荷:开始进行拉伸测试前,先将测试机调整到零位,并施加适当大小的预载荷以消除任何初始应力。
然后开始施加加载荷并记录下施加时刻和加载荷大小。
4. 记录试样变形:在施加加载荷的同时,记录下试样的变形情况,包括试样长度、直径等。
5. 记录试样破坏:当试样发生破坏时,记录下破坏时刻和加载荷大小,并观察破坏形态。
6. 分析数据:根据实验数据计算出低碳钢的抗拉强度、屈服强度、断裂伸长率等指标,并进行分析和讨论。
实验结果经过拉伸测试,得到低碳钢试样的力学性能数据如下:抗拉强度:320MPa屈服强度:240MPa断裂伸长率:20%分析与讨论通过本次实验,我们可以看出低碳钢具有较高的抗拉强度和屈服强度,并且具有一定的塑性。
这些性能指标对于低碳钢在工业生产中的应用具有重要意义。
同时,在实验过程中也需要注意保证测试机的准确性和可靠性,以避免误差对测试结果产生影响。
结论通过本次实验,我们成功地探究了低碳钢的力学性能,并得到了相应的数据。
这些数据对于低碳钢在工业生产中的应用具有重要意义,同时也为我们深入了解材料力学提供了实验基础。
低碳钢拉伸试验报告材科1002班任惠41030096一、试验目的1、测定低碳钢在退火、正火和淬火三种不同热处理状态下的强度与塑性性能2、测定低碳钢的应变硬化指数和应变硬化系数二、试验原理和要求原理:低碳钢材料的机械性能指标是由拉伸破坏试验来确定的,拉伸过程有弹性变形、塑性变形和断裂三个阶段。
通过拉伸试验,可以确定材料的屈服强度、抗拉强度、断后伸长率、断面收缩率等性能指标。
而且可以通过Hollomon公式计算出材料的应变硬化系数与应变硬化指数。
要求:按照相关国标标准(GB/T228-2002:金属材料室温拉伸试验方法)要求完成试验测量工作。
三、试验材料与试样试验材料:退火低碳钢、正火低碳钢、淬火低碳钢的R4标准试样各一个。
试样规格尺寸及公差要求如表1、表2所示;试样示意图如图1所示:图 1 低碳钢拉伸试样示意图表 1 R4试样的规格尺寸原始标距L o平行长度L c截面原始直径d 过渡弧半径r 头部直径d’50 mm 60 mm 10 mm 8 mm 20 mm表 2 R4试样的横向尺寸公差尺寸公差形状公差±0.07 mm 0.04 mm四、试验测试内容与相关的测量工具、仪器、设备1.试验测试内容(1) 直接测量的物理量:试样的原始标距L0、断后标距L u、原始直径d0、断后直径d u。
(2) 连续测量加载过程中的载荷P和试样的伸长量ΔL=L-L0数据。
(由万能材料试验机给出应力-应变曲线)2.测量工具、仪器、设备(1) 万能材料试验机。
其主要技术规格及参数如下:a.最大试验力:200 kNb.试验力准确度:优于示值的0.5%c.力值测量范围:最大试验力的0.4%-100%d.变形测量准确度:在引伸计满量程的2%-100%范围内优于示值的1%e.横梁位移测量:分辨率的0.001mmf.横梁速度范围:0.005mm/min -500mm/min,无级,任意设定g.夹具形式:标准楔形拉伸附具、压缩附具、弯曲附具(2) 游标卡尺:精确度0.02 mm(3) 载荷传感器:0.5级,是指载荷传感器示值的最大相对误差为±0.5%(4) 引伸计:标距为50 mm,0.5级,0.5级引伸计的标距相对误差为±0.5%(5) 划线器:标记应准确到±1%注:低碳钢淬火后抗拉强度可达600MPa,而试样直径为10 mm,故最大试验力为:600 MPa×π(10 mm/2)2=47.1 kN<200 kN,因此试验机加载能力满足要求。
五、试验步骤1.拿到试样,给试样标号:1号、2号和3号;2.用游标卡尺分别测量三个样品的两端和中间这三个位置上相互垂直方向的直径d0,记录数据,并对照R4标准试样的横向尺寸公差和形状公差,看试样是否满足要求,若不符合,则换一个试样重新测量;3.用划线器在试样上标记试样的原始标距L0,标记4条线,线和线之间的距离是10mm+40mm+10mm;4.将引伸计固定在试样的标距之间,同时将试样安装卡紧至拉伸试验机的夹头之间,试验中用引伸计检测试样的变形量,载荷传感器固定安置于试验机的下横梁和下夹头之间;5.设置试验参数,第一步,设置实验类型为拉伸试验,第二步,将载荷与位移的数值清零,第三步,选择等位移的控制方法,设置试验机的拉伸速率为6 mm/min[1],第四步,点击“实验开始”按钮,启动测试过程,计算机自动绘制出载荷-位移曲线,当曲线趋于平缓时,摘除引伸计;6.继续拉伸试验,观察试样出现颈缩直至断裂,试验机自动停止,从试验机的夹头之间取下试样,观察断口形貌;7.再用游标卡尺测量断后标距L u[2]和颈缩处最小直径d u[3];8.重复以上步骤,测量不同热处理状态的试样;9.根据测试结果,处理数据。
注:[1]国标规定,试样平行长度的屈服期间应变速率应在0.00025/s~0.0025/s ,因为试样平行长度为60 mm ,60 mm ×0.00025/s ×60 s=0.9 mm/min ,60 mm ×0.0025 /s ×60 s=9 mm/min ,即试样被拉伸的速度范围是0.9 mm/min~9 mm/min ,因此设定试验机的拉伸速率为6 mm/min 符合要求。
[2]要求断后标距的测量工具分辨率要优于0.1 mm ,准确到±0.25 mm ,因此可以用精度为0.02mm 的游标卡尺测量多组数据,求均值和方差。
[3]要求断裂后最小横截面积的测定应准确到±2%,因此可以测量多组数据求方差。
六、实验数据 1.试样原始尺寸测量表 3 试样原始尺寸测量记录表根据规定,R4试样的原始直径d 0应该满足尺寸公差要求9.93mm≤d 0≤10.07mm ,但是由测量结果可以看出1、2、3号试样均不满足此要求。
但是三个试样的最大直径和最小直径之差均没有超过0.04mm ,满足R4试样的形状公差要求。
其中试样原始横截面积20014S d π=,d 0取的是上端、中端和下端测量平均值中的最小值。
2.试样断后尺寸测量表 4 试样断后尺寸测量记录表其中,214u u S d π=(1) 1号试样测量六组断后标距,故u L ∆==0.077mm<0.25mm因此测量的断后标距符合国标精度要求。
(2) 2号试样测量六组断后直径,因此u d ∆==0.015mm<0.02mm由于Δd u 的值小于游标卡尺的测量精度,而断后直径是由游标卡尺测得的,因此Δd u 至少要大于0.02mm 故,0.025mm u d ∆==,0.0250.42%1%5.92u u d d ∆==< 因此测量的断后直径符合国标精度要求。
(3) 3号试样由于断口处离试样一端太近,其塑性变形范围已经超过标距线,因而无法得到其断后伸长率A ,故其断后标距不用测量。
3.由拉伸试验机得到的数据表 5 由试验机得到的1、2和3号试样实验数据1、2和3号试样的应力应变曲线如图2的(a)、(b)和(c)所示。
其中由于3号试样的应力应变曲线的屈服阶段不明显,故采用规定非比例延伸强度R p0.2来表征强度性能。
其中拉伸试验性能测定结果数值的修约要求如表6所示。
表 6 性能结果的数值修约间隔要求(a)1号试样(b)2号试样 (c)3号试样图 2 1、2和3号试样的应力应变曲线七、实验数据处理 1.强度性能强度性能可由屈服强度R eL (规定非比例延伸强度R p0.2)和抗拉强度表征,列于表5中。
2.塑性性能(1)断后伸长率A断后伸长率计算公式:0100%u L L A L -=⨯ 1号试样:68.6150.037.22%50.0A -==,修约后A=37.0%2号试样:69.2750.038.54%50.0A -==,修约后A=38.5%3号试样由于断口处离试样一端太近,其塑性变形范围已经超过标距线,因而无法得到其断后伸长率。
(2)断面收缩率Z断面收缩率计算公式:0100%u u S S Z S -=⨯,其中20014S d π=,214u u S d π= 1号试样:77.4425.0767.63%77.44Z -==,修约后Z=67.5%2号试样:76.8227.5364.16%76.82Z -==,修约后Z=64.0%3号试样:76.9823.4169.59%76.98Z -==,修约后Z=69.5%3.应变硬化系数与应变硬化指数在载荷-位移曲线的硬化阶段取几个点,可以求得:工程应力0P S σ=,工程应变0L L ε∆= 已知真应力S 、真应变e 与工程应力σ、工程应变ε有以下关系:(1)S σε=+,0ln(1)ll dle lε==+⎰由此导出Hollomon 公式:n S Ke =,K 为应变硬化系数,n 为应变硬化指数。
对n S Ke =公式取对数,得:ln ln ln S K n e =+。
根据试验所得真应力、真应变数据做出ln ln S e -曲线,则曲线的斜率即为应变硬化指数n ,曲线与ln S 轴的截距即为ln K ,由此得到应变硬化系数K 。
1号试样:根据1号试样的应力应变曲线图(图2(a)),在均匀塑性变形阶段取10个点,如表7所示。
表 7 1号试样塑性变形取点列表根据表7中的lnS 和lne 数据作图并拟合,得到图3。
图 3 1号试样的lnS-lne 关系曲线及拟合直线拟合直线方程为:lnS=0.2846lne+6.7688,线性相关系数R=0.9976因此,应变硬化指数n=0.2846;lnK=6.7688,应变硬化系数K=e6.7688=870MPa2号试样:根据2号试样的应力应变曲线图(图2(b)),在均匀塑性变形阶段取10个点,如表8所示。
表8 2号试样塑性变形取点列表根据表8中的lnS和lne数据作图并拟合,得到图4。
图 4 2号试样的lnS-lne关系曲线及拟合直线拟合直线方程为:lnS=0.2758lne+6.7811,线性相关系数R=0.9974因此,应变硬化指数n=0.2758;lnK=6.7811,应变硬化系数K=e6.7811=881MPa3号试样:根据3号试样的应力应变曲线图(图2(c)),在均匀塑性变形阶段取10个点,如表9所示。
表9 3号试样塑性变形取点列表根据表9中的lnS和lne数据作图并拟合,得到图5。
图 5 3号试样的lnS-lne关系曲线及拟合直线拟合直线方程为:lnS=0.2177lne+6.9594,线性相关系数R=0.9981因此,应变硬化指数n=0.2177;lnK=6.9594,应变硬化系数K=e6.9594=1053MPa 八、实验结论三个试样的强度和塑性性能指标及热处理工艺如表10所示。
表10 三个试样的性能指标及热处理工艺一览表注:其中3号试样的屈服强度值指的是规定非比例延伸强度R p0.2九、误差分析 1.下屈服强度R eL由于e 0eL L P R S =,20014S d π=,因此0000ΔΔΔΔΔ2e L eL eL e L eL eL R P S P d R P S P d =+=+ 因为试验机的试验力准确度优于示值的0.5%,故Δ05eLeLP .%P = 又游标卡尺的精确度为0.02mm ,故Δd 0=0.02mm所以000ΔΔ002Δ2052eL e L e L e L eL P d .R R .%R P d d ⎛⎫⎛⎫=+⨯=+⨯⨯ ⎪ ⎪⎝⎭⎝⎭1号试样:e 0.02Δ0.5%2267.973 2.429.93L R MPa ⎛⎫=+⨯⨯= ⎪⎝⎭2号试样:e 0.02Δ0.5%2287.289 2.609.89L R MPa ⎛⎫=+⨯⨯= ⎪⎝⎭3号试样:0.20.02Δ0.5%2381.5423 3.459.90p R MPa ⎛⎫=+⨯⨯= ⎪⎝⎭所以可知,国标规定屈服强度在200N/mm 2~1000N/mm 2范围内时修约间隔为5N/mm 2是合理的。