无约束优化算法总结
- 格式:ppt
- 大小:403.00 KB
- 文档页数:21
无约束优化方法1. 最速下降法(Gradient Descent Method)最速下降法是一种基于梯度信息的迭代优化算法。
其基本思想是从任意初始点开始,沿着目标函数的梯度方向进行迭代,直到达到收敛条件。
最速下降法的迭代更新公式如下:x_{k+1}=x_k-t_k*∇f(x_k)其中,x_k是第k次迭代的解向量,t_k是第k次迭代的步长(也称为学习率),∇f(x_k)是目标函数在x_k处的梯度向量。
最速下降法的步骤如下:1)选取初始点x_0。
2)计算目标函数的梯度∇f(x_k)。
3)计算步长t_k。
4)更新解向量x_{k+1}。
5)判断迭代终止条件,如果满足则停止迭代;否则返回第2步。
最速下降法的优点是易于实现和理解,收敛性较好。
然而,最速下降法存在的问题是收敛速度较慢,特别是对于目标函数呈现狭长或弯曲形状的情况下。
这导致了在高维优化问题中,最速下降法的性能较差。
2. 牛顿法(Newton's Method)牛顿法是一种基于二阶导数信息的迭代优化算法。
它使用目标函数的一阶和二阶导数信息构造一个二次近似模型,然后求解该模型的最小值。
牛顿法的迭代更新公式如下:x_{k+1}=x_k-H_k^{-1}*∇f(x_k)其中,H_k是目标函数在x_k处的海森矩阵,∇f(x_k)是目标函数在x_k处的梯度向量。
牛顿法的步骤如下:1)选取初始点x_0。
2)计算目标函数的梯度∇f(x_k)和海森矩阵H_k。
3)计算更新方向H_k^{-1}*∇f(x_k)。
4)更新解向量x_{k+1}。
5)判断迭代终止条件,如果满足则停止迭代;否则返回第2步。
牛顿法的优点是收敛速度快,尤其是在目标函数曲率大的地方。
然而,牛顿法也存在一些问题。
首先,计算海森矩阵需要大量的计算资源,特别是在高维空间中。
其次,当海森矩阵不可逆或近似不可逆时,牛顿法可能会失效。
综上所述,最速下降法和牛顿法是两种常用的无约束优化方法。
最速下降法简单易实现,但收敛速度较慢;牛顿法收敛速度快,但计算量大且可能遇到海森矩阵不可逆的问题。
05-⽆约束优化算法05-⽆约束优化算法⽬录⼀、⽆约束最⼩化问题[⽆约束最⼩化问题] 使 f(x) 最⼩化, f:R n→R 是凸的,且⼆次可微(意味着 domf 是开集)。
假设这个问题是可解的,也就是存在最优点 x∗ ,最优值 inf x f(x)=f(x∗) ,记为 p∗ .[最优充要条件] 因为 f 是可微且凸的,点 x∗ 是最优点的充要条件是∇f(x∗)=0 .注:其实可以从⼆维的图像去理解因此解决⽆约束最⼩化问题等同于寻找上式的解,是含有n个未知数的n个⽅程的集⽅程组。
有时我们是⽤递归算法来解决这个问题,也就是依次计算x(0),x(1),...∈domf , 有f(x(k))→p∗,k→∞ 。
这样的序列叫做问题的最⼩化序列 (minimizing sequence)。
算法的停⽌条件:f(x(k))−p∗≤ϵ,ϵ≥0 是可容许的误差值。
[初始点,下⽔平集] 初始点 x(0) 必须在 domf 中,并且下⽔平集S={x∈domf|f(x)≤f(x(0))} 必须是闭的。
注:下⽔平集是闭的,其实就是对函数做了⽔平切割,然后⽔平切割下的图像是封闭的如果函数 f 是闭的(也就是它的所有下⽔平集都是闭的)那么以上条件都能满⾜。
定义在domf=R n上的连续函数是闭的,所以如果domf=R n,那么初始下⽔平集条件对于任何x(0)都满⾜。
另⼀种闭函数:定义域是开集,当x趋近于bd domf时,f(x) 趋近于⽆限。
[强凸] ⼀个函数在 S 上是强凸的,如果存在 m>0 ,使得对于所有的 x∈S ,有∇2f(x)⪰mI.注:强凸的性质,其实就是保证函数的 ∇2f(x)>0 ,也就是确保只有⼀个最优解,⽽弱凸是最优解有多个,如下图所⽰。
对于x,y∈S我们有f(y)=f(x)+∇f(x)T(y−x)+12(y−x)T∇2f(z)(y−x) , for some z∈[x,y] 。
根据强凸的假设,最后⼀项⼤于等于 (m/2)‖y−x‖22,∀x,y∈S ,也就是:f(y)≥f(x)+∇f(x)T(y−x)+(m/2)‖y−x‖22 .当m=0 时,我们得到了描述凸性的基本不等式。
多维无约束优化算法多维无约束优化问题的一般数学表达式为:求n 维设计变量使目标函数多维无约束优化算法就是求解这类问题的方法,它是优化技术中最重要最基础的内容之一。
因为它不仅可以直接用来求解无约束优化问题,而且实际工程设计问题中的大量约束优化问题,有时也是通过对约束条件的适当处理,转化为无约束优化问题来求解的。
所以,无约束优化方法在工程优化设计中有着十分重要的作用。
目前已研究出很多种无约束优化方法,它们的主要不同点在于构造搜索方向上的差别。
(1)间接法——要使用导数,如梯度法、(阻尼)牛顿法、变尺度法、共轭梯度法等。
(2)直接法——不使用导数信息,如坐标轮换法、鲍威尔法单纯形法等。
用直接法寻找极小点时,不必求函数的导数,只要计算目标函数值。
这类方法较适用于解决变量个数较少的(n ≤20)问题,一般情况下比间接法效率低。
间接法除要计算目标函数值外,还要计算目标函数的梯度,有的还要计算其海赛矩阵。
各种优化方法之间的主要差异是在于构造的搜索方向,因此,搜索方向的构成问题乃是无约束优化方法的关键。
下面介绍几种经典的无约束优化方法。
1、梯度法基本思想:函数的负梯度方向是函数值在该点下降最快的方向。
将n 维问题转化为一系列沿负梯度方向用一维搜索方法寻优的问题,利用负梯度作为搜索方向,故称最速下降法或梯度法。
搜索方向s 取该点的负梯度方向(最速下降方向) ,使函数值在该点附近的范围内下降最快 。
为了使目标函数值沿搜索方向能够获得最大的下降值,其步长因子应取一维搜索的最佳步长。
即有12[]T n x x x = x ()min f →x ()k f -∇x k αmin ()nf R ∈x x 1(0,1,2,)k k k k s k α+=+= x x 1(0,1,2,)k k kk s k α+=+= x x 1()(0,1,2,)k k k k a f k +=-∇= x x x 1()[()]min [()]min ()k k k k k k k a af f a f f a f ϕα+=-∇=-∇=x x x x x根据一元函数极值的必要条件和多元复合函数求导公式,得在最速下降法中,相邻两个迭代点上的函数梯度相互垂直。
无约束最优化问题的求解算法和应用随着科技的发展和应用领域的扩大,无约束最优化问题已经越来越成为一种关注的研究领域。
在现实生活中,无约束最优化问题的求解可以应用在多个方面,比如金融、医学、机械工程等等。
然而,在实际应用中,我们往往需要利用已经发展的优秀算法进行求解。
本文将会介绍无约束最优化问题的求解算法及其应用。
一、无约束最优化问题的概念无约束最优化问题指的是在一定的条件下,通过调整某些变量来最大或最小化指定的目标函数。
这些变量的调整需遵守一定的限制条件,并且通过各种数值分析方法,比如数值解析和计算机数值算法等技术来求解这样的问题。
无约束最优化问题的数学形式一般为:$$ \min_{x \in \mathbb{R}^n} f(x) $$其中,$x \in \mathbb{R}^n$ 是 $n$ 维空间中的一个向量,$f(x)$ 则是目标函数,该函数需要满足一定的条件,比如连续、可微、凸等等。
当函数连续、可微的情况下,就能有效地应用求导法来求解这个问题。
二、基于梯度下降的算法在求解无约束最优化问题时,最常用的算法就是基于梯度下降的算法。
该算法通过沿着负梯度的方向一步步得逼近全局极小值。
算法的主要流程如下:1、初始化变量$x$,比如$x=0$;2、计算目标函数$ f(x)$ 的梯度 $\nabla f(x)$;3、计算下降方向 $p$,$p=-\nabla f(x)$;4、选择步长 $\alpha$,更新$x$ $x_{k+1} = x_{k} + \alpha p$;5、重复执行步骤2-4 进行更新,直到满足一定的终止条件为止。
这种方法的收敛性非常好,同时也比较容易实现。
在实际应用中,通常会将其与其他迭代方法组合使用,比如牛顿、拟牛顿等方法来提升其求解精度。
三、基于共轭梯度的算法基于梯度下降的算法虽然求解精度较好,但是当求解目标函数具有高度弱凸性质时,算法的收敛速度会相对较慢。
为了克服这类问题,研究人员往往会采用共轭梯度法。
第四章 无约束优化方法第一节 概述1为什么要研究无约束优化问题?(1)有些实际问题,其数学模型本身就是一个无约束优化问题。
(2)通过熟悉它的解法可以为研究约束优化问题打下良好的基础。
(3)约束优化问题的求解可以通过一系列无约束优化方法来达到。
所以无约束优化问题的解法是优化设计方法的基本组成部分,也是优化方法的基础。
2各种无约束优化方法的区别在于确定其搜索方向0d 的方法不同。
根据构成搜索方向所使用的信息性质的不同,无约束优化方法可以分为两类。
一:间接法——要使用导数的无约束优化方法,如梯度法、(阻尼)牛顿法、变尺度法、共轭梯度法等。
二:直接法——只利用目标函数值的无约束优化问题,如坐标轮换法、鲍威尔法单纯形法等。
第二节 最速下降法(梯度法) 1基本思想:函数的负梯度方向是函数值在该点下降最快的方向。
将n 维问题转化为一系列沿负梯度方向用一维搜索方法寻优的问题,利用负梯度作为搜索方向,故称最速下降法或梯度法。
2梯度法的特点:(1)理论明确,程序简单,对初始点要求不严格。
(2)对一般函数而言,梯度法的收敛速度并不快,因为最速下降方向仅仅是指某点的一个局部性质。
(3)梯度法相邻两次搜索方向的正交性,决定了迭代全过程的搜索路线呈锯齿状,在远离极小点时逼近速度较快,而在接近极小点时逼近速度较慢。
(4)梯度法的收敛速度与目标函数的性质密切相关。
对于等值线(面)为同心圆(球)的目标函数,一次搜索即可达到极小点。
3选用原则及条件:一般与其他算法配合,在迭代开始时使用。
第三节 牛顿型方法 1基本思想:在xk 邻域内用一个二次函数)(x ϕ来近似代替原目标函数,并将)(x ϕ的极小点作为对目标函数)(x f 求优的下一个迭代点1+k x 。
经多次迭代,使之逼近目标函数)(x f 的极小点。
2牛顿型方法的特点:(1) 初始点应选在X *附近,有一定难度;(2) 若迭代点的海赛矩阵为奇异,则无法求逆矩阵,不能构造牛顿法方向; (3) 不仅要计算梯度,还要求海赛矩阵及其逆矩阵,计算量和存储量大。
课程名称优化理论与方法编写时间:20 年月日
课程名称优化理论与方法编写时间:20 年月日
课程名称优化理论与方法编写时间:20 年月日
课程名称优化理论与方法编写时间:20 年月日
课程名称优化理论与方法编写时间:20 年月日
课程名称优化理论与方法编写时间:20 年月日
课程名称优化理论与方法编写时间:20 年月日
课程名称优化理论与方法编写时间:20 年月日
课程名称优化理论与方法编写时间:20 年月日
课程名称优化理论与方法编写时间:20 年月日
课程名称优化理论与方法编写时间:20 年月日
课程名称优化理论与方法编写时间:20 年月日
课程名称优化理论与方法编写时间:20 年月日
课程名称优化理论与方法编写时间:20 年月日
课程名称优化理论与方法编写时间:20 年月日
课程名称优化理论与方法编写时间:20 年月日
课程名称优化理论与方法编写时间:20 年月日
课程名称优化理论与方法编写时间:20 年月日
课程名称优化理论与方法编写时间:20 年月日。