第三章 无约束最优化方法
- 格式:ppt
- 大小:4.58 MB
- 文档页数:121
第三章 无约束最优化的梯度方法1.最速下降法假定我们已经迭代了k 次,获得了第k 个迭代点k x 。
从k x 出发,显然应沿下降方向进行,由于负梯度方向是最速下降方向,因此沿负梯度方向应该是有利的。
因此,取搜索方向)(k k x f p -∇=。
)(1k k k k x f t x x ∇-=+此时有:0)()(1=∇∇+k T k x f x f如将该方法应用于二次函数c x b Qx x x f T T ++=21)(,则可求出k t 的显式表达式。
)()()())(()(1k k k k k k k k k k x f Q t x f x f Q t b Qx b x f t x Q b Qx x f ∇-∇=∇-+=+∇-=+=∇+0)()()()(=∇∇-∇∇k T k k k T k x f Q x f t x f x fkTk kTk k T k k T k k Qg g g g x f Q x f x f x f t =∇∇∇∇=)()()()( 2.Newton 法适用条件:如果目标函数)(x f 在n R 上具有连续的二阶偏导数,其Hesse 矩阵)(x G 正定。
基本想法:考虑从k x 到1+k x 的迭代过程。
在k x 点处用二次函数来逼近)(x f ,即:))(()(21)()()()()(k k T k k T k k x x x G x x x x x g x f x Q x f --+-+=≈0)())(()(=+-=∇k k k x g x x x G x Q)()(11k k k k x g x G x x x -+-==3.共轭方向法与共轭梯度法 1) 共轭方向法定义1:设Q 是n n ⨯对称正定矩阵。
若n 维空间中非零向量系110,...,,-m p p p 满足0=j T i Qp p ,)(1,...,2,1,j i m j i ≠-= ,则称110,...,,-m p p p 是Q 共轭的,或称110,...,,-m p p p 的方向是Q 共轭方向。
第三章⽆约束最优化⽅法3第⼋节坐标轮换法把⼀个多维问题转化为⼀系列较少维数的问题称为降维。
降维⽅法有⼏种,坐标轮换法是⽤得较多的⼀种,这是⼀种不需要求函数导数的直接探索⽬标函数最优解的⽅法。
直接法、降维法⼀、坐标轮换法的基本思想其基本思想就是通过每次仅对多元函数的⼀个变量沿其坐标轴进⾏⼀维探索,其余各变量均固定不动,并依次轮换进⾏⼀维探索的坐标轴,完成第⼀轮探索后再重新进⾏第⼆轮探索,直到找到⽬标函数在全域上的最⼩点为⽌,以达到将⼀个多维的⽆约束最优化问题,转化为⼀系列的⼀维问题来求解的⽬的。
为简明起见,现以⼆元函数来说明基本步骤: 1.从初始点(0)(0)(0)(0)12(,,)n Xx x x =出发,依次沿各坐标轴⽅向搜索最优点,保持其余n-1个变量不变。
例:如果(0)(0)(0)(0)(0)123(,,,)(3,5,23,21)n Xx x x x ==,如果沿x 1轴⽅向搜索,则搜索过后改变的仅仅是x 1的值3,其余坐标的值均保持不变。
假设搜索到的值是8,则下⼀个点的值为(1)(1)(0)(0)(0)1123(,,,)(8,5,23,21)n X x x x x ==。
迭代点的序列为:(0)(1)(0)(0)(0)(0)0123(,,,)n X X x x x x →=(1)(1)(0)(0)(0)1123(,,,)n X x x x x = (1)(1)(1)(0)(0)2123(,,,)n X x x x x =(1)(1)(1)(1)(0)3123(,,,)n X x x x x =(1)(1)(1)(1)(1)(1)(2)1230(,,,)n n X x x x x X X =→→上标表⽰搜索的轮次,下标表⽰对应的坐标,亦即该轮次的第⼏次迭代。
经过⼀轮(n 次)迭代后,得到⼀个新点,然后进⾏下⼀轮迭代。
只到满⾜精度。
⼆、步长()k i α可以有以下⼏种取法1.随机选择()k iα值的⽅法2. 加速步长法为⽅向的初始试验了加快探索过程,可以采⽤加速步长法。