现代控制理论系统解耦问题
- 格式:pdf
- 大小:466.10 KB
- 文档页数:16
第六章线性定常系统的综合6.5 6.5 解耦控制解耦控制在(0)0x =的条件下的条件下,,输出与输入之间的关系输出与输入之间的关系,,可用传递函数()G s 描述描述::1()()()()()y s G s u s C sI A Bu s −==−MIMO MIMO系统系统系统((p 入q 出):11111221221122221122()()()()()()()()()()()()()() ()()()()()()()p p p p q q q qp p y s g s u s g s u s g s u s y s g s u s g s u s g s u s y s g s u s g s u s g s u s =+++=+++=+++⋯⋯⋯⋯⋮⋮⋯⋯即第六章线性定常系统的综合6.5.1 6.5.1 问题的提出问题的提出考虑考虑MIMO MIMO MIMO系统系统x Ax Bu y Cx∑=+=ɺ:引入状态反馈u Lv Kx=−解耦问题解耦问题::就是寻求适当的反馈阵K 和输入变换矩阵L ,使得状态反馈传递函数矩阵为对角阵为对角阵。
)(s KF G 1122G ()diag ()()()KF pp s g s g s g s =⋯p q =其中,即系统的输出个数等于输入个数即系统的输出个数等于输入个数。
第六章线性定常系统的综合11()g s 22()g s ()pp g s 1u 2u pu 1y 2y py 能找出一些控制律能找出一些控制律,,每个输出受且只受一个输入的控制一个输入的控制,,称为解耦控制称为解耦控制。
第六章线性定常系统的综合引入状态反馈u Lv Kx=−状态反馈系统的传递函数矩阵为1()[()]KF G s C sI A BK BL−=−−()()xAx B Lv Kx A BK x BLv =+−=−+ɺCx y =状态反馈系统的状态空间表达式为第六章线性定常系统的综合6.5.2 6.5.2 实现解耦控制的条件和主要结论实现解耦控制的条件和主要结论1) 1) 已知传递函数阵已知传递函数阵111212122212() ()()() ()()() () ()()p p p p pp g s g s g s g s g s g s G s g s g s g s=⋯⋯⋯⋯⋮⋮⋮⋯⋯是的分母的次数与分子的次数之差的分母的次数与分子的次数之差。
第10章 解耦控制系统当再同一设备或装置上设置两套以上控制系统时,就要考虑系统间关联的问题。
其关联程度可通过计算各通道相对增益大小来判断。
如各通道相对增益都接近于1,则说明系统间关联较小;如相对增益于1差距较大,则说明系统间关联较为严重。
对于系统间关联比较小的情况,可以采用控制器参数整定,将各系统工作频率拉开的办法,以削弱系统间的关联的影响。
如果系统间关联非常严重,就需要考虑解耦的办法来加以解决。
解耦的本质是设置一个计算装置,去抵消过程中的关联,以保证各个单回路控制系统能独立地工作。
为了便于分析,下面对2×2系统的关联及其解耦方法进行研究。
具有关联影响的2×2系统的方块图如图10—1所示。
从图10—1可看出,控制器c 1的输出p 1(s )不仅通过传递函数G 11(s )影响Y 1,而且通过交叉通道传递函数G 21(s )影响Y 2。
同样控制器c 2的输出p 2(s )不仅通过传递函数G 22(s )影响Y 2,而且通过交叉通道传递函数G 12(s )影响Y 1。
上述关系可用下述数学关系式进行表达:Y 1(s )=G 11(s )P 1(s )+G 12(s )P 2(s )(10—1) Y 2(s )=G 21(s )P 1(s )+G 22(s )P 2(s )(10—2)将上述关系式以矩阵形式表达则成:⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡)()()()()()()()(212221121121s P s P s G s G s G s G s Y s Y (10—3)或者表示成:Y (s )=G (s )P (s )(10—4)式中 Y (s )——输出向量;P (s )——控制向量;G (s )——对象传递矩阵:⎥⎦⎤⎢⎣⎡=)()()()()(22211211s G s G s G s G s G (10—5)所谓解耦控制,就是设计一个控制系统,使之能够消除系统之间的耦合关系,R 1) R 2图10—1 2×2关联系统方块图而使各个系统变成相互独立的控制回路。
多输入-多输出系统关联性及解耦控制摘要:在现代化的工业生产中,不断出现一些较复杂的设备或装置,这些设备或装置的本身所要求的被控制参数往往较多,因此,必须设置多个控制回路对这些设备进行控制。
此时控制系统并非简单的单输入-单输出系统,而是较复杂的多输入-多输出系统,由于控制回路的增加,往往会在它们之间造成相互影响,各输入量与个输出量之间存在一定的相互关系 — 关联性(耦合关系)。
系统中每一个控制回路的输入信号对其他回路的输出都会有影响,而每一个回路的输出又会受到其他输入的作用。
要想一个输入只去控制一个输出几乎不可能,这时往往使系统难于控制、性能很差。
关键词:系统关联性;解耦;控制;0 引 言 本主要考虑解耦的方法来消除这种影响,所谓解耦控制,就是采用某种结构,寻找合适的控制规律来消除系统中各控制回路之间的相互耦合关系,使每一个输入只控制相应的一个输出,每一个输出又只受到一个控制的作用。
1 系统的关联1.1系统关联及影响所谓系统关联就是系统之间彼此相互影响。
日常生活中就有不少关联的例子。
例如,在同一条水管上安装若干自来水龙头,当别人开大或开小所用的水龙头时,你所用的水龙头的水流量也会随之发生变化。
这就是系统关联。
实际实际生产过程控制中经常会碰到系统间相互关联的问题,要进行认真的分析和慎重的处理。
如果其关联性比较密切,相互影响比较大而又处理不当,这不仅会影响控制质量,可能还会是系统无法运行,甚至会导致安全事故,应此必须给予足够的的重视。
1.2分析系统关联的方法对于如何判别系统间的关联,下面介绍一种利用相对增益来判断系统间关联的方法。
如果生产设备上同时存在n 个控制系统,那么就有n 个被控变量和n 个控制变量,习惯上成为n ×n 个多变量系统。
用y 表示被控变量,用u 表示控制变量。
控制变量u 的改变对被控变量y 的影响,可以用通道的增益(及静态放大倍数)来描述。
第j个控制变量的改变对第i个被控变量的影响(即该通道的增益),用来表示。