解一元一次方程(基础)知识讲解
- 格式:doc
- 大小:198.50 KB
- 文档页数:5
同步课程˙一元一次方程一、等式(1)用等号“=”来表示相等关系的式子,叫做等式.(2)在等式中,等号左、右两边的式子,分别叫做这个等式的左边、右边.(3)等式可以是数字算式,可以是公式、方程,也可以是用式子表示的运算律、运算法则.一、方程方程:含有未知数的等式叫方程,如21x +=,它有两层含义:①方程必须是等式;②等式中必须含有未知数二、方程的解方程的解:使方程左右两边的值相等的未知数的值;只含有一个未知数的方程的解,也叫方程的根。
三、一元一次方程 一元一次方程的概念:只含有一个未知数,并且未知数的最高次数是1,系数不等于0的方程叫做一元一次方程,这里的“元”是指未知数,“次”是指含未知数的项的最高次数.一元一次方程的形式:最简形式:方程ax b =(0a ≠,a ,b 为已知数)叫一元一次方程的最简形式. 标准形式:方程0ax b +=(其中0a ≠,a ,b 是已知数)叫一元一次方程的标准形式. 注意:⑴任何一元一次方程都可以转化为最简形式或标准形式,所以判断一个方程是不是一元一次方程,可以通过变形(必须为恒等变换)为最简形式或标准形式来验证.如方程22216x x x ++=-是一元一次方程.如果不变形,直接判断就出会现错误.⑵方程ax b =与方程()0ax b a =≠是不同的,方程ax b =的解需要分类讨论完成四、一元一次方程的解法(一)等式的性质 等式的性质:等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式.若a b =,则a m b m ±=±;等式性质2:等式两边都乘以(或除以)同一个数(除数不能是0)或同一个整式,所得结果仍是等式.一元一次方程的概念及解法知识回顾知识讲解同步课程˙一元一次方程若a b =,则am bm =,a bm m=(0)m ≠注意:⑴在对等式变形过程中,等式两边必须同时进行.即:同时加或同时减,同时乘以或同时除以,不能漏掉某一边⑵等式变形过程中,两边同加或同减,同乘或同除以的数或整式必须相同. ⑶在等式变形中,以下两个性质也经常用到: 对称性,即:如果a b =,那么b a =.传递性,即:如果a b =,b c =,那么a c =.又称为等量代换 易错点:等号左右互换的时候忘记变符号 (二)解一元一次方程的步骤 解一元一次方程的一般步骤:1.去分母:在方程的两边都乘以各分母的 最小公倍数 .温馨提示:不要漏乘不含分母的项,分子是个整体,含有多项式时应加上括号. 2.去括号:一般地,先去 小括号,再去 中括号,最后去 大括号. 温馨提示:不要漏乘括号里的项,不要弄错符号.3.移项:把含有 未知数 的项都移到方程的一边, 不含未知数的项 移到方程的另一边. 温馨提示:⑴移项要变号;⑵不要丢项. 4.合并同类项:把方程化成ax b =的形式. 温馨提示:字母和其指数不变.5.系数化为1:在方程的两边都除以未知数的系数a (0a ≠ ),得到方程的解 bx a=. 温馨提示:不要把分子、分母搞颠倒.同步课程˙一元一次方程【例1】 下列各式中哪些是方程⑴7887⨯=⨯ ⑵2345x x ++ ⑶312y y -= ⑷60x = ⑸31x > ⑹111x =+ ⑺26x y -= ⑻2430y y -+=【变式练习】判断下列各式是不是方程⑴373x x -=-+ ⑵223y -= ⑶2351x x -+ ⑷112--=- ⑸42x x -=- ⑹152x y-=【例2】 检验下列各数是不是方程315x x -=+的解⑴3x =; ⑵1x =-【变式练习】检验下列各数是不是方程213x y x y ++=--的解⑴23x y =⎧⎨=-⎩ ⑵10x y =⎧⎨=⎩ ⑶02x y =⎧⎨=-⎩【例3】 若2-为关于x 的一元一次方程,713mx +=的解,则m 的值是 【变式练习】关于x 的方程320x a +=的根是2,则a 等于 【例4】 x=3是方程( )的解( )A .3x=6B .(x -3)(x -2)=0C .x (x -2)=4D .x+3=0同步练习同步课程˙一元一次方程【例5】 若⎩⎨⎧==21y x 是方程3=-y ax 的解,则a 的取值是( )A.5B.-5C.2D.1【例6】 已知关于x 的方程4x-3m=2的解是x=m ,则m 的值是【例7】 已知关于x 的方程(a +1)x +(4a -1)=0的解为-2,则a 的值等于( ). A.-2B.0C.32D.23 【例8】 若2-为关于x 的一元一次方程,713mx +=的解,则m 的值是 【变式练习】关于x 的方程320x a +=的根是2,则a 等于 【例9】 根据等式的性质填空:(1)4a b =-,则______a b =+; (2)359x -=,则39x =+ ; (3)683x y =+,则x =_________; (4)122x y =+,则x =__________.【例10】下列各式中,变形正确的是( ).A .若a b =,则a c b c +=+B .若(1)2a x -=,则21x a =- C .若2a b =,则4a b =D .若1a b =+,则221a b =+【例11】根据等式性质5=3x -2可变形为( ).A.-3x =2-5B.-3x =-2+5C.5-2=3xD.5+2=3x【变式练习】下列变形中,不正确的是( )A .若25x x =,则5x =B .若77,x -=则1x =-C .若10.2x x -=,则1012x x -= D .若x ya a =,则ax ay = 【变式练习】用适当数或等式填空,使所得结果仍是等式,并说明根据的是哪一条等式性质及怎样变形的.⑴如果23x =+,那么x =____________;根据 ⑵如果6x y -=,那么6x =+_________;根据 ⑶如果324x y -=,那么34x y -=______;根据⑷如果34x =,那么x =_____________;根据【例12】下列各式中:⑴3x +;⑵2534+=+;⑶44x x +=+;⑷12x=;⑸213x x ++=;⑹44x x -=-;⑺23x =;⑻2(2)3x x x x +=++.哪些是一元一次方程?【变式练习】下列方程是一元一次方程的是( ).A .2237x x x +=+ B .3435322x x -+=+ C . 22(2)3y y y y +=-- D .3813x y -=同步课程˙一元一次方程【变式练习】在初中数学中,我们学习了各种各样的方程.以下给出了6个方程,请你把属于一元方程的序号填入圆圈⑴中,属于一次方程的序号填入圆圈⑵中,既属于一元方程又属于一次方程的序号填入两个圆圈的公共部分.①359x +=:②2440x x ++=;③235x y +=:④20x y +=;⑤8x y z -+=:⑥1xy =-.【例13】关于x 的方程(k +2)x 2+4kx -5k =0是一元一次方程,则k =________. 【例14】已知等式0352=++m x 是关于x 的一元一次方程,则m =____________. 【例15】已知方程()7421=+--m x m 是关于x 的一元一次方程,则m=_________ . 【例16】若131m x -=是一元一次方程,那么m =【变式练习】若关于x 的方程1(2)50k k x k --+=是一元一次方程,则k =【变式练习】若关于x 的方程2223x x ax a x a -=-+是一元一次方程,则a = ,方程的解是 【变式练习】已知关于x 的方程(21)50n m x --=是一元一次方程,则m 、n 需要满足的条件为 【例17】下列等式中变形正确的是( )A.若31422x x -+=,则3144x x -=- B. 若31422x x -+=,则3182x x -+= C.若31422x x -+=,则3180x -+= D. 若31422x x -+=,则3184x x -+= 【例18】122233x x x -+-=- 【例19】方程3x+6=2x -8移项后,正确的是( )A .3x+2x=6-8B .3x -2x=-8+6C .3x -2x=-6-8D .3x -2x=8-6【例20】将3(x -1)-2(x -3)=5(1-x )去括号得( )A.3x -1-2x -3=5-xB.3x -1-2x +3=5-xC.3x -3-2x -6=5-5xD.3x -3-2x +6=5-5x【例21】在解方程21-x −1332=+x 时,去分母正确的是( ) A.()()132213=+--x x B. ()()632213=+--x xC.13413=+--x xD. 63413=+--x x【例22】方程2-342-x =-67-x 去分母得( ) A.2-2 (2x -4)= -(x -7) B .12-2 (2x -4)= -x -7 C.12-2 (2x -4)= -(x -7) D .12-(2x -4)= -(x -7)(2)(1)⑤③①②(2)(1)同步课程˙一元一次方程【变式练习】解方程:⑴6(1)5(2)2(23)x x x ---=+ ⑵12225y y y -+-=-【变式练习】解方程:(1)3(3)52(25)x x -=--;(2)()()()243563221x x x --=--+; (3)135(3)3(2)36524x x ---=【例23】解方程:(1)5y -9=7y -13; (2)3(x -1)-2(2x +1)=12 ; (3)757875xx -=- ; (4)1213123x x x --+=-.先变形、再解方程本类型题:需要先利用等式的基本性质,将小数化为整数,然后再进行解方程计算 【例24】解方程:7110.2510.0240.0180.012x x x --+=-. 解:原方程可化为7110.251432x x x --+=- 去分母,得 .根据等式的性质( )去括号,得 .移项,得 .根据等式的性质( ) 合并同类项,得 .系数化为1,得 .根据等式的性质( )同步课程˙一元一次方程【例25】0.130.4120 0.20.5x x+--=【变式练习】解下列方程:⑴2 1.21 0.70.3x x--=;⑵0.40.90.10.50.030.020.50.20.03x x x+-+-=;⑶1(0.170.2)1 0.70.03xx--=⑷0.10.020.10.10.3 0.0020.05x x-+-=⑸422 30%50%x x-+-=⑹1(4)33519 0.50.125xxx+++=+⑺0.20.450.0150.010.5 2.50.250.015x xx++-=-⑻0.10.90.21 0.030.7x x--=逐层去括号含有多重括号时,去括号的顺序可以从内向外,也可以从外向内。
北师大版七年级上册数学重难点突破知识点梳理及重点题型巩固练习《一元一次方程》全章复习与巩固(基础)知识讲解【学习目标】1.经历建立方程模型、解方程和运用方程解决实际问题的过程,体会模型思想;2.了解一元一次方程、方程的解等基本概念,会解数字系数的一元一次方程,感受转化思想;3.能运用一元一次方程解决实际问题,能根据实际意义检验方程的合理性.【知识网络】【要点梳理】知识点一、一元一次方程的概念1.方程:含有未知数的等式叫做方程.2.一元一次方程:只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程.要点诠释:(1)一元一次方程变形后总可以化为ax+b=0(a≠0)的形式,它是一元一次方程的标准形式.(2)判断是否为一元一次方程,应看是否满足:①只含有一个未知数,未知数的次数为1; ②未知数所在的式子是整式,即分母中不含未知数.3.方程的解:使方程的左、右两边相等的未知数的值叫做这个方程的解.4.解方程:求方程的解的过程叫做解方程.知识点二、等式的性质与去括号法则1.等式的性质:等式的性质1:等式两边同时加上(或减去)同一个代数式,所得结果仍是等式.等式的性质2:等式两边乘同一个数,(或除以同一个不为0的数),所得结果仍是等式.2.合并法则:合并时,把系数相加(减)作为结果的系数,字母和字母的指数保持不变.3.去括号法则:(1)括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.(2)括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号相反. 知识点三、一元一次方程的解法解一元一次方程的一般步骤:(1)去分母:在方程两边同乘以各分母的最小公倍数.(2)去括号:依据乘法分配律和去括号法则,先去小括号,再去中括号,最后去大括号.(3)移项:把含有未知数的项移到方程一边,常数项移到方程另一边.(4)合并:逆用乘法分配律,分别合并含有未知数的项及常数项,把方程化为ax =b(a ≠0)的形式.(5)系数化为1:方程两边同除以未知数的系数得到方程的解b x a=(a ≠0). (6)检验:把方程的解代入原方程,若方程左右两边的值相等,则是方程的解;若方程左右两边的值不相等,则不是方程的解.知识点四、用一元一次方程解决实际问题的常见类型1.等积变形:①形状面积变了,周长没变;②原体积=变化后体积.2.利润问题:商品利润=商品售价-商品进价3.行程问题:路程=速度×时间4.和差倍分问题:增长量=原有量×增长率5.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量6.银行存贷款问题:本息和=本金+利息,利息=本金×利率×期数7.数字问题:多位数的表示方法:例如:32101010abcd a b c d =⨯+⨯+⨯+.8.方案问题:(1)运用一元一次方程解应用题的方法求解两种方案值相等的情况.(2)用特殊值试探法选择方案,取小于(或大于)一元一次方程解的值,比较两种方案的优劣性后下结论.【典型例题】类型一、一元一次方程的概念1.(2014•郸城县校级模拟)如果方程(k ﹣1)x |k|+3=0是关于x 的一元一次方程,那么k 的值是 .【思路点拨】根据一元一次方程的定义知|k|=1且未知数是系数k ﹣1≠0,据此可以求得k 的值.【答案】 ﹣1.【解析】解:∵方程(k﹣1)x|k|+3=0是关于x的一元一次方程,∴|k|=1,且k﹣1≠0,解得,k=﹣1;故答案是:﹣1.【总结升华】本题考查了一元一次方程的概念和解法.一元一次方程的未知数的指数为1,且未知数的系数不为零.举一反三:【变式】下列说法中正确的是( ).A.2a-a=a不是等式 B.x2-2x-3是方程 C.方程是等式 D.等式是方程【答案】C2. 若方程3(x-1)+8=2x+3与方程253x k x+-=的解相同,求k的值.【答案与解析】解:解方程3(x-1)+8=2x+3,得x=-2.将x=-2代入方程253x k x+-=中,得22253k-++=.解这个关于k的方程,得263k=.所以,263k=.【总结升华】由于两个方程的解相同,所以可以将其中一个方程的解代入另一个方程中,从而求得问题的答案.举一反三:【变式】(2015春•泉州期中)当x=时,代数式2x+1与5x﹣8的值相等.【答案】3.解:根据题意得:2x+1=5x﹣8,∴2x﹣5x=﹣8﹣1,∴﹣3x=﹣9,∴x=3.类型二、一元一次方程的解法3.解方程2351 46y y+--=【思路点拨】通过方程的同解原理(去分母,去括号,合并同类项,系数化为1),一步一步将一个复杂的方程转化成与它同解的最简的方程,从而达到求解的目的.【答案与解析】解:去分母,得3(y+2)-2(3-5y)=12去括号,得3y+6-6+10y=12合并同类项,得13y=12未知数的系数化为1,得1213 y=【总结升华】转化思想是初中数学中一种常见的思想方法,它能将复杂的问题转化为简单的问题,将生疏的问题转化为熟悉的问题,将未知转化为已知.事实上解一元一次方程就是利用方程的同解原理,将复杂的方程转化为简单的方程直至求出它的解.举一反三:【变式】解方程:解方程:0.10.050.20.0550.20.54x x+--+=【答案】解:把方程可化为:0.520.550 254x x+--+=再去分母得:232x=-解得:16x=-4.解方程:113(1)(1)2(1)(1)22x x x x+--=--+【思路点拨】本题按常规方法求解,比较繁锁,如能根据题目的特点,巧用“整体思维”,就能算得又快又对,起到事半功倍的效果.【答案与解析】解:113(1)(1)2(1)(1)22x x x x+++=-+-75(1)(1)22x x+=-7(1)5(1)x x+=-7755x x+=-212x=-x=-6【总结升华】直接去括号太繁琐,若将(x+1)及(x-1)看作一个整体,并移项合并同类项,解答十分巧妙,可免去去分母的步骤及简化去括号的过程.类型三、一元一次方程的应用5.甲车从A地出发以60 km/h的速度沿公路匀速行驶,0.5 h后,乙车也从A地出发,以80 km/h的速度沿该公路与甲车同向匀速行驶,求乙车出发后几小时追上甲车.【答案与解析】解:设乙车出发后x小时追上甲车,依题意得60×0.5+60x=80x,解得 x=1.5.答:乙车出发后1.5小时追上甲车.【总结升华】此题的等量关系为:甲前0.5 h的行程+甲后来的行程=乙的行程.6.如图,一个盛有水的圆柱形玻璃容器的内底面半径为10cm,原容器内水的高度为12cm,把一根半径为2cm的玻璃棒垂直插入水中后,问容器内的水将升高多少cm?(圆柱的体积=底面积×高)【思路点拨】根据题意,得等量关系为:容器的底面积×容器中水的原来高度+玻璃棒的截面积×(容器中水的高度+水增加的高度)=容器的底面积×(容器中水原来的高度+水增加的高度).【答案与解析】解:解:设容器内的水将升高xcm,据题意得:π•102×12+π•22(12+x)=π•102(12+x),1200+4(12+x)=100(12+x),1200+48+4x=1200+100x,96x=48,x=0.5.答:容器内的水将升高0.5cm.【总结升华】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.本题也可以根据水面上升部分的体积等于插入水中玻璃棒的体积来列等量关系进行求解.7.某商品的进价为1500元,提高40%后标价,若打折销售,使其利润为20%,则此商品是按几折销售的?(结果精确到0.1)【答案与解析】举一反三:【变式】“五一”期间,某商场搞优惠促销活动,决定由顾客抽奖确定折扣,某顾客购买甲、乙两种商品,分别抽到七折(按原销售价70%销售)和九折,共付款386元,这两种商品原销售价之和为500元,问两种商品原销售价分别为多少元?【答案】解:设甲种商品原价x元,则乙种商品原价为(500-x)元,则:70%x+90%(500-x)=386,0.7x+450-0.9x=386,0.2x=64,x=320;乙种商品原价为500-320=180(元);答:甲种商品原价为320元,乙种商品原价为180元.。
如何教授学生解一元一次方程的基本步骤教授学生解一元一次方程的基本步骤一元一次方程是初中数学中的重要内容,也是学生数学思维和逻辑能力的基础训练。
掌握解一元一次方程的基本步骤,对于学生的数学学习和解题能力的提高至关重要。
本文将分享一些教授学生解一元一次方程的基本步骤。
一、理解一元一次方程在正式教授解一元一次方程之前,首先需要确保学生对一元一次方程的概念有清晰的理解。
一元一次方程是指只含有一个未知数,并且这个未知数的最高次数为1的方程。
例如:2x + 3 = 7就是一个一元一次方程。
二、引入等式的概念解一元一次方程的关键在于等式的性质。
等式是一个数学表达式,左右两边的值相等。
教师可以通过具体例子引导学生理解等式的概念,并提醒学生方程左右两边的值必须相等。
三、使用逆运算解方程教授学生解一元一次方程的基本步骤之一就是使用逆运算解方程。
学生需要明白,方程的解就是能够使得等式两边值相等的未知数的值。
为了求解未知数,需要通过逆运算将未知数从等式的一边移到另一边,直至将未知数孤立。
四、示范解题步骤在进行示范解题时,教师可以选择简单的例子,并针对每一步骤详细讲解。
例如,假设要解方程2x + 3 = 7,教师可以按以下步骤引导学生解题:1. 将方程写出:2x + 3 = 7。
2. 使用逆运算,将等式两边的常数项3移到方程右边,得到2x = 7 - 3。
3. 简化表达式,计算7 - 3的结果,化简为2x = 4。
4. 继续使用逆运算,将方程左边的系数2移到方程右边,得到x = 4 ÷ 2。
5. 计算4 ÷ 2的结果,得到最终的解x = 2。
五、练习与巩固在学生掌握了解一元一次方程的基本步骤后,进行练习与巩固是非常重要的。
教师可以准备一些练习题,让学生逐步提升解题的能力。
同时,教师还可以提供一些拓展题目和实际问题,让学生将解一元一次方程运用到实践中,培养学生的应用能力。
六、梳理总结在本节课的最后,教师可以让学生对解一元一次方程的基本步骤进行梳理总结。
七年级上册数学一元一次方程知识点讲解鉴于数学知识点的重要性,小编为您提供了这篇七年级上册数学一元一次方程知识点讲解,希望对同学们的数学有所帮助。
1.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。
2.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a0)。
3.条件:一元一次方程必须同时满足4个条件:(1)它是等式;(2)分母中不含有未知数;(3)未知数最高次项为1;(4)含未知数的项的系数不为0.4.等式的性质:等式的性质一:等式两边同时加一个数或减去同一个数或同一个整式,等式仍然成立。
等式的性质二:等式两边同时扩大或缩小相同的倍数(0除外),等式仍然成立。
等式的性质三:等式两边同时乘方(或开方),等式仍然成立。
解方程都是依据等式的这三个性质等式的性质一:等式两边同时加一个数或减同一个数,等式仍然成立。
5.合并同类项(1)依据:乘法分配律(2)把未知数相同且其次数也相同的相合并成一项;常数计算后合并成一项(3)合并时次数不变,只是系数相加减。
6.移项(1)含有未知数的项变号后都移到方程左边,把不含未知数的项移到右边。
(2)依据:等式的性质(3)把方程一边某项移到另一边时,一定要变号。
7.一元一次方程解法的一般步骤:使方程左右两边相等的未知数的值叫做方程的解。
一般解法:(1)去分母:在方程两边都乘以各分母的最小公倍数;(2)去括号:先去小括号,再去中括号,最后去大括号;(记住如括号外有减号的话一定要变号)(3)移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;移项要变号(4)合并同类项:把方程化成ax=b(a0)的形式;(5)系数化成1:在方程两边都除以未知数的系数a,得到方程的解x=b/a.8.同解方程如果两个方程的解相同,那么这两个方程叫做同解方程。
9.方程的同解原理:(1)方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。
第十讲 一元一次方程的解法知识讲解方法提炼总结步骤 具体做法依据 注意事项去分母在方程的两边都乘各分母的最小公倍数等式性质2不要漏乘不含分母的项 去括号先去小括号,再去中括号,最后去大括号乘法分配律 去括号法则 括号前是“-”时,去掉括号时括号内各项均要变号 移项将含未知数的项移到方程的一边,常数项移到方程的另一边 移项法则移项要变号合并同类项 把方程变形成b ax = )0(≠a 的形式合并同类项法则 系数相加,字母及字母的指数均不变系数化为1把方程的两边都除以未知数的系数(不为0)等式性质2分子、分母不要颠倒(1)解方程的过程就是通过去分母、去括号、移项、合并同类项、(未知数)系数化为1等步骤,把一个一元一次方程逐步转化为x =a 的形式.这是一个等量变形的过程,也是一个化归的过程.(2)具体解方程时,可根据具体情况,有些步骤可能用不上;有些步骤可以前后顺序颠倒;有时还可以省略一些步骤,以使运算简化.例题讲解考点 一元一次方程的解法学科数学适用年级新初一适用范围苏教版教学目标1.知道解一元一次方程的一般步骤,能灵活运用去分母、去括号、移项、合并同类项、系数化为1等五大步骤解一元一次方程;2.巩固方程解法,经历求解过程,能体会到解法应根据具体方程本身特点而定;3.体会化归思想——把复杂变简单,将未知变已知的作用,体会数学的应用价值。
知识点 一元一次方程的解 解一元一次方程重难点重点: 一元一次方程的解法 难点: 一元一次方程的解法例 1:(1)解方程4x -15=9(2)解方程2x =5x -21【课堂练习】5. 解方程 (1)32x=9-x (2) 313131+=-x x例 2:解方程 -3(x +1)=9【解析】方法一:1、先将方程左边去括号。
2、观察去括号后的方程,与上次课学习过的方程一样吗?方法二:方程两边同除以-3,得到与上次课同类的方程。
【答案】略。
例 3:解方程2(2x +1)=1-5(x -2)【答案】略【课堂练习】1、解下列方程:(1)()()13315+=+x x (2)()()914322+-=-x x (3)()16328=-+x (4)()x x -=-10620 2、某班在绿化校园的活动中共植树130棵,有5位学生每人种了2棵,其余学生每人种了3棵。
七年级数学一元一次方程知识点讲解①方程是含有未知数的等式。
②方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的整式方程叫做一元一次方程。
③注意判断一个方程是否是一元一次方程要抓住三点:1)未知数所在的式子是整式(方程是整式方程);2)化简后方程中只含有一个未知数;(系数中含字母时不能为零)3)经整理后方程中未知数的次数是 1.④解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。
方程的解代入满足,方程成立。
⑤等式的性质:1)等式两边同时加上或减去同一个数或同一个式子(整式或分式),等式不变(结果仍相等)。
a=b得:a+(-)c=b+(-) c 2)等式两边同时乘以或除以同一个不为零的数,等式不变。
a=b得:a×c=b×c或a÷c=b÷c(c≠0)注意:运用性质时,一定要注意等号两边都要同时+、-、×、÷;运用性质2时,一定要注意0这个数。
⑥解一元一次方程一般步骤:去分母(方程两边同乘各分母的最小公倍数)→去括号→移项→合并同类项→系数化1;以上是解一元一次方程五个基本步骤,在实际解方程的过程中,五个步骤不一定完全用上,或有些步骤还需要重复使用. 因此,解方程时,要根据方程的特点,灵活选择方法. 在解方程时还要注意以下几点:⑴去分母:在方程两边都乘以各分母的最小公倍数,不要漏乘不含分母的项;分子是一个整体,去分母后应加上括号; 注意:去分母(等式的基本性质)与分母化整(分数的基本性质)是两个概念,不能混淆;⑵去括号:遵从先去小括号,再去中括号,最后去大括号不要漏乘括号的项;不要弄错符号(连着符号相乘);⑶移项:把含有未知数的项移到方程的一边,其他项都移到方程的另一边(以=为界限),移项要变号;⑷合并同类项:不要丢项,解方程是同解变形,每一步都是一个方程,不能像计算或化简题那样写能连等的形式.⑸系数化1:(两边同除以未知数的系数)把方程化成ax=b(a≠0)的形式,字母及其指数不变系数化成 1 在方程两边都除以未知数的系数a,得到方程的解不要分子、分母搞颠倒(一步一步来)。
3·2 解一元一次方程(一)—合并同类项与移项一.学会列方程1.列方程的一般步骤:(1)“审”是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间的等量关系;(2)“设”就是设未知数;(3)“列”就是列方程,这是最关键的一步. 一般先找出能够表达应用题全部含义的一个相等关系,然后列代数式表示相等关系中的各个量,就得到含有未知数的等式,即方程.2.列方程需要注意的事项:(1)列方程时,寻找题目中的等量关系是关键,可利用列表、线段图等方法分析已知量与未知量的关系,从而寻找出等量关系式.(2)设未知数就是将题目中要求的问题或与所求问题密切相关的其他问题用未知数表示出来,然后根据等量关系列出方程.二.合并同类项与移项解方程1.移项法则方程中的任何一项,都可以在改变符号后,从方程的一边移到另一边,这种变形叫移项.法则:移项要变号.2.合并同类项与移项解一元一次方程(1)合并同类项时,只是把同类项的系数相加,而字母和字母的指数不变.(2)将方程中的某些项改变符号后,从方程的一边移到另一边的变形叫做移项.(3)解方程的思路:使含有未知数x的项集中于方程一边,常数项集中于另一边,①通过移项(要变号),含未知数的项和常数项分别列于方程左右两边,使方程更接近于x=a的形式;②合并同类项;③系数化为1.以解方程2x-7=8-3x为例,例1根据条件列方程:(1)某数的7倍比它本身大5.(2)小赵为班级买了三副羽毛球拍,付出50元,找回3.50元.每副羽毛球拍的单价是多少?(3)一队学生从学校出发前往部队军训,行进速度是5千米/时,走了4.5千米时,一名通讯员派回送信,然后他又追赶队伍,通讯员的速度是14千米/时,他在距离部队6千米处追上学生队伍,问学校距离部队多远?(通信员报信时间忽略不计).分析:列方程时,注意题目中一些关键字的理解. 如(1)中的“大”;(2)中的“付出…,找回”;(3)中的“追上” .解:(1)设某数为x ,根据题意列方程:7x -x =5;(2)设每副羽毛球拍的单价是x 元,根据题意得:50-3.5=3x ;(3)设通讯员从离开队伍到追上队伍共用去x 小时,则依题意得:14x -4.5=5x +4.5. 评析:根据数量关系列方程,就是把文字叙述的问题,转化为符号语言表达的式子,列方程的关键是找到题中的等量关系,根据题意列出的方程,有时并不唯一,但实质一样.如本题中(1)还可以列出7x =x +5等.例2. 解绝对值方程:(1)解:………………移项………………绝对值的定义或(2)已知关于x 的方程无解,试求a 的值.解:51262--=x 12652x -=-1263x -=∴-=+1263x 129181x x ==1263x -=-12362x x ==()a x x 2132-=-232ax a x -=-()232232ax x a a x a -=--=-∵方程无解且时方程无解 ∴-=230a a -≠20∴=a 32。
一元一次方程目录一、方程的意义二、一元一次方程的解法三、实际问题与一元一次方程(一)四、实际问题与一元一次方程(二)五、《一元一次方程》全章复习与巩固一、方程的意义基础知识讲解【学习目标】1.正确理解方程的概念,并掌握方程、等式及算式的区别与联系;2.正确理解一元一次方程的概念,并会判断方程是否是一元一次方程及一个数是否是方程的解;3.理解并掌握等式的两个基本性质.【要点梳理】要点一、方程的有关概念1.定义:含有未知数的等式叫做方程.要点诠释:判断一个式子是不是方程,只需看两点:一.是等式;二.是含有未知数.2.方程的解:使方程左右两边的值相等的未知数的值,叫做方程的解.要点诠释:判断一个数(或一组数)是否是某方程的解,只需看两点:①.它(或它们)是方程中未知数的值;②将它(或它们)分别代入方程的左边和右边,若左边等于右边,则它们是方程的解,否则不是.3.解方程:求方程的解的过程叫做解方程.4.方程的两个特征:(1).方程是等式;(2).方程中必须含有字母(或未知数).要点二、一元一次方程的有关概念定义:只含有一个未知数(元),并且未知数的次数都是1,这样的方程叫做一元一次方程.要点诠释:“元”是指未知数,“次”是指未知数的次数,一元一次方程满足条件:①首先是一个方程;②其次是必须只含有一个未知数;③未知数的指数是1;④分母中不含有未知数.要点三、等式的性质1.等式的概念:用符号“=”来表示相等关系的式子叫做等式.2.等式的性质:等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.即:如果,那么(c为一个数或一个式子).等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.即:如果,那么;如果,那么.要点诠释:(1)根据等式的两条性质,对等式进行变形,等式两边必须同时进行完全相同的变形;(2)等式性质1中,强调的是整式,如果在等式两边同加的不是整式,那么变形后的等式不一定成立,如x=0中,两边加上得x+,这个等式不成立;(3)等式的性质2中等式两边都除以同一个数时,这个除数不能为零.《初中数学典型题思路分析》价格及说明1.全套资料共7册14本(七上—九下+综合共7册);每册分解析版和原题版两本;有和教材同步的多个版本可选。
初中数学教案:《一元一次方程的解法讲解》一元一次方程的解法讲解一、引言数学是一门既有理论又有实际应用的学科,它不仅仅是一堆数字和符号的运算,更是一种思考和解决问题的方式。
在初中数学学科中,一元一次方程是一个重要的概念,它是从简单线性关系中抽象出来的,对培养学生的逻辑思维和问题解决能力具有重要的意义。
本教案将详细介绍一元一次方程的解法。
二、基本概念1. 一元一次方程的定义一元一次方程是指只有一个未知数,且该未知数的最高次数为1的方程。
一般形式为ax + b = 0.2. 解的概念在一元一次方程中,使得方程成立的未知数的值称为方程的解。
一个一元一次方程可能有0个、1个或无穷多个解。
三、解法讲解1. 解法一:等式性质法通过运用等式的基本性质,将方程转化为等效的形式来求解。
步骤如下:(1)将方程进行展开和合并同类项,使得方程的形式更加简单。
(2)通过减法或加法运算,将含有未知数的项移到方程的一边。
(3)通过乘法或除法运算,将未知数的系数化简为1。
(4)计算并确定未知数的值。
(5)检验所求得的解是否符合原方程,即代入原方程进行验证。
2. 解法二:代入法通过已知解代入原方程,验证该解是否满足方程的条件。
步骤如下:(1)先将一元一次方程中的未知数用已知的解来替代。
(2)计算并确定未知数的值。
(3)检验所求得的解是否符合原方程,即代入原方程进行验证。
3. 解法三:图象法通过绘制一元一次方程的图象,利用图象与坐标轴的交点来求解方程。
步骤如下:(1)将一元一次方程转化为y = ax + b的形式。
(2)根据方程中的系数a和b可以确定该方程所对应的直线的斜率和截距。
(3)绘制图象,并找出与坐标轴交点的坐标。
(4)由交点的坐标可以确定方程的解。
四、例题讲解1. 例题一解方程2x - 5 = 7.解法一:等式性质法(1)将方程变形得到2x = 12.(2)除以2得到x = 6.(3)检验解,将x = 6代入原方程得到2(6) - 5 = 7成立。
解一元一次方程(基础)知识讲解
【学习目标】
1.了解一元一次方程及其相关概念,熟悉解一元一次方程的一般步骤,理解每步变形的依
据;
2.掌握一元一次方程的解法,体会解法中蕴涵的化归思想;
3.会求解含字母系数的一元一次方程及含绝对值的一元一次方程.
【要点梳理】
要点一、一元一次方程的有关概念
只含有一个未知数(元),并且未知数的式子都是整式,未知数的次数都是1,像这样的方程叫做一元一次方程.
要点诠释:
(1)“元”是指未知数,“次”是指未知数的次数,一元一次方程满足条件:
①是一个方程.②必须只含有一个未知数.③含有未知数的项的最高次数是1.④分母中不含有未知数.
(2)一元一次方程的标准形式是:ax+b=0(其中a≠0,a,b是常数) .
(3)一元一次方程的最简形式是: ax=b(其中a≠0,a,b是常数).
要点二、解一元一次方程的一般步骤
要点诠释:
(1)解方程时,表中有些变形步骤可能用不到,而且也不一定要按照自上而下的顺序,有些步骤可以合并简化.
(2) 去括号一般按由内向外的顺序进行,也可以根据方程的特点按由外向内的顺序进行. (3)当方程中含有小数或分数形式的分母时,一般先利用分数的性质将分母变为整数后再去分母,注意去分母的依据是等式的性质,而分母化整的依据是分数的性质,两者不要混淆.要点三、解特殊的一元一次方程
1.含绝对值的一元一次方程
解此类方程关键要把绝对值化去,使之成为一般的一元一次方程,化去绝对值的依据是绝对值的意义.
要点诠释:此类问题一般先把方程化为ax b c +=的形式,然后再分类讨论:
(1)当0c <时,无解;(2)当0c =时,原方程化为:0ax b +=;(3)当0c >时,原方程可化为:ax b c +=或ax b c +=-.
2.含字母的一元一次方程
此类方程一般先化为一元一次方程的最简形式ax =b ,再分三种情况分类讨论: (1)当a ≠0时,b x a
=;(2)当a =0,b =0时,x 为任意有理数;(3)当a =0,b ≠0时,方程无解. 【典型例题】
类型一、一元一次方程的相关概念
1.已知方程①32x x -=
;②0.4x =11;③512
x x =-;④y 2
-4y =3;⑤t =0;⑥x+2y =1.其中是一元一次方程的个数是( )
A .2
B .3
C .4
D .5 【答案】B
【解析】根据一元一次方程的定义判断,因为①不是整式方程(分母中含有未知数)④未知数的次数为2,⑥含有两个未知数.所以①、④、⑥都不是一元一次方程. 【总结升华】3x 和2x 是有区别的,前者的分母中含有字母,而后者的分母中不含字母,3x
不是整式,
2
x
是整式,分母中含有未知数的方程一定不是一元一次方程. 举一反三:
【变式】下列方程中是一元一次方程的是__________(只填序号). ①2x-1=4;②x =0;③ax =b ;④1
51x
-=-. 【答案】 ①②
类型二、解较简单的一元一次方程
2.解下列方程 (1)3
45
m m -
=- (2)-5x+6+7x =1+2x-3+8x (3)()221107x x +=+ (4)()()32123x x -+=-
【思路点拨】方程中含有括号,应先去括号再移项、合并、系数化为1,从而解出方程. 【答案与解析】
解:(1)移项,得345
m m -+=-
合并,得
2
45
m =- 系数化为1,得m =-10
(2)移项,得-5x+7x-2x-8x =1-3-6
合并,得-8x =-8 系数化为1,得x =1
(3)去括号得:42107x x +=+ 移项合并得:65x -= 解得:56
x =-
(4)去括号得:32226x x --=- 移项合并得:47x -=-
解得: 7
4
x =
【总结升华】方法规律:解较简单的一元一次方程的一般步骤:
(1)去括号:去括号时,要注意括号前面的符号,括号前面是“+”号,不变号;括号前面是“-”,各项均变号.
(2)移项:即通过移项把含有未知数的项放在等式的左边,把不含未知数的项(常数项)放在等式的右边.
(3)合并:即通过合并将方程化为ax =b(a ≠0)的形式.
(4)系数化为1:即根据等式性质2:方程两边都除以未知数系数a ,即得方程的解b x a
=. 举一反三:
【变式】下列方程变形正确的是( ). A .由2x-3=-x-4,得2x+x =-4-3 B .由x+3=2-4x ,得5x =5 C .由23
32
x -
=,得x =-1 D .由3=x-2,得-x =-2-3
【答案】D .
类型三、解含分母的一元一次方程
3.解方程:
434343
1623
x x x +++++=. 【答案与解析】
解法1:去分母,得(4x+3)+3(4x+3)+2(4x+3)=6, 去括号,得 4x+3+12x+9+8x+6=6. 移项合并,得 24x =-12, 系数化为1,得 12
x =-
. 解法2:将“4x+3”看作整体,直接合并,得6(4x+3)=6,即4x+3=1, 移项,得 4x =-2, 系数化为1,得12
x =-
. 【总结升华】对于解法l :(1)去分母时,“1”不要漏乘分母的最小公倍数“6”;(2)注意适时添括号3(4x+3)防止出现3×4x+3.对于解法2:先将“4x+3”看作一个整体来解,最后求x .
举一反三:
【高清课堂:一元一次方程的解法388407 解含分母的一元一次方程】 【变式】
2251
1346
x x x -+--=- 【答案】解:去分母得:4(2)3(25)2(1)12x x x --+=--
去括号得: 486152212x x x ---=-- 合并同类项, 得:49x -= 系数化为1,得 94
x =-
. 类型四、解较复杂的一元一次方程
4.解方程:
0.170.210.70.03
x x --= 【思路点拨】先将方程中的小数化成整数,再去分母,这样可避免小数运算带来的失误.
【答案与解析】 解:原方程可以化成:
101720173
x x
--=. 去分母,得: 30x-7(17-20x)=21.
去括号、移项、合并同类项,得:170x =140. 系数化成1,得: 1417
x =
. 【总结升华】解此题的第一步是利用分数的基本性质把分母、分子同时扩大相同的倍数,使分母化为整数,注意要与去分母时方程两边都乘以分母的最小公倍数区分开.
5. 解方程:112
[(1)](1)223
x x x -
-=- 【答案与解析】
解法1:先去小括号得:
11122()22233x x x -+=- 再去中括号得: 11122
24433
x x x -+=-
移项,合并得: 5111212
x -=- 系数化为1,得: 11
5x =
解法2:两边均乘以2,去中括号得:14
(1)(1)23
x x x --=-
去小括号,并移项合并得: 511
66
x -=-,
解得: 11
5
x =
解法3:原方程可化为:112
[(1)1(1)](1)223
x x x -+--=-
去中括号,得1112 (1)(1)(1) 2243
x x x
-+--=-
移项、合并,得
51
(1)
122
x
--=-
解得
11
5 x=
【总结升华】解含有括号的一元一次方程时,一般方法是由里到外或由外到内逐层去括号,但有时根据方程的结构特点,灵活恰当地去括号,以使计算简便.例如本题的方法3:方程左、右两边都含(x-1),因此将方程左边括号内的一项x变为(x-1)后,把(x-1)视为一个整体运算.
举一反三:
【变式】32
[(1)2]2 234
x
x
---=
【答案】
解:去中括号得:
3
(1)22 42
x
x
--⨯-=
去小括号,移项合并得:
3
6 4
x
-=
解得 x=-8
类型五、解含绝对值的方程
6.解方程|x|-2=0
【答案与解析】
解:原方程可化为:2
x=
当x≥0时,得x=2,
当x<0时,得-x=2,即,x=-2.
所以原方程的解是x=2或x=-2.
【总结升华】此类问题一般先把方程化为ax b
=的形式,再根据ax的正负分类讨论,注意不要漏解.。