余热发电工艺流程
- 格式:doc
- 大小:31.00 KB
- 文档页数:6
余热发电的工艺流程、主要设备和工作原理简单介绍纯低温余热发电工艺流程、主机设备和工作原理简介直接利用水泥窑窑头窑尾排放的中低温废气进行余热回收发电,无需消耗燃料,发电过程不产生任何污染,是一种经济效益可观、清洁环保、符合国家清洁节能产业政策的绿色发电技术,具有十分广阔的发展空间与前景。
工艺流程: 凝汽器热水井内的凝结水经凝结水泵泵入No.2闪蒸器出水集箱,与出水汇合,然后通过锅炉给水泵升压泵入AQC锅炉省煤器进行加热,经省煤器加热后的水(223℃)分三路分别送到AQC炉汽包,PH炉汽包和No.1闪蒸器内。
进入两炉汽包内的水在锅炉内循环受热,最终产生一定压力下的过热蒸汽作为主蒸汽送入汽轮机做功.进入No.1闪蒸器内的高温水通过闪蒸技术产生一定压力下的饱和蒸汽送入汽轮机第三级后做功,而№.1闪蒸器的出水作为№.2闪蒸器闪蒸饱和蒸汽的热源,№.2闪蒸器闪蒸出的饱和蒸汽送入汽轮机第五级后做功,做过功后的乏汽经过凝汽器冷凝后形成凝结水重新参与热力循环。
生产过程中消耗掉的水由纯水装置制取出的纯水经补给水泵打入热水井。
主机设备性能特点:一、余热锅炉: AQC炉和PH炉AQC锅炉的设计特点如下: 锅炉型式为立式,锅炉由省煤器、蒸发器、过热器、汽包及热力管道等构成。
锅炉前设置一预除尘器(沉降室),降低入炉粉尘。
废气流动方向为自上而下,换热管采用螺旋翅片管,以增大换热面积、减少粉尘磨损的作用。
锅炉内不易积灰,由烟气带走,故未设置除灰装置,工质循环方式为自然循环方式。
过热器作用:将饱和蒸汽变成过热蒸汽的加热设备,通过对蒸汽的再加热,提高其过热度(温度之差),提高其单位工质的做功能力。
蒸发器作用:通过与烟气的热交换,产生饱和蒸汽。
省煤器作用:设置这样一组受热面,对锅炉给水进行预热,提高给水温度,避免给水进入汽包,冷热温差过大,产生过大热应力对汽包安全形成威胁,同时也避免汽包水位波动过大,造成自动控制困难。
一方面最大限度地利用余热,降低排烟温度,另一方面,给水预热后形成高温高压水,作为闪蒸器产生饱和蒸汽的热源。
余热锅炉发电的工艺流程主要用于回收工业生产过程中产生的高温废气(如水泥窑、冶金炉、垃圾焚烧炉等排放的烟气)中的余热,将其转化为电能。
以下是一个通用的余热锅炉发电工艺流程概述:1. 烟气进入:- 高温烟气从工业生产设备(例如冶炼炉、煅烧炉或垃圾焚烧炉)的烟气出口引出,经过管道引入余热锅炉。
2. 烟气换热:- 在余热锅炉内部,烟气自上而下或者自下而上流动,依次流经过热器、蒸发器和省煤器等不同受热面。
- 过热器:用于将饱和蒸汽进一步加热成过热蒸汽,提高其做功能力。
- 蒸发器:利用烟气的热量将送入的软化水转化为蒸汽。
- 省煤器:预先加热锅炉给水,减少后续阶段燃料消耗。
3. 水循环系统:- 给水系统:软化后的水首先经过除氧器去除溶解氧,然后由给水泵加压送往省煤器预热。
- 汽水分离与循环:从蒸发器出来的湿蒸汽进入汽水分离器进行汽水分离,分离出的蒸汽送至过热器,而分离出的水则由热水循环泵重新送回蒸发器加热循环使用。
4. 蒸汽动力转换:- 经过过热器加热形成的高温、高压过热蒸汽,送入汽轮机做功,驱动汽轮机转子旋转。
5. 发电环节:- 汽轮机的转动通过联轴器带动发电机的转子转动,从而实现机械能向电能的转化,发出电能并接入电网。
6. 烟气排放:- 烟气在完成热量交换后,温度已经大大降低,通常会经过除尘设备进一步净化后,由引风机引导至烟囱,最终安全排入大气。
7. 辅助系统:- 同时包括冷却水系统、纯水制备系统、锅炉给水处理系统、以及烟气处理系统等,确保整个发电过程的安全稳定运行。
每个具体的余热发电项目可能会根据其来源热源的特性和需求有所不同,但核心原理都是通过热交换来提升能源利用率,实现节能减排和能源再生的目的。
热电厂工艺流程热电厂是一种将燃料的热能转化成电能的发电厂。
热电厂的工艺流程通常包括燃料供给、燃烧、锅炉产热、蒸汽发电、余热利用等环节。
首先,燃料供给是热电厂的第一步。
燃料通常包括煤炭、天然气、石油等。
燃料供给通常在燃料仓库中进行,燃料通过输送机、皮带机等运输到燃料仓库,并通过给料机供给到锅炉燃烧室。
接下来是燃烧环节。
燃料进入锅炉后,经过点火设备进行点火燃烧。
燃烧会产生高温高压的燃烧产物,如烟气、灰渣等。
同时,在燃烧过程中还会产生大量的热能。
然后是锅炉产热环节。
燃烧产生的热能通过锅炉的传热面传递给水,将水加热成蒸汽。
锅炉通常由水冷壁、烟道、空气预热器等部件组成。
其中,水冷壁是水冷管的墙面,水在其中循环流动,吸收燃烧释放的热量。
烟道是烟气流动的通道,烟气在其中释放热量。
空气预热器则通过交换烟气和空气的热量,提高锅炉的热效率。
接下来是蒸汽发电环节。
加热后的水变成蒸汽进入汽轮机,将其能量转换成机械能。
蒸汽经过汽轮机的高温高压涡轮后,压力降低,温度降低,再进入低温低压涡轮,最后进入凝汽器。
在凝汽器中,蒸汽通过冷却换热和冷却水接触,冷凝成水。
机械能通过轴传递到发电机,通过发电机变为电能。
然后,电能通过变压器提高电压,最终输出到电网中。
最后是对余热的利用。
热电厂产生大量的余热,可以通过余热锅炉或余热发电机组进行回收利用。
余热锅炉将余热用于供热网络或工业用热,提高能源利用效率。
余热发电机组通过利用余热产生的蒸汽再次发电,增加电厂的发电量。
总之,热电厂的工艺流程通常包括燃料供给、燃烧、锅炉产热、蒸汽发电和余热利用等环节。
通过这一系列的工艺流程,燃料的热能可以转化成电能,实现可持续的发电。
同时,通过对余热的利用,提高了能源的利用效率,减少了能源的浪费。
余热发电工艺流程简述
(1)烟气流程
出窑尾一级筒的废气约为330℃经SP炉换热后温度降至210℃左右,经窑尾高温风机送至原料磨烘干原料后,通过除尘器净化达标排放。
去自窑头篦冷机中部的废气约360℃经沉降室沉降将烟气的含尘量由50g/Nm3降至8~10g/Nm3后进入AQC炉,热交换后进入收尘器净化达标后与熟料冷却机尾部的废气会合后由引风机经烟囱排入大气。
(2)水、汽流程
原水经预处理后进入锅炉水处理车间,由反渗透及钠床装置进行处理,达标后的水作为发电系统的补充水补入发电系统的除氧器。
经化学除痒后的软化水由锅炉给水泵送至AQC炉的省煤器段,经过省煤器段加热后的约165℃的热水按一定比例分别进入AQC炉、SP 炉的蒸发段、过热段后,AQC炉产0.789MPa、330℃的过热蒸汽,SP 炉产0.789MPa、330℃的过热蒸汽,混合后进入汽轮机主进汽口,供汽轮机做工发电。
经汽轮机做功后的乏汽进入凝汽器冷凝成凝结水后,由凝结水泵送至化学除氧器除氧,再由锅炉给水泵将除氧后的冷凝水和补充水直接送至AQC炉,完成一个汽水循环。
(3)排灰流程
SP炉的排灰为窑灰,可回到水泥生产工艺流程中,设计时拟与窑尾除尘器收下的粉尘一起回到工艺系统。
工艺流程图:。
余热发电工艺流程图
余热发电是一种将工业生产过程中产生的余热转化为电能的技术。
下面是一个典型的余热发电工艺流程图:
1. 余热收集:首先,工业生产过程中产生的烟气、废水或高温废气中的余热被收集起来。
这些余热通常是通过烟气管道或烟囱来收集的。
在收集过程中,还需要对烟气进行净化处理,以去除其中的颗粒物和污染物。
2. 余热回收:收集到的余热被送入余热回收系统中,通过换热器将烟气、废水或高温废气中的余热传递给工作流体。
工作流体可以是水、有机液体或其他合适的介质。
在换热器中,烟气、废水或高温废气中的余热被传递给工作流体,使其升温。
3. 蒸汽发生:升温后的工作流体进入蒸汽发生器,通过与发生器中的低温工质接触,将部分工作流体中的热量转化为蒸汽。
蒸汽是余热发电中常用的工作介质,可以用于驱动汽轮机或蒸汽发动机产生动力。
4. 发电:蒸汽进入汽轮机或蒸汽发动机,通过旋转涡轮,将热能转化为机械能。
旋转涡轮的运动被连接到发电机,通过转子产生电能。
这样,余热被转化为电能,供给工厂自用或送入电网供应外部用户。
5. 热能回收:在发电过程中,余热还可以被回收利用。
通过余热回收装置,将发电过程中产生的废热用于加热工序中的水或蒸汽,提高整个工业生产过程的能效。
6. 废气排放:余热发电过程中的废气经过净化处理后,被排放到大气中。
净化处理有助于减少废气中的污染物含量,避免对环境造成污染。
以上就是一个典型的余热发电工艺流程图。
通过将工业生产过程中产生的余热有效转化为电能,可以提高能源利用效率,减少能源消耗和环境污染。
这种技术对于可持续发展和节能减排具有重要意义。
水泥余热发电工艺流程水泥生产过程中产生的余热一直是一个被人们关注的问题。
利用水泥生产过程中的余热进行发电已经成为一种常见的做法。
这种方法不仅可以有效地利用余热资源,还可以减少对环境的影响,提高水泥生产的能源利用率。
本文将详细介绍水泥余热发电的工艺流程。
1. 余热回收系统。
在水泥生产过程中,熟料冷却机、窑头和窑尾等部位都会产生大量的余热。
为了有效地利用这些余热,需要安装余热回收系统。
余热回收系统通常包括余热锅炉、余热管道和余热发电设备。
余热锅炉用来将余热转化为蒸汽,然后通过余热管道输送到发电设备中进行发电。
2. 蒸汽发电系统。
余热蒸汽通过管道输送到蒸汽发电设备中,蒸汽发电设备通常采用蒸汽轮机发电。
蒸汽进入蒸汽轮机后,推动轮机转动,从而带动发电机发电。
通过这种方式,余热可以被充分利用,同时也可以产生电能。
3. 发电系统。
发电系统是整个水泥余热发电工艺中最核心的部分。
发电系统包括蒸汽轮机、发电机、控制系统等部分。
蒸汽轮机是将余热蒸汽转化为机械能的设备,而发电机则是将机械能转化为电能的设备。
控制系统则用来监控和调节发电系统的运行状态,保证系统的安全稳定运行。
4. 排放系统。
在发电过程中会产生废气,为了保护环境,需要安装排放系统对废气进行处理。
排放系统通常包括除尘器、脱硫设备、脱硝设备等部分。
这些设备可以有效地去除废气中的颗粒物和有害气体,保护周围的环境。
5. 辅助系统。
水泥余热发电工艺中还需要一些辅助系统来保证整个工艺的正常运行。
比如冷却系统用来冷却发电设备,水处理系统用来处理冷却水和锅炉给水等。
这些辅助系统在整个工艺中起着至关重要的作用。
通过以上的工艺流程,水泥余热可以被有效地利用,转化为电能,从而提高水泥生产的能源利用率,减少对环境的影响。
水泥企业可以通过余热发电的方式获得额外的经济收益,同时也可以为环保事业做出贡献。
然而,水泥余热发电工艺也面临一些挑战。
首先是技术方面的挑战,余热发电技术需要高度的自动化和稳定性,需要水泥企业具备一定的技术实力。
余热发电工艺流程、主机设备工作原理简介余热发电余热发电是一种通过回收生产过程中产生的工业余热,将其转化为电能的环保型能源利用技术。
它能够有效地提高工业生产过程中的能源利用率,减少大量二氧化碳和其他有害气体的排放,对于推动工业节能和环保发展有着重要的作用。
工艺流程余热发电工艺流程主要包括余热回收、余热蒸汽与受热水循环、加热循环、排气、冷凝等环节。
1.余热回收:利用余热回收装置对工业生产过程中的热量进行回收。
通常,余热回收设备采用高效传热器,将低温余热转化为高温余热。
2.余热蒸汽与受热水循环:余热回收后的高温余热通过传热器传导至工作介质,常用的介质为蒸汽和循环水。
3.加热循环:高温介质在加热器中进一步加热,增加介质的温度和压力。
4.排气:未能转化为电能的高温气体排放至大气中。
5.冷凝:过热蒸汽在冷凝器中冷却,将过热蒸汽转化为高压饱和水,该水通过泵在再次流入传热器,开始新一轮回收。
电能输出余热发电产生的电能主要经过调节和控制后输出,可以用于工厂内部用电和向电网输送电力。
主机设备工作原理简介余热发电主机设备包括涡轮发电机、减速器、发电机控制系统等主要设备。
以下是它们的工作原理简介:涡轮发电机涡轮发电机是余热发电设备中的核心设备之一。
它是将高速旋转的轴承通过机械装置转化为电能的装置。
其工作过程如下:1.涡轮叶片接受高压、高速蒸汽的冲击,启动涡轮的旋转。
2.涡轮的旋转通过轴传动减速器。
3.通过减速器就可以将转速降低到发电机的工作转速。
4.通过发电机控制系统控制输出的电压和频率,即可输出电能。
减速器减速器是涡轮发电机降低转速的一个重要设备,其工作原理如下:1.接收涡轮发电机传来的高速轴,降低转速。
2.转速降低之后,将轴的转速与电机控制系统的要求匹配,实现电能高效输出。
发电机控制系统发电机控制系统是整个余热发电设备的监控和控制中心,其工作原理如下:1.接收来自涡轮发电机的反馈信号,对电压和电流进行监控和调节。
2.通过反馈系统调节发电机的输出功率和工作状态。
余热发电系统工艺流程余热发电是利用工业生产过程中产生的废热来发电的一种能源回收利用方式。
下面是一个典型的余热发电系统工艺流程:1.热源收集:在工业生产过程中,产生大量的废热。
热源收集是余热发电系统的第一步,主要是通过管道或其他方式将废热导入余热发电系统。
2.废热回收:在余热发电系统中,废热需要通过换热器进行回收。
换热器是一个设备,用于将废热传递给工作介质,使其温度升高。
3.工作介质循环:在余热发电系统中,工作介质一般是水蒸汽。
废热回收后,工作介质会加热,并转化为高温高压的水蒸汽。
然后,水蒸汽会通过涡轮发电机组,将其热能转化为电能。
4.电能输出:通过涡轮发电机组,机械能被转化为电能。
电能可以直接输出到电网中,为用户提供电力。
5.回水循环:在发电过程中,水蒸汽会凝结成水,然后通过凝汽器冷却,再次回到换热器中,与废热进行换热。
这样就形成了一个循环,有效地利用了废热。
6.废热排放:在余热发电系统中,一些废热无法回收利用,例如烟气中的热量。
这部分废热需要通过废热排放系统排出。
7.控制与监测:余热发电系统需要进行控制和监测,以确保其正常运行。
控制系统可以实现对废热流量、工作介质循环等参数的控制,监测系统可以实时监测系统的运行状态。
8.维护与保养:余热发电系统需要定期进行维护与保养,以确保其长期稳定运行。
维护包括设备的清洁、检修和更换,保养包括设备的润滑和防腐。
以上就是一个典型的余热发电系统的工艺流程。
通过对废热的回收利用,余热发电系统可以有效地降低能源消耗,减少环境污染,实现能源的可持续利用。
硅铁厂余热发电工艺流程讲解国内无论哪个行业、哪家技术提供商的余热发电技术,其基本概念和方向是一致的,均是通过余热锅炉(热交换器)回收热空气/烟气等介质中的热量,并进行能量转移,加热给水产生过热/饱和蒸汽,冲动汽轮发电机组做功发电。
其关键设备和核心问题之一是余热锅炉,如何将富含能量的热介质回收汇集以及引出进而通过余热锅炉进行能量转换是一个技术难点,这在各种余热发电技术上均略有差别。
此外,余热锅炉本身的设计也一定程度上决定了余热回收利用的比例和彻底性。
其二,余热发电的另一个问题是解决低压蒸汽和饱和蒸汽汽轮机设备的问题,众所周知,发电用蒸汽通常为过热蒸汽,且过热度越高越好。
但由于余热回收利用发电的性质,其产生的蒸汽多为低压蒸汽和湿蒸汽,相对于过热蒸汽,其在发电效率以及设备安全上均存在一定问题,随着青岛捷能、杭州汽轮机厂等生产单位中低温发电用汽轮机研制成功,这一问题已经被克服。
国外余热发电项目基本技术原理和技术方案同国内相仿,但能源利用效率要略高于国内水平。
另据资料显示,由于余热发电均为中低温参数,因此国外有考虑利用低沸点的烷类有机物取代水产生蒸汽,推动气轮机运转发电。
相对于以水及水蒸汽为循环工质,烷类有机物具有如下优点:(1)有机工质沸点低,易产生蒸汽,因此可以回收低温余热。
(2)冷凝压力接近或稍大于大气压,工质泄漏小。
(3)有机工质耐低温,不受冰冻的影响。
(4)转速低,因此噪声小。
(5)系统的工作压力低,约1.5MPa。
(6)无湿蒸汽产生,始终保持干燥,不受腐蚀,透平寿命长。
国际水泥工业余热发电技术最先进的德国和日本,近十几年来国内建筑业持续萎缩,水泥需求逐年下滑,德日两国1996年的本国水泥消费量分别由3550万吨和8400万吨,锐减为2006年的2600万吨和6000万吨,分别下降了27%和29%。
导致有些水泥厂纷纷关闭,技术人员大批流失。
水泥工业处于一片不景气之中,大大地阻碍了余热发电技术的发展进程。
玻璃余热发电锅炉工艺流程文档下载说明Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document 玻璃余热发电锅炉工艺流程can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!玻璃余热发电锅炉是一种利用玻璃生产过程中的余热来发电的设备,它可以有效地利用能源资源,减少能源浪费,降低生产成本,具有环保和经济的双重效益。
下面我将详细介绍玻璃余热发电锅炉的工艺流程。
工艺流程概述。
1. 玻璃生产过程中的余热收集。
在玻璃生产过程中,熔窑产生的高温烟气含有大量的余热,通过余热回收设备进行收集。
2. 余热传递与储存。
直接利用水泥窑窑头窑尾排放的中低温废气进行余热回收发电,无需消耗燃料,发电过程不产生任何污染,是一种经济效益可观、清洁环保、符合国家清洁节能产业政策的绿色发电技术,具有十分广阔的发展空间与前景。
工艺流程: 凝汽器热水井内的凝结水经凝结水泵泵入闪蒸器出水集箱,与出水汇合,然后通过锅炉给水泵升压泵入AQC锅炉省煤器进行加热,经省煤器加热后的水(223℃)分三路分别送到AQC炉汽包,PH炉汽包和闪蒸器内。
进入两炉汽包内的水在锅炉内循环受热,最终产生一定压力下的过热蒸汽作为主蒸汽送入汽轮机做功.进入闪蒸器内的高温水通过闪蒸技术产生一定压力下的饱和蒸汽送入汽轮机第三级后做功,而№.1闪蒸器的出水作为№.2闪蒸器闪蒸饱和蒸汽的热源,№.2闪蒸器闪蒸出的饱和蒸汽送入汽轮机第五级后做功,做过功后的乏汽经过凝汽器冷凝后形成凝结水重新参与热力循环。
生产过程中消耗掉的水由纯水装置制取出的纯水经补给水泵打入热水井。
主机设备性能特点:一、余热锅炉: AQC炉和PH炉AQC锅炉的设计特点如下: 锅炉型式为立式,锅炉由省煤器、蒸发器、过热器、汽包及热力管道等构成。
锅炉前设置一预除尘器(沉降室),降低入炉粉尘。
废气流动方向为自上而下,换热管采用螺旋翅片管,以增大换热面积、减少粉尘磨损的作用。
锅炉内不易积灰,由烟气带走,故未设置除灰装置,工质循环方式为自然循环方式。
过热器作用:将饱和蒸汽变成过热蒸汽的加热设备,通过对蒸汽的再加热,提高其过热度(温度之差),提高其单位工质的做功能力。
蒸发器作用:通过与烟气的热交换,产生饱和蒸汽。
省煤器作用:设置这样一组受热面,对锅炉给水进行预热,提高给水温度,避免给水进入汽包,冷热温差过大,产生过大热应力对汽包安全形成威胁,同时也避免汽包水位波动过大,造成自动控制困难。
一方面最大限度地利用余热,降低排烟温度,另一方面,给水预热后形成高温高压水,作为闪蒸器产生饱和蒸汽的热源。
沉降室作用:利用重力除尘的原理将烟气中的大颗粒熟料粉尘收集,避免粉尘对锅炉受热面的冲刷、磨损。
余热发电的工艺流程主要设备和工作原理简单介绍余热发电是利用工业生产过程中产生的废热来发电的一种方式。
这些废热主要来自于燃烧发电机组、高温工业炉窑、冶金、化工、电子等行业。
通过余热发电,可以最大限度地发挥能源的效益,提高能源利用率,减少环境污染。
2.余热转换:回收的废热需要通过热交换器或热回收系统将其转化成可供使用的高温热能或高压蒸汽。
这一步骤主要是将废热转化为对发电机来说更为适用的能源。
3.发电机运行:高温热能或高压蒸汽通过锅炉或涡轮机等设备驱动发电机进行发电。
发电机将转化为机械能的能源转化为电能,并输出为电网所需的电力。
4.余热回收再利用:通过废热回收系统将发电机组产生的余热进行回收。
这样可以提高能源利用效率,减少能源的浪费,并降低环境污染。
主要设备及其工作原理简介如下:1.烟气余热回收系统:烟气余热回收系统主要由烟囱、换热器和蓄热器等组成。
其工作原理是通过烟气与热介质之间的热量交换,将烟气中的废热转化为热能,再将热能通过热能回收装置转化为电能。
2.蒸汽涡轮发电机组:蒸汽涡轮发电机组是一种常见的余热发电设备。
其工作原理是通过高温高压的蒸汽驱动涡轮机旋转,涡轮机的转动分别驱动发电机和压缩机工作,将热能转化为电能。
3.蓄热器:蓄热器是余热发电中的重要设备之一、其工作原理是通过保存和释放热能的方式,使废热能够更好地用于发电系统。
蓄热器可以将低温的废热转化为高温的热能,提高发电过程中的能源利用效率。
4.综合利用系统:综合利用系统通过多种工艺,将余热转化为电能的同时,还可以利用余热供暖、蒸馏水等。
这样可以最大限度地提高能源利用效率,实现能源的再生利用。
综上所述,余热发电是一种有效的能源利用方式,通过回收废热,将其转化为高温热能或高压蒸汽,再通过发电机组将其转化为电能。
这种方式可以提高能源的利用效率,减少环境污染,是可持续发展的重要手段之一、不同行业的余热发电流程和设备可能略有差异,但总体原理是相似的。
余热发电工艺流程
《余热发电工艺流程》
余热发电是利用工业生产中产生的废热,通过余热发电设备将废热转化为电能的一种环保高效的发电方式。
余热发电工艺流程包括余热采集、余热转换和发电三个主要环节。
首先是余热采集。
工业生产中产生的余热通常来自于燃烧、冷却和其他工艺过程,需要通过余热采集设备将废热进行集中采集,并转移到余热转换设备。
接下来是余热转换。
余热转换设备一般采用热交换器和蒸汽轮机等设备,通过将余热转化为蒸汽或热水,利用蒸汽轮机驱动发电机产生电能。
在余热转换的过程中,需要进行温度、压力和流量等参数的控制,保证能够有效利用余热转化成电能。
最后是发电。
通过发电机将蒸汽或热水转变为电能,进而通过电网输送到工业生产线或附近的用户,实现余热的高效利用。
同时,在实际的生产中还需要对发电的稳定性和耐久性进行考量,确保余热发电系统的可靠运行。
总体来说,余热发电工艺流程通过充分利用工业生产中的废热,将其转化为电能,不仅能够有效减少环境污染,还能够降低能源消耗,节约生产成本,是一种具有很大应用前景的绿色能源解决方案。
余热发电工艺流程
余热发电是指将工业生产过程中产生的热能通过发电装置转化为电能利用的一种方法。
它能够有效地利用工业过程中产生的废热,实现资源的再利用,提高能源利用效率,减少能源浪费。
下面是一种典型的余热发电工艺流程。
首先,在工业生产过程中产生的废热通过烟囱、排气口等通道收集起来,然后通过热交换器将废热传导给工作介质,提高工作介质的温度。
然后,高温的工作介质通过管道输送到热能转化装置,该装置可以是蒸汽轮机、燃气轮机等。
在这个装置中,工作介质的热能被转化为机械能。
接下来,转化为机械能的工作介质驱动涡轮旋转,进而将旋转的动能传给发电机。
发电机通过利用磁场感应的原理,将机械能转化为电能。
然后,发电机产生的交流电通过变压器进行变压、变流处理后输送到电网中,供给社会各个领域使用。
最后,经过发电机的电能供应到电网后,余热发电装置的工作介质已经失去了大部分的热能,温度降低后通过冷却装置进行冷却,然后重新进入热能转化装置。
整个余热发电工艺流程中,废热被充分利用,使得能源资源得到了充分利用,节省了能源开支。
同时,也减少了温室气体的
排放,对保护环境起到了积极的作用。
总的来说,余热发电工艺流程是通过收集工业生产过程中产生的废热,将废热转化为工作介质的热能,然后通过热能转化装置将热能转化为机械能,最终通过发电机将机械能转化为电能,进而供给社会使用。
这种工艺流程可以有效地提高能源利用效率,减少能源浪费,同时也对环境保护起到了一定的作用。
余热发电系统介绍一、余热发电工艺流程凝汽器热水井内的凝结水经凝结水泵与闪蒸器出水汇合,然后通过锅炉给水泵打入两台AQC锅炉省煤器内进行预热,产生一定压力下的高温水,从省煤器出口分三路分别送到AQC锅炉汽包、PH锅炉汽包和闪蒸器,进入汽包的水在锅炉内循环受热,产生过热蒸汽送入汽轮机做功。
进入闪蒸器内的高温水通过闪蒸产生一定压力的饱和蒸汽送入汽轮机后级做功,做功后的乏汽经过冷凝后重新回到热水井参与循环。
生产过程中消耗掉的水由纯水装置制取出的纯水经补给水泵打入热水井。
二、主机参数介绍1、两台PH锅炉系统均采用川崎BLW型,室外式强制循环锅炉,受热面由两列组成,每列为:四组蒸发器、一组过热器。
锅炉汽包工作压力为0.789MPa,过热蒸汽温度294℃,蒸发量为44.68t/h,锅炉入口风温为306℃,出口风温为193℃,废气流量为590000Nm3/h。
2、两台AQC锅炉系统均采用川崎BLW型室外式自然循环锅炉,受热面为:二组省煤器、六组蒸发器、一组过热器。
锅炉汽包工作压力为0.789MPa,过热蒸汽温度345℃,蒸发量为36.93t/h,锅炉入口风温为360℃,出口风温为92℃,废气流量为412500N m3/h。
3、闪蒸器型式为竖直圆筒型,设计压力为0.294MPa ,器内压力为0.130MPa ,设计温度167℃,器内温度104.8℃,入口流量94.04t/h,闪蒸量为10.1t/h,出口流量为83940kg/h。
4、汽轮机采用南京汽轮机厂NZ30-0.689/0.137型、冲动式、多级混压、凝汽式汽轮机,汽轮机工作参数:蒸汽额定入口压力为0.689MPa,额定流量为163.22t/h,额定输出功率为30000kW,转速为3000r/min,工作级数为10级,排汽压力-95.6kPa。
5、发电机采用型号为QFW-33-2S,形式为横轴全封闭水冷热交换器式三相交流同步发电机,采用同轴交流无刷励磁方式,通过直联式联轴节与汽轮机连接,旋转方向:顺时针方向(从汽轮机向发电机方向看),绝缘种类:定子F级,转子F级,整机按B级考核。
纯低温余热发电工艺流程、主机设备工作原理简介
纯低温水泥窑余热发电技术是直接利用水泥窑窑头窑尾排放的中低温废气进行余热回收发电,无需消耗燃料,发电过程不产生任何污染,是一种经济效益可观、清洁环保、符合国家清洁节能产业政策的绿色发电技术,具有十分广阔的发展空间与前景。
工艺流程(见附图): 凝汽器热水井内的凝结水经凝结水泵泵入No.2闪蒸器出水集箱,与出水汇合,然后通过锅炉给水泵升压泵入AQC锅炉省煤器进行加热,经省煤器加热后的水(223℃)分三路分别送到AQC炉汽包,PH炉汽包和No.1闪蒸器内。
进入两炉汽包内的水在锅炉内循环受热,最终产生一定压力下的过热蒸汽作为主蒸汽送入汽轮机做功.进入No.1闪蒸器内的高温水通过闪蒸技术产生一定压力下的饱和蒸汽送入汽轮机第三级后做功,而№.1闪蒸器的出水作为№.2闪蒸器闪蒸饱和蒸汽的热源,№.2闪蒸器闪蒸出的饱和蒸汽送入汽轮机第五级后做功,做过功后的乏汽经过凝汽器冷凝后形成凝结水重新参与热力循环。
生产过程中消耗掉的水由纯水装置制取出的纯水经补给水泵打入热水井。
主机设备性能特点:
一、余热锅炉: AQC炉和PH炉
AQC锅炉的设计特点如下: 锅炉型式为立式,锅炉由省煤器、蒸发器、过热器、汽包及热力管道等构成。
锅炉前设置一预除尘器(沉降室),降低入炉粉尘。
废气流动方向为自上而下,换热管采用螺旋翅片管,以增大换热面积、减少粉尘磨损的作用。
锅炉内不易积灰,由烟气带走,故未设置除灰装置,工质循环方式为自然循环方式。
过热器作用:将饱和蒸汽变成过热蒸汽的加热设备,通过对蒸汽的再加热,提高其过热度(温度之差),提高其单位工质的做功能力。
蒸发器作用:通过与烟气的热交换,产生饱和蒸汽。
省煤器作用:设置这样一组受热面,对锅炉给水进行预热,提高给水温度,避免给水进入汽包,冷热温差过大,产生过大热应力对汽包安全形成威胁,同时也避免汽包水位波动过大,造成自动控制困难。
一方面最大限度地利用余热,降低排烟温度,另一方面,给水预热后形成高温高压水,作为闪蒸器产生饱和蒸汽的热源。
沉降室作用:利用重力除尘的原理将烟气中的大颗粒熟料粉尘收集,避免粉尘对锅炉受热面的冲刷、磨损。
PH 锅炉的设计特点如下: 锅炉型式为卧式,锅炉由蒸发器、过热器、汽包及热力管道构成,废气流动方向为水平流动,换热管采用蛇形光管,以防止积灰。
因生料具有粘附性,故锅炉设置振打装置进行除灰,工质循环为采用循环泵进行强制循环方式。
二、汽轮机
汽轮机是用具有一定温度和压力的蒸汽来做功的回转式原动机。
依其做功原理的不同,可分为冲动式汽轮机和反动式汽轮机两种类型。
两种型式汽轮机各具特点,各有其发展的空间。
冲动式汽轮机:蒸汽的热能转变为动能的过程,仅在喷嘴中发生,而工作叶片只是把蒸汽的动能转变成机械能的汽轮机。
即蒸汽仅在喷嘴中产生压力降,而在叶片中不产生压力降。
反动式汽轮机:蒸汽的热能转变为动能的过程,不仅在喷嘴中发生,而且在叶片中也同样发生的汽轮机。
即蒸汽不仅在喷嘴中进行膨胀,产生
压力降,而且在叶片中也进行膨胀,产生压力降。
冲动式与反动式在构造上的主要区别在于:
冲动式:动叶片出、入口侧的横截面相对比较匀称,汽流通道从入口到出口其面积基本不变。
反动式:动叶片出、入口侧的横截面不对称,叶型入口较肥大,而出口侧较薄,汽流通道从入口到出口呈渐缩状。
最简单的汽轮机单级汽轮机结构如下图,工作原理为:
具有一定压力和温度的蒸汽通入喷嘴膨胀加速,此时蒸汽压力、温度降低,速度增加,蒸汽热能转变为动能,然后,具有较高速度的蒸汽由喷嘴流出,进入动叶片流道,在弯曲的动叶片流道内,改变汽流方向,给动叶片以冲动力,产生了使叶轮旋转的力矩,带动主轴旋转,输出机械功,完成动能到机械能的转换。
热能→动能→机械能,这样一个能量转换的过程,便构成了汽轮机做功的基本单元,通常称这个做功单元为汽轮机的级,它是由一列喷嘴叶栅和其后紧邻的一列动叶栅所构成。
由于单级汽轮机的功率较小,且损失大,故使汽轮机发出更大功率,需要将许多级串联起来,制成多级汽轮机。
汽轮机分类按热力过程可分为:
1、凝汽式汽轮机:进入汽轮机做功的蒸汽,除少量漏汽外,全部或大部分排入凝汽器,形成凝结水。
2、背压式汽轮机:蒸汽在汽轮机内做功后,以高于大气压力被排入排汽室,以供热用户采暖和工业用汽。
3、调整抽汽式汽轮机:将部分做过功的蒸汽以某种压力下抽出,供工
业用或采暖用。
4、中间再热式汽轮机:将在汽轮机高压缸做完功的蒸汽,再送回锅炉过热器加热到新蒸汽温度,回中、低压缸继续做功。
按蒸汽初蒸汽分类:
1、低压汽轮机:新汽压力为1.2~1.5MPa;
2、中压汽轮机:新汽压力为2.0~4.0MPa;
3、次高压汽轮机:新汽压力为5.0~6.0MPa;
4、高压汽轮机:新汽压力为6.0~10.0MPa;
还有超高压、亚临界压力、超临界压力汽轮机等等。
三、发电机
余热发电所用汽轮发电机为三相交流同步发电机,型式为卧式,无刷励磁全封闭式。
通风冷却,全封闭水冷热交换器型,通过安装在转子的冷却风机,采用空气冷却方式。
发电机额定参数:额定输出容量:8100KVA,额定电压:6300V,额定电流:742A,额定频率:50HZ,极数4P,功率因数:80%滞后,励磁方式:旋转整流器式无刷励磁方式,绝缘等级:F级,润滑方式:强制润滑。
四、闪蒸器
所谓闪蒸,是指高温高压水经节流突然进入一个压力较低的空间,由于该压力低于该热水温度相对应的饱和压力,部分热水迅速汽化,因为汽化反应几乎是在瞬间完成,形象地称之为“闪蒸”。
闪蒸器就是这样一个完成闪蒸功能的设备。
为了充分利用余热热能,本厂装备两台闪蒸器,它的作用是使锅炉给水保持一定温度,并回收热水所附带的热量产生蒸汽做功;其次,它还起到闪蒸除氧作用。
五、冷却水系统
冷却水系统的作用主要是为凝汽器及其他冷却设备提供冷却循环用水。
包括两台冷却水泵和一套强制通风冷却塔及相应的冷却水管道等。
两台冷却水泵日常一台备用,采用强制通风冷却塔在场地受到限制的情况下可以大大减少占地面积,另外还可以减少初期投资;但因采用风扇强制通风,故厂用电量增加,同时增加了日常维护工作量。
组成主要有冷却水泵、冷却风扇、集水槽、散水嘴、散水管、填料、分离器和相应的连接管道等。
冷却风扇:对冷却塔内进行强制通风,对冷却水进行强制换热。
散水嘴与散水管:将循环冷却水呈水滴状均匀地洒向填料层。
填料:将散水嘴喷射出的水滴在填料的表面形成水膜,增大冷却面积。
分离器:防止散水嘴喷射出的水滴因强制通风造成飞沫损失,从而降低循环冷却水损失。
六、化学水处理系统
㈠纯水装置
纯水装置主要是通过阴阳离子交换树脂来置换出原水中的阴阳离子形成软化除盐水,作为发电系统的补充水,达到减少热力系统结垢与腐蚀的目的。
运行中失效的阳离子树脂和阴离子树脂分别通过盐酸HCL 和烧碱NaOH作为再生剂进行再生,以恢复树脂交换能力。
工艺流程为:原水原水箱原水泵多级砂过滤器过滤水箱
阳床阴床纯水箱凝汽器热水井
㈡炉内水处理
为了防止锅炉内腐蚀结垢,主要采用化学方法处理。
通过加药泵向锅炉内加磷酸三钠Na3PO4药品,使进入炉水中的钙离子、
镁离子等形成不粘附的水渣,通过连续、定期排污排掉.
给水加药装置所加药品为吗啉和联氨。
吗啉作用是调节给水的PH值.
联氨作用是除去水中溶解的氧气.
㈢冷却水处理
冷却水加药装置所加药品为HEDP(有机化合物)和二氧化氯。
HEDP
主要作用是防止冷却水系统管道结垢;二氧化氯主要作用是防止冷却水系
统管道内部及冷却塔水槽内微生物繁殖及粘垢形成,起杀菌灭藻作用。