余热发电工艺流程讲解
- 格式:doc
- 大小:37.50 KB
- 文档页数:6
水泥生产及余热发电工艺流程1.原料准备:水泥的主要原料包括石灰石、粘土、煤炭和铁矿石等。
这些原料经过粉碎、混合和储存后,形成称为原料料堆的物料贮存库。
2.煤炭烧烤:煤炭是水泥生产过程中的重要燃料,主要用于熟料(可烧成水泥的原料)的回转窑燃烧。
在煤炭烧烤过程中,煤炭经过烘干、烧结和脱硫等处理,形成高温燃烧所需的热能。
3.煤炭燃烧:煤炭在熟料窑中被点燃,在高温下进行燃烧,产生大量的能量。
同时,煤炭的燃烧会产生废气,包括二氧化碳、氮氧化物和硫化物等。
为了减少环境污染,需要对煤炭燃烧过程进行控制和治理。
4.熟料制备:原料料堆中的原料通过称重、配比和研磨等工艺,进入窑炉进行熟化反应。
在窑炉中,原料在高温条件下发生化学反应,最终形成水泥熟料。
5.熟料烧成:熟料在回转窑中经过烘干、预热和煅烧等过程,使其在高温中充分烧结,形成成品水泥熟料。
同时,熟料烧成过程中产生的热能被回收利用,用于生活热水供应和余热发电。
6.煤炬:煤炬是指烧制过程中煤粉和熟料的混合物,其主要作用是提供燃料和热能。
煤炭粉碎后与熟料混合,形成煤炬,通过窑炉进入烧结过程。
7.水泥磨磨煤:熟料烧成后,形成的水泥熟料经过水泥磨磨煤工序,与适量石膏一起磨成水泥粉末。
水泥磨磨煤是水泥生产过程中的最后一道工序,在这个过程中通过添加适量的石膏,调整水泥的硫铝酸盐含量,以控制水泥凝固时间。
8.余热发电:水泥生产过程中熟料窑产生的高温热气和窑外的余热可以通过余热发电系统进行回收利用,产生电能,减少能源浪费。
余热发电系统通常包括余热锅炉、蒸汽发生器和发电机组。
余热锅炉将烟气中的热能转化为蒸汽,然后传递给蒸汽发生器,通过发电机组将蒸汽转化为电能。
以上就是水泥生产及余热发电的工艺流程。
水泥生产产生的废气、废水和尾渣等需要经过处理和利用,以减少对环境的污染。
余热发电系统的引入不仅可以提高能源利用率,还可以降低碳排放和降低生产成本,具有重要的经济和环境效益。
余热发电工艺流程
1.窑尾烟气经5404烟气阀门进入SP炉,烟气经1级过热器、6级蒸发器、1级省煤器对
锅炉管道内的水进行热交换产生水蒸气,并同时过热器对水蒸气进行再加热,形成饱和蒸汽,饱和蒸汽经5407电动蒸汽阀门由主蒸汽管道进集汽箱。
烟气由5405阀门进入高温风机排入窑尾收尘器。
2.窑头烟气经2629烟气阀门进入AQC炉,烟气经1级过热器、2级蒸发器、1级公共省
煤气对锅炉管道内的水进行加热产生水蒸气,并同时由过热器对水蒸气进行再加热,形成饱和蒸汽,经5304电动蒸汽阀门由主蒸汽管道进入集汽箱。
烟气由5303阀门进入窑头收尘器。
3.集汽箱会和窑头、窑尾主蒸汽后经5526电动阀门进汽轮机主汽门,再经调节汽门对汽
轮机进行冲转,热能转变为动能,转速达3000转带动发电机并网发电。
余热锅炉发电的工艺流程主要用于回收工业生产过程中产生的高温废气(如水泥窑、冶金炉、垃圾焚烧炉等排放的烟气)中的余热,将其转化为电能。
以下是一个通用的余热锅炉发电工艺流程概述:1. 烟气进入:- 高温烟气从工业生产设备(例如冶炼炉、煅烧炉或垃圾焚烧炉)的烟气出口引出,经过管道引入余热锅炉。
2. 烟气换热:- 在余热锅炉内部,烟气自上而下或者自下而上流动,依次流经过热器、蒸发器和省煤器等不同受热面。
- 过热器:用于将饱和蒸汽进一步加热成过热蒸汽,提高其做功能力。
- 蒸发器:利用烟气的热量将送入的软化水转化为蒸汽。
- 省煤器:预先加热锅炉给水,减少后续阶段燃料消耗。
3. 水循环系统:- 给水系统:软化后的水首先经过除氧器去除溶解氧,然后由给水泵加压送往省煤器预热。
- 汽水分离与循环:从蒸发器出来的湿蒸汽进入汽水分离器进行汽水分离,分离出的蒸汽送至过热器,而分离出的水则由热水循环泵重新送回蒸发器加热循环使用。
4. 蒸汽动力转换:- 经过过热器加热形成的高温、高压过热蒸汽,送入汽轮机做功,驱动汽轮机转子旋转。
5. 发电环节:- 汽轮机的转动通过联轴器带动发电机的转子转动,从而实现机械能向电能的转化,发出电能并接入电网。
6. 烟气排放:- 烟气在完成热量交换后,温度已经大大降低,通常会经过除尘设备进一步净化后,由引风机引导至烟囱,最终安全排入大气。
7. 辅助系统:- 同时包括冷却水系统、纯水制备系统、锅炉给水处理系统、以及烟气处理系统等,确保整个发电过程的安全稳定运行。
每个具体的余热发电项目可能会根据其来源热源的特性和需求有所不同,但核心原理都是通过热交换来提升能源利用率,实现节能减排和能源再生的目的。
干熄焦余热发电技术
干熄焦余热发电技术是一种利用干熄焦过程中产生的余热进行发电的技术。
其工艺流程如下:
1. 焦炉生产出的约1000摄氏度的赤热焦炭被运送入干熄炉。
2. 在干熄炉的冷却室内,赤热焦炭与循环风机鼓入的冷惰性气体进行热交换。
3. 惰性气体吸收红焦的显热,温度上升至800摄氏度左右。
4. 吸收了红焦热量的高温惰性气体通过干熄焦锅炉进行换热,产生中高压过热蒸汽。
5. 中高压过热蒸汽驱动汽轮发电机组发电。
6. 汽轮机还可产生低压蒸汽用于供热。
通过以上流程,干熄焦余热发电技术实现了对红焦显热的回收利用,同时产生了电能和热能,具有显著的节能和环保效益。
纯低温余热发电工艺流程、主机设备工作原理简介纯低温水泥窑余热发电技术是直接利用水泥窑窑头窑尾排放的中低温废气进行余热回收发电,无需消耗燃料,发电过程不产生任何污染,是一种经济效益可观、清洁环保、符合国家清洁节能产业政策的绿色发电技术,具有十分广阔的发展空间与前景。
工艺流程(见附图): 凝汽器热水井内的凝结水经凝结水泵泵入No.2闪蒸器出水集箱,与出水汇合,然后通过锅炉给水泵升压泵入AQC锅炉省煤器进行加热,经省煤器加热后的水(223℃)分三路分别送到AQC炉汽包,PH炉汽包和No.1闪蒸器内。
进入两炉汽包内的水在锅炉内循环受热,最终产生一定压力下的过热蒸汽作为主蒸汽送入汽轮机做功.进入No.1闪蒸器内的高温水通过闪蒸技术产生一定压力下的饱和蒸汽送入汽轮机第三级后做功,而№.1闪蒸器的出水作为№.2闪蒸器闪蒸饱和蒸汽的热源,№.2闪蒸器闪蒸出的饱和蒸汽送入汽轮机第五级后做功,做过功后的乏汽经过凝汽器冷凝后形成凝结水重新参与热力循环。
生产过程中消耗掉的水由纯水装置制取出的纯水经补给水泵打入热水井。
主机设备性能特点:一、余热锅炉: AQC炉和PH炉AQC锅炉的设计特点如下: 锅炉型式为立式,锅炉由省煤器、蒸发器、过热器、汽包及热力管道等构成。
锅炉前设置一预除尘器(沉降室),降低入炉粉尘。
废气流动方向为自上而下,换热管采用螺旋翅片管,以增大换热面积、减少粉尘磨损的作用。
锅炉内不易积灰,由烟气带走,故未设置除灰装置,工质循环方式为自然循环方式。
过热器作用:将饱和蒸汽变成过热蒸汽的加热设备,通过对蒸汽的再加热,提高其过热度(温度之差),提高其单位工质的做功能力。
蒸发器作用:通过与烟气的热交换,产生饱和蒸汽。
省煤器作用:设置这样一组受热面,对锅炉给水进行预热,提高给水温度,避免给水进入汽包,冷热温差过大,产生过大热应力对汽包安全形成威胁,同时也避免汽包水位波动过大,造成自动控制困难。
一方面最大限度地利用余热,降低排烟温度,另一方面,给水预热后形成高温高压水,作为闪蒸器产生饱和蒸汽的热源。
余热发电工艺流程图
余热发电是一种将工业生产过程中产生的余热转化为电能的技术。
下面是一个典型的余热发电工艺流程图:
1. 余热收集:首先,工业生产过程中产生的烟气、废水或高温废气中的余热被收集起来。
这些余热通常是通过烟气管道或烟囱来收集的。
在收集过程中,还需要对烟气进行净化处理,以去除其中的颗粒物和污染物。
2. 余热回收:收集到的余热被送入余热回收系统中,通过换热器将烟气、废水或高温废气中的余热传递给工作流体。
工作流体可以是水、有机液体或其他合适的介质。
在换热器中,烟气、废水或高温废气中的余热被传递给工作流体,使其升温。
3. 蒸汽发生:升温后的工作流体进入蒸汽发生器,通过与发生器中的低温工质接触,将部分工作流体中的热量转化为蒸汽。
蒸汽是余热发电中常用的工作介质,可以用于驱动汽轮机或蒸汽发动机产生动力。
4. 发电:蒸汽进入汽轮机或蒸汽发动机,通过旋转涡轮,将热能转化为机械能。
旋转涡轮的运动被连接到发电机,通过转子产生电能。
这样,余热被转化为电能,供给工厂自用或送入电网供应外部用户。
5. 热能回收:在发电过程中,余热还可以被回收利用。
通过余热回收装置,将发电过程中产生的废热用于加热工序中的水或蒸汽,提高整个工业生产过程的能效。
6. 废气排放:余热发电过程中的废气经过净化处理后,被排放到大气中。
净化处理有助于减少废气中的污染物含量,避免对环境造成污染。
以上就是一个典型的余热发电工艺流程图。
通过将工业生产过程中产生的余热有效转化为电能,可以提高能源利用效率,减少能源消耗和环境污染。
这种技术对于可持续发展和节能减排具有重要意义。
生产工艺流程:(19)余热发电系统本方案拟采用单压纯低温余热发电技术,与双压系统和闪蒸系统相比,单压系统流程相对较简单,当设计选择的锅炉能完全吸收烟气放出的热量时,采用单压设计更为合理,系统内不同参数的工质较少,控制操作都更简单,窑头锅炉和汽轮机设备造价降低,系统管路减少,投资相对更省。
结合本工程的生产规模及投资环境,拟采用单压纯低温余热发电技术。
该技术不使用燃料来补燃,因此不对环境产生附加污染,是典型的资源综合利用工程。
主蒸汽的压力和温度较低,运行的可靠性和安全性高,运行成本低,日常管理简单。
综合考虑本工程2500t/d熟料新型干法水泥生产线窑头、窑尾的余热资源分布情况和水泥窑的运行状况,确定热力系统及装机方案如下:系统主机包括一台PH余热锅炉、一台AQC余热锅炉和一套凝汽式汽轮发电机组。
① 据2500t/d水泥熟料生产线窑头冷却机废气排放温度的分布,在满足熟料冷却及工艺用热的前提下,采驭中部取气,从而提高进入窑头余热锅炉-AQC炉的废气温度,减少废气流量,在缩小AQC炉体积的同时增大了换热量。
并且提高了整个系统的循环热效率。
在窑头冷却机中部废气出口设置窑头余热锅炉AQC炉,该锅炉分2段设置,其中I段为蒸汽段,II段为热水段。
AQC炉II段生产的150°C热水提供给AQC炉I段及PH锅炉。
AQC炉I段生产的1.6MPa- 320。
C的过热蒸汽作为主蒸汽与窑尾余热锅炉PH炉生产的同参数过热蒸汽合并后,一并进入汽轮机作功。
汽轮机的凝结水进入余热锅炉AQC炉I工段,加热后分别作为锅炉给水进入余热锅炉SP炉、余热锅炉AQC炉的I段。
②PH余热锅炉:在窑尾预热器的废气出口管道上设置PH余热锅炉,该锅炉包括过热器和蒸发器,生产1.6MPa-320℃的过热蒸汽,进入蒸汽母管后通入汽轮发电机组,出PH余热锅炉废气温度降到180-200℃,供生料粉磨烘干使用。
PH锅炉热效率可达35%以上。
③汽轮发电机组:上述二台余热锅炉生产的蒸汽共可发电4100kW,因此配置4500kW凝汽式汽轮机组一套。
水泥余热发电工艺流程水泥生产过程中会产生大量的余热,如果能够利用这些余热进行发电,将会大大节约能源资源。
现在就让我们来了解一下水泥余热发电的工艺流程。
首先,水泥生产过程中,将干燥、煅烧后的水泥窑炉烟气中的高温余热通过预热器进行余热回收。
预热器是一个重要的设备,其内部布置了一系列的热交换器,通过引导煤气流经这些热交换器,将烟气中的高温余热传递给工艺过程中需要的干燥燃料和新鲜空气。
其次,经过预热器回收的余热进入鼓风机。
鼓风机是将烟气送到煤气取样系统或者废气处理系统的关键设备。
余热通过鼓风机输送,可以将水泥窑炉中的脱硫剂与废气进行充分的混合和干燥,以达到更好的脱硫效果。
同时,鼓风机还能够将煤气压力加大,以满足后续工艺过程中的需求。
然后,余热进一步通过废气处理系统进行处理。
废气处理系统主要包括脱硫、脱硝和除尘等环保工艺。
利用余热进行废气处理,能够将煤气中的污染物降低到合理的限值范围内,保证水泥生产过程中的环境质量。
最后,经过废气处理后的余热进入蒸汽发生器。
蒸汽发生器是利用余热进行蒸汽发电的核心设备。
在蒸汽发生器中,余热通过热交换作用将水加热,使水变成蒸汽。
蒸汽再通过蒸汽轮机驱动发电机进行发电,将余热转化为电能。
整个水泥余热发电工艺流程包括余热回收、鼓风机输送、废气处理和蒸汽发电四个关键环节。
这些环节相互配合,使得水泥生产过程中的余热能够得到充分利用,大大提高了水泥生产过程的能源利用效率。
通过余热发电,不仅可以减少对传统能源的依赖,还能够减少温室气体排放,达到节能减排的目的。
综上所述,水泥余热发电工艺流程可以将水泥生产过程中产生的余热充分利用,实现能源的节约和环境的净化,具有很高的经济和环保价值。
希望在未来的发展中,水泥行业能够进一步优化和发展余热发电技术,为我国的可持续发展做出更大的贡献。
水泥余热发电工艺流程水泥生产过程中产生的余热一直是一个被人们关注的问题。
利用水泥生产过程中的余热进行发电已经成为一种常见的做法。
这种方法不仅可以有效地利用余热资源,还可以减少对环境的影响,提高水泥生产的能源利用率。
本文将详细介绍水泥余热发电的工艺流程。
1. 余热回收系统。
在水泥生产过程中,熟料冷却机、窑头和窑尾等部位都会产生大量的余热。
为了有效地利用这些余热,需要安装余热回收系统。
余热回收系统通常包括余热锅炉、余热管道和余热发电设备。
余热锅炉用来将余热转化为蒸汽,然后通过余热管道输送到发电设备中进行发电。
2. 蒸汽发电系统。
余热蒸汽通过管道输送到蒸汽发电设备中,蒸汽发电设备通常采用蒸汽轮机发电。
蒸汽进入蒸汽轮机后,推动轮机转动,从而带动发电机发电。
通过这种方式,余热可以被充分利用,同时也可以产生电能。
3. 发电系统。
发电系统是整个水泥余热发电工艺中最核心的部分。
发电系统包括蒸汽轮机、发电机、控制系统等部分。
蒸汽轮机是将余热蒸汽转化为机械能的设备,而发电机则是将机械能转化为电能的设备。
控制系统则用来监控和调节发电系统的运行状态,保证系统的安全稳定运行。
4. 排放系统。
在发电过程中会产生废气,为了保护环境,需要安装排放系统对废气进行处理。
排放系统通常包括除尘器、脱硫设备、脱硝设备等部分。
这些设备可以有效地去除废气中的颗粒物和有害气体,保护周围的环境。
5. 辅助系统。
水泥余热发电工艺中还需要一些辅助系统来保证整个工艺的正常运行。
比如冷却系统用来冷却发电设备,水处理系统用来处理冷却水和锅炉给水等。
这些辅助系统在整个工艺中起着至关重要的作用。
通过以上的工艺流程,水泥余热可以被有效地利用,转化为电能,从而提高水泥生产的能源利用率,减少对环境的影响。
水泥企业可以通过余热发电的方式获得额外的经济收益,同时也可以为环保事业做出贡献。
然而,水泥余热发电工艺也面临一些挑战。
首先是技术方面的挑战,余热发电技术需要高度的自动化和稳定性,需要水泥企业具备一定的技术实力。
余热发电工艺流程、主机设备工作原理简介余热发电余热发电是一种通过回收生产过程中产生的工业余热,将其转化为电能的环保型能源利用技术。
它能够有效地提高工业生产过程中的能源利用率,减少大量二氧化碳和其他有害气体的排放,对于推动工业节能和环保发展有着重要的作用。
工艺流程余热发电工艺流程主要包括余热回收、余热蒸汽与受热水循环、加热循环、排气、冷凝等环节。
1.余热回收:利用余热回收装置对工业生产过程中的热量进行回收。
通常,余热回收设备采用高效传热器,将低温余热转化为高温余热。
2.余热蒸汽与受热水循环:余热回收后的高温余热通过传热器传导至工作介质,常用的介质为蒸汽和循环水。
3.加热循环:高温介质在加热器中进一步加热,增加介质的温度和压力。
4.排气:未能转化为电能的高温气体排放至大气中。
5.冷凝:过热蒸汽在冷凝器中冷却,将过热蒸汽转化为高压饱和水,该水通过泵在再次流入传热器,开始新一轮回收。
电能输出余热发电产生的电能主要经过调节和控制后输出,可以用于工厂内部用电和向电网输送电力。
主机设备工作原理简介余热发电主机设备包括涡轮发电机、减速器、发电机控制系统等主要设备。
以下是它们的工作原理简介:涡轮发电机涡轮发电机是余热发电设备中的核心设备之一。
它是将高速旋转的轴承通过机械装置转化为电能的装置。
其工作过程如下:1.涡轮叶片接受高压、高速蒸汽的冲击,启动涡轮的旋转。
2.涡轮的旋转通过轴传动减速器。
3.通过减速器就可以将转速降低到发电机的工作转速。
4.通过发电机控制系统控制输出的电压和频率,即可输出电能。
减速器减速器是涡轮发电机降低转速的一个重要设备,其工作原理如下:1.接收涡轮发电机传来的高速轴,降低转速。
2.转速降低之后,将轴的转速与电机控制系统的要求匹配,实现电能高效输出。
发电机控制系统发电机控制系统是整个余热发电设备的监控和控制中心,其工作原理如下:1.接收来自涡轮发电机的反馈信号,对电压和电流进行监控和调节。
2.通过反馈系统调节发电机的输出功率和工作状态。
纯低温余热发电工艺流程、主机设备和工作原理简介直接利用水泥窑窑头窑尾排放的中低温废气进行余热回收发电,无需消耗燃料,发电过程不产生任何污染,是一种经济效益可观、清洁环保、符合国家清洁节能产业政策的绿色发电技术,具有十分广阔的发展空间与前景。
工艺流程: 凝汽器热水井内的凝结水经凝结水泵泵入No.2闪蒸器出水集箱,与出水汇合,然后通过锅炉给水泵升压泵入AQC锅炉省煤器进行加热,经省煤器加热后的水(223℃)分三路分别送到AQC炉汽包,PH炉汽包和No.1闪蒸器内。
进入两炉汽包内的水在锅炉内循环受热,最终产生一定压力下的过热蒸汽作为主蒸汽送入汽轮机做功.进入No.1闪蒸器内的高温水通过闪蒸技术产生一定压力下的饱和蒸汽送入汽轮机第三级后做功,而№.1闪蒸器的出水作为№.2闪蒸器闪蒸饱和蒸汽的热源,№.2闪蒸器闪蒸出的饱和蒸汽送入汽轮机第五级后做功,做过功后的乏汽经过凝汽器冷凝后形成凝结水重新参与热力循环。
生产过程中消耗掉的水由纯水装置制取出的纯水经补给水泵打入热水井。
主机设备性能特点:一、余热锅炉: AQC炉和PH炉AQC锅炉的设计特点如下: 锅炉型式为立式,锅炉由省煤器、蒸发器、过热器、汽包及热力管道等构成。
锅炉前设置一预除尘器(沉降室),降低入炉粉尘。
废气流动方向为自上而下,换热管采用螺旋翅片管,以增大换热面积、减少粉尘磨损的作用。
锅炉内不易积灰,由烟气带走,故未设置除灰装置,工质循环方式为自然循环方式。
过热器作用:将饱和蒸汽变成过热蒸汽的加热设备,通过对蒸汽的再加热,提高其过热度(温度之差),提高其单位工质的做功能力。
蒸发器作用:通过与烟气的热交换,产生饱和蒸汽。
省煤器作用:设置这样一组受热面,对锅炉给水进行预热,提高给水温度,避免给水进入汽包,冷热温差过大,产生过大热应力对汽包安全形成威胁,同时也避免汽包水位波动过大,造成自动控制困难。
一方面最大限度地利用余热,降低排烟温度,另一方面,给水预热后形成高温高压水,作为闪蒸器产生饱和蒸汽的热源。
余热发电流程
余热发电是一种能够有效利用工业生产过程中产生的废热来发电的技术。
通过余热发电,不仅可以减少能源的浪费,还可以降低对环境的影响,提高能源利用率。
下面将介绍余热发电的基本流程及其原理。
首先,余热发电的流程可以简单分为收集余热、转换能量和发电三个步骤。
在工业生产过程中,往往会产生大量的废热,这些废热如果不加以利用就会被浪费掉。
因此,首先需要收集并储存这些废热。
收集的方式可以有多种,例如利用换热器将废热转化为热水或蒸汽,然后通过管道输送到余热发电装置。
其次,转换能量是余热发电的关键步骤。
收集到的废热经过换热器转化为热水或蒸汽后,会被送入余热发电装置中的发电机组。
在发电机组中,热水或蒸汽的能量将被转化为机械能,驱动发电机旋转,产生电能。
这一过程需要通过适当的设备和技术来实现能量的转换,以确保能够高效地利用废热来发电。
最后,发电是余热发电流程的最终步骤。
经过能量转换后,发电机组将产生电能,这部分电能可以用于工业生产过程中的电力需
求,也可以并网供电,为社会提供清洁能源。
通过这一流程,废热
得到了有效的利用,不仅实现了能源的再生利用,还为企业节约了
能源成本,提高了经济效益。
总的来说,余热发电的流程是一个高效利用废热资源的过程,
通过收集、转换和发电三个步骤,实现了废热能量的再生利用。
这
种技术在工业生产中具有重要的意义,不仅可以提高能源利用效率,还可以减少环境污染,为可持续发展做出贡献。
希望未来能有更多
的企业和工厂采用余热发电技术,共同为建设资源节约型社会做出
努力。
余热发电系统工艺流程余热发电是利用工业生产过程中产生的废热来发电的一种能源回收利用方式。
下面是一个典型的余热发电系统工艺流程:1.热源收集:在工业生产过程中,产生大量的废热。
热源收集是余热发电系统的第一步,主要是通过管道或其他方式将废热导入余热发电系统。
2.废热回收:在余热发电系统中,废热需要通过换热器进行回收。
换热器是一个设备,用于将废热传递给工作介质,使其温度升高。
3.工作介质循环:在余热发电系统中,工作介质一般是水蒸汽。
废热回收后,工作介质会加热,并转化为高温高压的水蒸汽。
然后,水蒸汽会通过涡轮发电机组,将其热能转化为电能。
4.电能输出:通过涡轮发电机组,机械能被转化为电能。
电能可以直接输出到电网中,为用户提供电力。
5.回水循环:在发电过程中,水蒸汽会凝结成水,然后通过凝汽器冷却,再次回到换热器中,与废热进行换热。
这样就形成了一个循环,有效地利用了废热。
6.废热排放:在余热发电系统中,一些废热无法回收利用,例如烟气中的热量。
这部分废热需要通过废热排放系统排出。
7.控制与监测:余热发电系统需要进行控制和监测,以确保其正常运行。
控制系统可以实现对废热流量、工作介质循环等参数的控制,监测系统可以实时监测系统的运行状态。
8.维护与保养:余热发电系统需要定期进行维护与保养,以确保其长期稳定运行。
维护包括设备的清洁、检修和更换,保养包括设备的润滑和防腐。
以上就是一个典型的余热发电系统的工艺流程。
通过对废热的回收利用,余热发电系统可以有效地降低能源消耗,减少环境污染,实现能源的可持续利用。
余热发电工艺流程简述
(1)烟气流程
出窑尾一级筒的废气约为330℃经SP炉换热后温度降至210℃左右,经窑尾高温风机送至原料磨烘干原料后,通过除尘器净化达标排放。
去自窑头篦冷机中部的废气约360℃经沉降室沉降将烟气的含尘量由50g/Nm3降至8~10g/Nm3后进入AQC炉,热交换后进入收尘器净化达标后与熟料冷却机尾部的废气会合后由引风机经烟囱排入大气。
(2)水、汽流程
原水经预处理后进入锅炉水处理车间,由反渗透及钠床装置进行处理,达标后的水作为发电系统的补充水补入发电系统的除氧器。
经化学除痒后的软化水由锅炉给水泵送至AQC炉的省煤器段,经过省煤器段加热后的约165℃的热水按一定比例分别进入AQC炉、SP 炉的蒸发段、过热段后,AQC炉产0.789MPa、330℃的过热蒸汽,SP 炉产0.789MPa、330℃的过热蒸汽,混合后进入汽轮机主进汽口,供汽轮机做工发电。
经汽轮机做功后的乏汽进入凝汽器冷凝成凝结水后,由凝结水泵送至化学除氧器除氧,再由锅炉给水泵将除氧后的冷凝水和补充水直接送至AQC炉,完成一个汽水循环。
(3)排灰流程
SP炉的排灰为窑灰,可回到水泥生产工艺流程中,设计时拟与窑尾除尘器收下的粉尘一起回到工艺系统。
工艺流程图:。
余热发电的工艺流程主要设备和工作原理简单介绍余热发电是利用工业生产过程中产生的废热来发电的一种方式。
这些废热主要来自于燃烧发电机组、高温工业炉窑、冶金、化工、电子等行业。
通过余热发电,可以最大限度地发挥能源的效益,提高能源利用率,减少环境污染。
2.余热转换:回收的废热需要通过热交换器或热回收系统将其转化成可供使用的高温热能或高压蒸汽。
这一步骤主要是将废热转化为对发电机来说更为适用的能源。
3.发电机运行:高温热能或高压蒸汽通过锅炉或涡轮机等设备驱动发电机进行发电。
发电机将转化为机械能的能源转化为电能,并输出为电网所需的电力。
4.余热回收再利用:通过废热回收系统将发电机组产生的余热进行回收。
这样可以提高能源利用效率,减少能源的浪费,并降低环境污染。
主要设备及其工作原理简介如下:1.烟气余热回收系统:烟气余热回收系统主要由烟囱、换热器和蓄热器等组成。
其工作原理是通过烟气与热介质之间的热量交换,将烟气中的废热转化为热能,再将热能通过热能回收装置转化为电能。
2.蒸汽涡轮发电机组:蒸汽涡轮发电机组是一种常见的余热发电设备。
其工作原理是通过高温高压的蒸汽驱动涡轮机旋转,涡轮机的转动分别驱动发电机和压缩机工作,将热能转化为电能。
3.蓄热器:蓄热器是余热发电中的重要设备之一、其工作原理是通过保存和释放热能的方式,使废热能够更好地用于发电系统。
蓄热器可以将低温的废热转化为高温的热能,提高发电过程中的能源利用效率。
4.综合利用系统:综合利用系统通过多种工艺,将余热转化为电能的同时,还可以利用余热供暖、蒸馏水等。
这样可以最大限度地提高能源利用效率,实现能源的再生利用。
综上所述,余热发电是一种有效的能源利用方式,通过回收废热,将其转化为高温热能或高压蒸汽,再通过发电机组将其转化为电能。
这种方式可以提高能源的利用效率,减少环境污染,是可持续发展的重要手段之一、不同行业的余热发电流程和设备可能略有差异,但总体原理是相似的。
余热发电工艺流程
《余热发电工艺流程》
余热发电是利用工业生产中产生的废热,通过余热发电设备将废热转化为电能的一种环保高效的发电方式。
余热发电工艺流程包括余热采集、余热转换和发电三个主要环节。
首先是余热采集。
工业生产中产生的余热通常来自于燃烧、冷却和其他工艺过程,需要通过余热采集设备将废热进行集中采集,并转移到余热转换设备。
接下来是余热转换。
余热转换设备一般采用热交换器和蒸汽轮机等设备,通过将余热转化为蒸汽或热水,利用蒸汽轮机驱动发电机产生电能。
在余热转换的过程中,需要进行温度、压力和流量等参数的控制,保证能够有效利用余热转化成电能。
最后是发电。
通过发电机将蒸汽或热水转变为电能,进而通过电网输送到工业生产线或附近的用户,实现余热的高效利用。
同时,在实际的生产中还需要对发电的稳定性和耐久性进行考量,确保余热发电系统的可靠运行。
总体来说,余热发电工艺流程通过充分利用工业生产中的废热,将其转化为电能,不仅能够有效减少环境污染,还能够降低能源消耗,节约生产成本,是一种具有很大应用前景的绿色能源解决方案。
余热发电工艺流程余热发电是一种利用工业生产过程中产生的余热来发电的环保节能技术。
通过将工业生产中产生的高温余热转化为电能,不仅可以提高能源利用率,还可以减少对环境的影响。
下面将介绍余热发电的工艺流程。
1. 余热收集余热发电的第一步是收集工业生产过程中产生的余热。
通常情况下,工业生产过程中会产生大量的高温余热,比如炉窑、锅炉、热风炉等设备产生的余热。
这些余热需要通过余热回收设备进行收集和集中处理。
2. 余热预处理收集到的余热需要经过预处理才能用于发电。
预处理的主要目的是降低余热的温度和压力,以便后续的发电设备能够正常运行。
通常情况下,余热预处理包括余热冷却、除尘、除硫等工序。
3. 蒸汽发电经过预处理的余热通常会被用来产生蒸汽,然后通过蒸汽发电机组将蒸汽能量转化为电能。
蒸汽发电是余热发电的核心环节,也是最常用的发电方式。
在蒸汽发电过程中,余热会被用来加热水,产生高温高压的蒸汽,然后蒸汽会驱动发电机组转动,产生电能。
4. 热水发电除了蒸汽发电外,余热还可以用来产生热水,然后通过热水发电机组将热水能量转化为电能。
热水发电通常适用于一些温度较低的余热,比如废水余热、空调余热等。
5. 发电系统无论是蒸汽发电还是热水发电,都需要配备相应的发电系统,包括发电机组、发电控制系统、变压器等设备。
这些设备需要根据余热发电的特点进行设计和选型,以确保发电系统能够稳定、高效地运行。
6. 排放处理余热发电过程中会产生一些废气和废水,这些废气和废水需要经过处理后才能排放。
通常情况下,余热发电厂会配备废气处理设备和废水处理设备,以确保排放达标。
7. 余热利用除了用于发电外,余热还可以用于供暖、生活热水等方面。
余热发电工艺流程中需要考虑如何充分利用余热,提高能源利用效率。
综上所述,余热发电工艺流程包括余热收集、余热预处理、蒸汽发电或热水发电、发电系统、排放处理和余热利用等环节。
通过合理设计和运行,余热发电可以成为工业生产过程中的一种清洁能源,为可持续发展做出贡献。
余热发电系统工艺流程1.废热收集:首先需要收集工业企业产生的废热。
这些废热可以来自于锅炉、燃气轮机、烟气等。
一般采用余热锅炉来接收这些废热,并将其转化为高压蒸汽。
2.蒸汽输送:接收到的废热通过余热锅炉中的换热器转化为高压蒸汽。
这些蒸汽可以直接用于工业企业的生产过程中,也可以用于发电。
3.蒸汽扩能:如果蒸汽用于发电,那么需要将蒸汽的压力进一步扩大,以满足发电机组的要求。
这一过程可以通过采用蒸汽透平机组实现,将蒸汽的压力和温度提高,从而提高蒸汽的能量。
4.发电:经过蒸汽扩能后,蒸汽将进入发电机组。
发电机组通过内部的转子和定子之间的磁场相互作用,将蒸汽能量转化为电能。
发电机组一般采用涡轮发电机组或蒸汽轮发电机组,能够高效转化蒸汽能量。
5.废气处理:在蒸汽通过发电机组后,会产生废气。
这些废气可能含有对环境有害的物质,比如二氧化硫、氮氧化物等。
因此需要对废气进行处理,将其中的有害物质进行去除,以减少对环境的污染。
6.发电集成:余热发电系统还可以与其他能源发电系统进行集成。
比如可以将余热发电系统与太阳能光伏发电系统相结合,将太阳能电池板产生的电能与余热发电系统产生的电能进行组合,提高系统的发电效率。
7.电能利用:发电后产生的电能可以用于工业企业自身的消耗,也可以通过电网进行输送和销售。
如果工业企业自身消耗的电能小于发电量,那么可以将多余的电能卖给电网,实现电能的回收和利用。
总而言之,余热发电系统工艺流程包括收集废热、蒸汽输送、蒸汽扩能、发电、废气处理、发电集成和电能利用等环节。
通过充分利用工业企业产生的废热,可以实现能源的高效利用和环境的减排,具有很高的经济和环境效益。
余热发电工艺流程讲解
余热发电工艺流程讲解
授课人:孙飞
原水箱 纯水装置 凝汽器 凝结水泵 锅炉给水泵 AQC 炉省煤器
AQC 炉汽包 AQC 蒸发器
AQC 炉过热器 汽轮机 发电机
PH 炉汽包 PH 炉过热器
PH 炉蒸发器
闪蒸器
纯水箱 纯低温水泥窑余热发电技术是直接利用窑头窑尾排放的中低温废气进行余热回收发电,无需消耗燃料,发电过程不产生任何
污染,是一种经济效益可观、清洁环保、符合国家清洁节能产业政策的绿色发电技术,具有十分广阔的发展空间与前景。
工艺流程(见附图): 余热电站的热力循环是基本的蒸汽动力循环,即汽、水之间的往复循环过程。
蒸汽进入汽轮机做功后,经凝汽器冷却成凝结水,凝结水经凝结水泵(150A/B)泵入闪蒸器出水集箱,与闪蒸器出水汇合,然后通过锅炉给水泵(230A/B)升压泵入AQC锅炉省煤器进行加热,经省煤器加热后的高温水(167℃)分三路分别送到AQC炉汽包,PH炉汽包和闪蒸器内。
进入两炉汽包内的水在锅炉内循环受热,最终产生一定压力下的过热蒸汽作为主蒸汽送入汽轮机做功.进入闪蒸器内的高温水通过闪蒸原理产生一定压力下的饱和蒸汽送入汽轮机第七级起辅助做功作用,做过功后的乏汽经过凝汽器冷凝后形成凝结水重新参与热力循环。
生产过程中消耗掉的水由纯水装置制取出的纯水经补给水泵(511)打入热水井(凝汽器140)。
水泥厂余热资源的特点是:流量大,品位较低。
以宁国水泥厂4000t/d生产线为例,PH(预热器)和AQC(冷却机)出口废气流量和温度分别为258550Nm3/h、350℃和306600Nm3/h、238℃,余热发电便是充分利用这两部分余热资源进行热能回收。
1)热力系统
整个热力系统设计力求经济、高效、安全,系统工艺流程是
由两台高效余热锅炉AQC、PH•锅炉闪蒸器和一套汽轮发电机组组成,辅之以冷却水系统、纯水制取系统、锅炉给水系统及锅炉粉尘输送系统。
余热锅炉内进行热交换产生压力为25kg/cm2、温度为335℃~350℃、额定蒸发量为101t/h的过热蒸汽通入汽轮机,进行能量转换,拖动发电机向电网输送电力。
(1)采用凝汽式混汽式汽轮机。
凝汽式是指做过功的蒸汽充分冷凝成凝结水,重新进入系统循环,减少系统补充水量。
混汽式是指汽轮机除主蒸汽外,另有一路低压饱和蒸汽导入汽轮机做功,从而提高汽轮机相对内效率,提高发电机输出功率。
(2)设置具有专利技术、高热效率的余热PH锅炉,采用特殊设计的机械振打装置进行受热面除灰,保证锅炉很高的传热效率。
(3)应用热水闪蒸技术(高压热水进入低压空间瞬间汽化现象),设置一台低压闪蒸器,一方面将闪蒸出的饱和蒸汽导入汽轮机做功,进一步提高汽轮机做功功率,另一方面形成锅炉给水系统循环,可以有效地控制AQC炉省煤器段出口水温,保证锅炉给水工况稳定。
(4)由于PH出口废气还要用于原料烘干,所以PH锅炉无省煤器,只设蒸发器和过热器,控制出炉烟温在250℃,仍可满足水泥生产线工艺需求。
(5)采用热水闪蒸自除氧结合化学除氧的办法进行除氧,不另设除氧器,减少了工艺设备,简化了工艺流程。
(6)热力泵均采用一用一备双系列。
在运行泵出现故障时,备用泵自动投入使用,保证了发电系统安全、稳定运行。
2 锅炉系统
余热锅炉: AQC炉和PH炉
AQC锅炉的设计特点如下: 锅炉型式为立式,锅炉由一组省煤器、六组蒸发器、一组过热器、汽包及热力管道等构成。
锅炉前设置一预除尘器(沉降室),降低入炉粉尘。
废气流动方向为自上而下,换热管采用螺旋翅片管,以增大换热面积、减少粉尘磨损的作用。
锅炉内不易积灰,由烟气带走,故未设置除灰装置,工质循环方式为自然循环方式。
过热器作用:将饱和蒸汽变成过热蒸汽的加热设备,通过对蒸汽的再加热,提高其过热度(温度之差),提高其单位工质的做功能力。
蒸发器作用:通过与烟气的热交换,产生饱和蒸汽。
省煤器作用:设置这样一组受热面,对锅炉给水进行预热,提高给水温度,避免给水进入汽包,冷热温差过大,产生过大热应力对汽包安全形成威胁,同时也避免汽包水位波动过大,造成自动控制困难。
一方面最大限度地利用余热,降低排烟温度,另一方面,给水预热后形成高温高压水,作为闪蒸器产生饱和蒸汽
的热源。
沉降室作用:利用重力除尘的原理将烟气中的大颗粒熟料粉尘收集,避免粉尘对锅炉受热面的冲刷、磨损。
PH 锅炉的设计特点如下: 锅炉型式为卧式,锅炉由四组蒸发器、一组过热器、汽包及热力管道构成,废气流动方向为水平流动,换热管采用蛇形光管,以防止积灰。
因生料具有粘附性,故锅炉设置振打装置进行除灰,工质循环为采用循环泵进行强制循环方式。