竞争型神经网络要点
- 格式:ppt
- 大小:132.01 KB
- 文档页数:12
利用基本竞争型网络进行分类1.课程设计目的(1)加深对模式识别基本理论知识的理解。
(2)培养独立开展科研的能力和编程能力。
(3)掌握基本竞争型网络的结构及其在模式识别中的应用。
2.课程设计要求(1)掌握课程设计的相关知识、概念清晰。
(2)程序设计合理、能够正确运行。
3.相关知识3.1神经网络人的思维有逻辑性和直观性两种不同的基本方式。
逻辑性的思维是指根据逻辑规则进行推理的过程;它先将信息化成概念,并用符号表示,然后,根据符号运算按串行模式进行逻辑推理;这一过程可以写成串行的指令,让计算机执行。
然而,直观性的思维是将分布式存储的信息综合起来,结果是忽然间产生想法或解决问题的办法。
这种思维方式的根本之点在于以下两点:1.信息是通过神经元上的兴奋模式分布储在网络上;2.信息处理是通过神经元之间同时相互作用的动态过程来完成的。
人工神经网络就是模拟人思维的第二种方式。
这是一个非线性动力学系统,其特色在于信息的分布式存储和并行协同处理。
虽然单个神经元的结构极其简单,功能有限,但大量神经元构成的网络系统所能实现的行为却是极其丰富多彩的。
3.2人工神经网络的工作原理人工神经网络首先要以一定的学习准则进行学习,然后才能工作。
现以人工神经网络对手写“A”、“B”两个字母的识别为例进行说明,规定当“A”输入网络时,应该输出“1”,而当输入为“B”时,输出为“0”。
所以网络学习的准则应该是:如果网络作出错误的的判决,则通过网络的学习,应使得网络减少下次犯同样错误的可能性。
首先,给网络的各连接权值赋予(0,1)区间内的随机值,将“A”所对应的图象模式输入给网络,网络将输入模式加权求和、与门限比较、再进行非线性运算,得到网络的输出。
在此情况下,网络输出为“1”和“0”的概率各为50%,也就是说是完全随机的。
这时如果输出为“1”(结果正确),则使连接权值增大,以便使网络再次遇到“A”模式输入时,仍然能作出正确的判断。
如果输出为“0”(即结果错误),则把网络连接权值朝着减小综合输入加权值的方向调整,其目的在于使网络下次再遇到“A”模式输入时,减小犯同样错误的可能性。
人工智能大模型算法随着人工智能技术的飞速发展,大模型算法已经成为这一领域的重要组成部分。
这些算法能够处理大规模数据,进行深度学习和模式识别,从而在各个领域中发挥重要作用。
本篇文章将详细介绍人工智能中的大模型算法,帮助读者全面了解这一技术的原理和应用。
一、大模型算法概述大模型算法是一种基于大规模数据的深度学习算法,通过训练模型来识别和预测各种数据模式。
这类算法能够处理海量数据,并在大量训练样本的帮助下,提高模型的准确性和可靠性。
大模型算法的应用范围广泛,包括自然语言处理、图像识别、声音识别等领域。
二、大模型算法原理大模型算法的核心是神经网络,这是一种模拟人脑工作方式的计算方法。
神经网络由多个神经元组成,每个神经元负责处理一种特定的数据模式。
通过训练,神经网络能够学会识别各种模式,并据此进行预测和决策。
在人工智能领域,大模型算法通常采用深度学习技术,通过大量的训练数据来优化模型参数,提高模型的准确性和泛化能力。
深度学习技术能够模拟人脑的学习方式,通过反复学习和调整,使模型逐渐适应各种复杂的数据模式。
三、大模型算法的类型1. 深度神经网络(DNN):DNN是最常见的一种神经网络,通过多层神经元的组合和连接,实现复杂的模式识别和预测功能。
2. 卷积神经网络(CNN):CNN在图像识别中具有优异的表现,通过卷积层、池化层等结构,有效地提取图像特征。
3. 循环神经网络(RNN):RNN在处理序列数据中具有独特优势,能够捕捉到时间序列中的长期依赖关系。
4. 生成对抗网络(GAN):GAN是一种竞争性神经网络架构,通过生成器和判别器的对抗训练,生成逼真的数据。
四、大模型算法的应用大模型算法在各个领域都有广泛的应用,包括但不限于:1. 自然语言处理:通过大模型算法,可以实现对文本、语音、图像等的自然语言理解与生成。
如机器翻译、智能问答、自动写作等。
2. 医疗诊断:大模型算法可用于医学图像分析,如CT、MRI扫描等,提高医生对疾病诊断的准确性。
遗传算法与智能算法综述摘要:随着计算机技术的飞速开展,智能计算方法的运用范围也越来越普遍,本文引见了以后存在的一些智能计算方法,论述了其任务原理和特点,同时对智能计算方法的开展停止了展望。
关键词:人工神经网络遗传算法模拟退火算法群集智能蚁群算法粒子群算1 什么是智能算法智能计算也有人称之为〝软计算〞,是们受自然〔生物界〕规律的启迪,依据其原理,模拟求解效果的算法。
从自然界失掉启迪,模拟其结构停止发明发明,这就是仿生学。
这是我们向自然界学习的一个方面。
另一方面,我们还可以应用仿生原理停止设计(包括设计算法),这就是智能计算的思想。
这方面的内容很多,如人工神经网络技术、遗传算法、模拟退火算法、模拟退火技术和群集智能技术等。
2 人工神经网络算法〝人工神经网络〞(ARTIFICIAL NEURAL NETWORK,简称ANN)是在对人脑组织结构和运转机制的看法了解基础之上模拟其结构和智能行为的一种工程系统。
早在本世纪40年代初期,心思学家McCulloch、数学家Pitts就提出了人工神经网络的第一个数学模型,从此开创了神经迷信实际的研讨时代。
其后,F Rosenblatt、Widrow和J. J .Hopfield等学者又先后提出了感知模型,使得人工神经网络技术得以蓬勃开展。
神经系统的基本结构是神经元(神经细胞),它是处置人体内各局部之间相互信息传递的基本单元。
据神经生物学家研讨的结果说明,人的一个大脑普通有1010~1011个神经元。
每个神经元都由一个细胞体,一个衔接其他神经元的轴突和一些向外伸出的其它较短分支——树突组成。
轴突的功用是将本神经元的输入信号(兴奋)传递给别的神经元。
其末端的许多神经末梢使得兴奋可以同时传送给多个神经元。
树突的功用是接受来自其它神经元的兴奋。
神经元细胞体将接遭到的一切信号停止复杂处置(如:加权求和,即对一切的输入信号都加以思索且对每个信号的注重水平——表达在权值上——有所不同)后由轴突输入。
竞争性神经网络的原理及应用竞争性神经网络是一类典型的无监督学习算法,它在人类的神经系统中有着广泛的应用。
竞争性神经网络作为一种较新的技术,其目标在于模拟人类神经系统的行为,实现自主学习和不断变化的能力。
本文将介绍竞争性神经网络的原理及其应用。
一、竞争性神经网络的原理竞争性神经网络是通过模拟人类神经系统的行为来进行学习的。
它的基本原理是,将一组数据输入系统中,每个神经元之间相互竞争,最终经过竞争得出“优胜者”。
竞争性神经网络中最常用的模型是Kohonen自组织映射网络。
在Kohonen自组织映射网络中,每个神经元都与一个向量相关联,称为权重向量。
每次输入向量并给出一个胜出神经元,胜出神经元的权重向量通过调整来接近输入向量,而其他神经元的权重向量则保持不变。
Kohonen自组织映射网络的工作过程如下:(1)初始化每个神经元的权重向量;(2)给定输入向量;(3)计算每个神经元与输入向量的距离;(4)选择距离最近的神经元作为胜出神经元;(5)调整胜出神经元及其周围神经元的权重向量。
上述过程重复多次,神经元的位置会不断调整,最终形成一个由许多神经元构成的二维网格。
这个过程中,神经元的权重向量会不断调整,使得相似的输入向量聚集在相邻的神经元上。
二、竞争性神经网络的应用竞争性神经网络的应用十分广泛,在模式分类、数据挖掘、机器人控制、图像处理等领域中都有着重要的应用。
1. 模式分类竞争性神经网络可以通过自组织学习的方式进行模式分类。
在输入向量空间中聚集在一起的向量归为同一类别,从而对其它向量进行分类。
例如,通过对由红色和蓝色像素组成的图像进行训练,可以将红色像素和蓝色像素分别归类,并将其它颜色的像素归类到与其最接近的类别中。
2. 数据挖掘竞争性神经网络可以在数据挖掘领域中用来确定数据的特征。
这种网络可以在输入向量空间中分离出各种特征,并将其归为不同的类别。
例如,在一个由客户购买历史、性别、年龄等组成的数据集中使用竞争性神经网络,将各种特征分离出来,并将客户划分为不同的类别。
智能信息处理技术人工智能有三大研究学派:符号主义、联结主义和行为主义。
前面的章节已经讨论了符号主义的典型技术与应用,下面将对联结主义的主要观点与技术作讨论。
联结主义又称为仿生学派或生理学派,其原理为神经网络及神经网络间的连接机制和学习算法。
联结主义主要进行结构模拟,认为人的思维基元是神经元,而不是符号处理过程,认为大脑是智能活动的物质基础,要揭示人类的智能奥秘,就必须弄清大脑的结构,弄清大脑信息处理过程的机理。
6.1 神经网络神经网络是借鉴人脑的结构和特点,通过大量简单处理单元互联组成的大规模并行分布式信息处理和非线性动力学系统。
神经网络由具有可调节权值的阈值逻辑单元组成,通过不断调节权值,直至动作计算表现令人满意来完成学习。
人工神经网络的发展可以追溯到1890年,美国生物学家阐明了有关人脑的结构及其功能。
1943年,美国心理学家W.Mcculloch和数学家W.Pitts提出了神经元网络对信息进行处理的数学模型(即M- P模型),揭开了神经网络研究的序幕。
1949年,Hebb提出了神经元之间连接强度变化的学习规则,即Hebb 规则,开创了神经元网络研究的新局面。
1987年6月在美国召开的第一次神经网络国际会议(ICNN)宣告了神经网络计算机学科的诞生。
目前神经网络应用于各行各业。
6.1.1 神经网络的模型和学习算法1.神经网络的模型神经网络由神经元来模仿单个的神经细胞。
其中,x表示外部输入,f为输i表式连接权植。
图6-1为一个神经出,圆表示神经元的细胞体,θ为阈值,ωi元的结构。
图6-1 一个神经元的结构输出f取决于转移函数φ,常用的转移函数有三种,根据具体的应用和网络模型进行选择。
神经网络具有以下优点:(1)可以充分逼近任意复杂的非线性关系。
(2)具有很强的鲁棒性和容错性。
(3)并行处理方法,使得计算快速。
(4)可以处理不确定或不知道的系统,因神经网络具有自学习和自适应能力,可根据一定的学习算法自动地从训练实例中学习。
神经元网络的模型和算法神经元网络是一种模拟生物神经系统的人工神经网络,具有很强的自适应能力和学习能力。
它由大量的神经元和相互之间的连接构成,可以处理各种复杂的信息。
本文将介绍神经元网络的模型和算法。
一、神经元模型神经元是神经元网络中的基本单元,它接受输入信号并产生输出信号。
神经元模型主要分为阈值型神经元模型和sigmoid型神经元模型两种。
阈值型神经元模型是最简单的神经元模型,它的输入和输出都是二进制变量,当输入超过一定阈值时,输出为1,否则为0。
这种模型适合处理离散的信息。
sigmoid型神经元模型则采用连续的输出,它的输出是一个0到1之间的实数,它的输入可以是离散的或连续的。
sigmoid型神经元模型主要用于处理连续的信息,如图像和声音信号。
二、神经元网络结构神经元网络是由大量的神经元和神经元之间的连接构成的。
神经元网络可以分为前馈神经元网络和反馈神经元网络两种。
前馈神经元网络是最简单的神经元网络,它的神经元之间的连接只允许从输入层到输出层,不允许有环,这种网络模型适合处理输入和输出之间的映射关系。
反馈神经元网络的神经元之间的连接可以形成环,每个神经元的输出可以成为下一个时刻另一个神经元的输入,这种神经元网络适用于处理时序信息和自适应控制。
三、神经元网络算法神经元网络的学习算法主要分为有监督学习算法和无监督学习算法两种。
有监督学习算法是指在训练样本中提供了期望输出的算法,最常用的算法是反向传播算法。
反向传播算法是通过神经网络的前向传播和误差反向传播两个过程来更新神经元之间的权重,以达到误差最小化的目的。
无监督学习算法是指在训练样本中没有提供期望输出的算法,常用的算法有自组织映射算法和竞争型学习算法。
自组织映射算法是一种无监督学习算法,它可以用于挖掘输入数据的潜力拓扑结构。
竞争型学习算法是指在网络中的神经元之间进行竞争,以选择最优的神经元作为输入的输出,从而实现无监督学习。
四、应用神经元网络的应用非常广泛,主要应用于模式识别、人工智能、控制系统、预测等领域。