竞争型神经网络与自组织神经网络
- 格式:docx
- 大小:110.23 KB
- 文档页数:2
神经网络的发展历程与应用神经网络是一种仿生的人工智能技术,它模拟了人类大脑中神经元之间的连接和信息传递方式,具有自学习和适应性强的特点。
神经网络的发展历程可以追溯到上世纪50年代,经过了长期的理论研究和应用实践,如今已经成为了人工智能领域中的重要技术之一。
本文将从神经网络的发展历程、基本模型、优化算法以及应用领域等方面进行介绍。
一、神经网络的发展历程神经网络的发展历程可以分为三个阶段,分别是感知机、多层前馈神经网络和深度学习。
1. 感知机感知机是神经网络的起源,由美国心理学家罗森布拉特于1957年提出。
感知机是一种单层神经网络,由若干感知器(Perceptron)组成。
每个感知器接收输入信号并进行加权和,然后经过一个阈值函数得到输出。
该模型的最大缺点是只能处理线性可分问题,无法解决非线性问题。
2. 多层前馈神经网络为了克服感知机的局限性,科学家们开始尝试使用多层前馈神经网络来处理非线性问题。
多层前馈神经网络由输入层、隐藏层和输出层组成。
每个神经元都有一个激活函数,用于将输入信号转换为输出。
这种结构可以处理非线性问题,并且可以通过反向传播算法来训练网络参数。
多层前馈神经网络在图像识别、语音识别、自然语言处理等领域得到了广泛应用。
3. 深度学习深度学习是指使用多层神经网络来学习高层次特征表示的一种机器学习方法。
深度学习在计算机视觉、自然语言处理等领域有着广泛的应用。
其中最著名的就是卷积神经网络(CNN)和循环神经网络(RNN)。
卷积神经网络主要用于图像识别和分类问题,循环神经网络主要用于序列预测和语言建模。
二、神经网络的基本模型神经网络的基本模型可以分为三类,分别是前馈神经网络、反馈神经网络和自组织神经网络。
1. 前馈神经网络前馈神经网络是指信息只能从输入层到输出层流动的神经网络。
其中最常用的是多层前馈神经网络,它由多个隐藏层和一个输出层组成。
前馈神经网络的训练主要使用反向传播算法。
2. 反馈神经网络反馈神经网络是指信息可以从输出层到输入层循环反馈的神经网络。
神经网络及其应用之竞争型神经网络课件神经网络是一种模拟人脑神经元之间相互连接的计算模型,以其强大的学习和模式识别能力在各个领域展示出巨大潜力。
在神经网络的众多类型中,竞争型神经网络是一种常见且重要的类型。
本课件将介绍竞争型神经网络的原理和应用,帮助大家更好地理解和使用该网络模型。
一、什么是竞争型神经网络?竞争型神经网络(Competitive Neural Network,简称CNN)是一种基于竞争机制的神经网络模型。
它模拟了生物神经系统中神经元之间的竞争与抑制关系,通过竞争机制来实现输入样本的分类和聚类。
竞争型神经网络通常由竞争层、输出层和连接权重组成。
二、竞争型神经网络的原理1. 竞争层竞争层是竞争型神经网络的核心组成部分,它由若干个竞争单元(也称为神经元)构成。
竞争单元之间存在全互连的连接,通过竞争机制决定输出。
2. 竞争机制竞争机制是竞争型神经网络实现分类和聚类的关键。
在竞争型神经网络中,每个输入样本会与竞争层的竞争单元进行比较,最终选择出一个获胜者,即输出最大的竞争单元。
3. 输出层输出层接收竞争层中获胜的竞争单元作为输入,并输出最终的分类结果或聚类结果。
4. 连接权重连接权重是竞争型神经网络中的参数,它决定了输入样本与竞争单元之间的连接强度。
连接权重的调整是竞争型神经网络学习的关键步骤之一。
三、竞争型神经网络的应用竞争型神经网络在许多领域都有广泛的应用,以下是一些典型的应用场景:1. 图像处理竞争型神经网络可以用于图像处理中的特征提取、图像分类和图像压缩等任务。
通过在竞争层中进行竞争,可以选取出输入图像的最显著特征,实现图像的自动分类和压缩。
2. 数据挖掘竞争型神经网络能够对大数据进行聚类和分类,是数据挖掘领域中常用的工具之一。
通过竞争机制,可以将数据按照相似性进行聚类,并快速识别出数据中的异常值。
3. 人工智能竞争型神经网络在人工智能领域中具有重要作用,可以应用于机器学习、机器视觉和自然语言处理等任务。
竞争性神经网络的原理及应用竞争性神经网络是一类典型的无监督学习算法,它在人类的神经系统中有着广泛的应用。
竞争性神经网络作为一种较新的技术,其目标在于模拟人类神经系统的行为,实现自主学习和不断变化的能力。
本文将介绍竞争性神经网络的原理及其应用。
一、竞争性神经网络的原理竞争性神经网络是通过模拟人类神经系统的行为来进行学习的。
它的基本原理是,将一组数据输入系统中,每个神经元之间相互竞争,最终经过竞争得出“优胜者”。
竞争性神经网络中最常用的模型是Kohonen自组织映射网络。
在Kohonen自组织映射网络中,每个神经元都与一个向量相关联,称为权重向量。
每次输入向量并给出一个胜出神经元,胜出神经元的权重向量通过调整来接近输入向量,而其他神经元的权重向量则保持不变。
Kohonen自组织映射网络的工作过程如下:(1)初始化每个神经元的权重向量;(2)给定输入向量;(3)计算每个神经元与输入向量的距离;(4)选择距离最近的神经元作为胜出神经元;(5)调整胜出神经元及其周围神经元的权重向量。
上述过程重复多次,神经元的位置会不断调整,最终形成一个由许多神经元构成的二维网格。
这个过程中,神经元的权重向量会不断调整,使得相似的输入向量聚集在相邻的神经元上。
二、竞争性神经网络的应用竞争性神经网络的应用十分广泛,在模式分类、数据挖掘、机器人控制、图像处理等领域中都有着重要的应用。
1. 模式分类竞争性神经网络可以通过自组织学习的方式进行模式分类。
在输入向量空间中聚集在一起的向量归为同一类别,从而对其它向量进行分类。
例如,通过对由红色和蓝色像素组成的图像进行训练,可以将红色像素和蓝色像素分别归类,并将其它颜色的像素归类到与其最接近的类别中。
2. 数据挖掘竞争性神经网络可以在数据挖掘领域中用来确定数据的特征。
这种网络可以在输入向量空间中分离出各种特征,并将其归为不同的类别。
例如,在一个由客户购买历史、性别、年龄等组成的数据集中使用竞争性神经网络,将各种特征分离出来,并将客户划分为不同的类别。
竞争型神经网络是基于无监督学习的神经网络的一种重要类型,作为基本的网络形式,构成了其他一些具有组织能力的网络,如学习向量量化网络、自组织映射网络、自适应共振理论网络等。
与其它类型的神经网络和学习规则相比,竞争型神经网络具有结构简单、学习算法简便、运算速度快等特点。
竞争型神经网络模拟生物神经网络系统依靠神经元之间的兴奋、协调与抑制、竞争的方式进行信息处理。
一个竞争神经网络可以解释为:在这个神经网络中,当一个神经元兴奋后,会通过它的分支对其他神经元产生抑制,从而使神经元之间出现竞争。
当多个神经元受到抑制,兴奋最强的神经细胞“战胜”了其它神经元的抑制作用脱颖而出,成为竞争的胜利者,这时兴奋最强的神经元的净输入被设定为 1,所有其他的神经元的净输入被设定为 0,也就是所谓的“成者为王,败者为寇”。
一般说来,竞争神经网络包含两类状态变量:短期记忆变元(STM)和长期记忆变元(LTM)。
STM 描述了快速变化的神经元动力学行为,而 LTM 描述了无监督的神经细胞突触的缓慢行为。
因为人类的记忆有长期记忆(LTM)和短期记忆(STM)之分,因此包含长时和短时记忆的竞争神经网络在理论研究和工程应用中受到广泛关注。
竞争性神经网络模型图
自组织特征映射神经网络(简称SOM),是由输入层和输出层组成的单层神经网络,主要用于对输入向量进行区域分类。
SOM是一种无导师聚类,能将一维输入模式在输出层映射成二维离散图形,此图形分布在网格中,网格大小由m*n 表示,并保持其拓扑结构不变,从而使有相似特征的神经元彼此靠近,不同特征的神经元彼此远离,最终实现区分识别样品的目的。
SOM 通过学习输入向量的分布情况和拓扑结构,靠多个神经元的协同作用来完成模式分类。
当神经网络接受外界输入模式时,神经网络就会将其分布在不同的对应区域,并且记忆各区域对输入模式的不同响应特征,使各神经元形成有序的空间分布。
当输入不同的样品光谱时,网络中的神经元便随机兴奋,经过SOM 训练后神经元在输出层有序排列,作用相近的神经元相互靠近,作用不同的神经元相互远离。
在神经网络的应用中,对于待识别的输入模式属于哪一类并没有任何先验知识,只能是把相似的模式样品划归为一类,而将不相似的分离开,从而实现样品的类内相似性和类间
分离性,因此相似性是输入模式的聚类依据,导致不同次的网络训练,同一样品会分布在网格中的不同位置,聚类效果良好。
与竞争神经网络不太一样的是SOM 没有阈值,不是一个神经元获得机会进行阈值调整而是多个神经元获得机会进行权值调整。
SOM神经网络模型图。