2.1 怎样描述圆周运动
- 格式:ppt
- 大小:2.34 MB
- 文档页数:21
2.1怎样描述圆周运动二探究点 常见传动装置及其特点自学指导观察下列机械传动的示意图,总结规律,5分钟后指名回答:1.共轴转动2.皮带传动3.齿轮传动1)在上图共轴转动中,A,B 两个球在相同时间内,转过的______ 相同,即满足 A,B 的_____________相同。
2)在第二图皮带转动和第三图齿轮转动中,两轮边缘上的两点,在相同时间内转过的___________相同,即满足两轮边缘上两点____________相同结论:①、固定在一起共轴转动的物体上各点 相同,②、不打滑的摩擦传动和皮带传动、齿轮传动的两轮边缘上各点 大小相等。
问题1:同轴转动如图所示,当自行车车轮匀速转动时,车轮上的A 、B 两点哪点运动的更快?如何比较这两点运动的快慢?若A 点到轴心的距离为R A ,B 点到轴心的距离为R B ,则A B v v = A B ωω= A BT T =问题2: 皮带传动如图所示,A 、B 两点分别是两个轮子边缘的点,A 点到其轴心的距离为R A ,B 点到其轴心的距离为R B ,两个轮子用链条连起来。
当轮子匀速转动时,则A B v v = A B ωω= A BT T = 问题3: 齿轮传动如图所示,两个齿轮相互啮合,A 、B 两点分别是两个齿轮边缘上的点,A 点到其轴心的距离为R A ,B 点到其轴心的距离为R B ,齿轮转动时,则A B v v = A B ωω= A BT T =【当堂检测】——有效训练、反馈矫正1.如图所示,A 、B 是两个靠摩擦传动且接触面没有相对滑动的靠背轮,A 是主动轮,B 是从动轮,它们的半径R A =2R B ,a 和b 两点在轮的边缘,c 和d 分别在各轮半径的中点,下列判断正确的有 ( )A .v a =2v bB .ωb =2ωaC .v c =v aD .ωb =ωc2.如图所示,为一皮带传动装置,A 、C 在同一大轮上,B 在小轮边缘上,在转动过程中皮带不打滑,已知R =2r ,12C R R =,则 ( ) A .角速度C B ωω=B .线速度C B v v =C .线速度12C B v v =D .角速度2C B ωω=3.如图所示为一皮带传动装置,大轮与小轮固定在同一根轴上,小轮与另一中等大小的轮子间用皮带相连,它们的半径之比是1∶2∶3,A 、B 、C 分别为轮子边缘上的三点,那么三点关系:线速度之比v A ∶v B =________;v A ∶v C =__________角速度之比ωA ∶ωC =_______;ωB ∶ωC =_________4.如图所示为一皮带传动装置,大轮与小轮固定在同一根轴上,小轮与另一中等大小的轮子间用皮带相连,它们的半径之比是1∶2∶3,A 、B 、C 分别为轮子边缘上的三点,那么三点关系:线速度之比v A ∶v B ∶v C =______________;角速度之比ωA ∶ωB ∶ωC =_______________;周期之比T A ∶T B ∶T C =.________ 。
高一必修2《第二章 圆周运动》知识要点一、圆周运动01.定义:物体的运动轨迹是圆周的运动,叫做圆周运动。
02.条件:物体受到向心力的作用 向心力始终与速度方向垂直,沿半径指向圆心。
03.特点:⑴、物体上各点围绕某点(即圆心)或某一轴线转动⑵、瞬时速度方向时刻改变——圆周运动是一种变速运动⑶、运动轨迹(或相对起点的位移)具有重复性(周期性)二、匀速圆周运动01.定义:运动速度大小恒定的圆周运动,叫做匀速圆周运动。
(有多种定义) 02.描述物理量设R 为圆周运动的轨道半径,φ为半径转过的圆心角,N 为圆周运动的圈数。
⑴.线速度:V=t S =TR π2 =R ω 单位:m/s ⑵.角速度:ω=t ϕ=Tπ2=2n π 单位:rad/s ⑶.周期:T=ωπ2=n1 单位:s ⑷.转速:n=tN 单位:r/s 或r/min 03.匀速圆周运动的特点:F (或a )和V 的大小、ω、T 、n 恒定不变,但F (或a )和V 的方向时刻改变。
04.特性:同一转动物体上各点的角速度相同 ★:传动装置中,两转动物体边缘上各处的线速度大小相等。
三、向心力01.定义:使物体做圆周运动的力,叫做向心力。
02.特点:是效果力,不是性质力,方向时刻改变。
03.作用:只改变V 的方向,不改变V 的大小。
04.大小:F==ma 2ϖmr =r V m 2=ϖmV =224T mr π=mr n 224π 注意:⑴当m 、V 不变时,F ∝r1 ;⑵当m 、ω不变时,F ∝r 05.方向:总是沿半径指向圆心06.来源:来源于某一个力或某一个力的分力或某几个力的合力四、向心加速度01.定义:由向心力产生的加速度,叫做向心加速度。
02.大小:a=2ϖr =r V 2=ϖV =r T 224π =r n 224π 注意:⑴当V 不变时,a ∝r1 ;⑵当ω不变时,a ∝r 03.方向:总是沿半径指向圆心04.意义:反映V 方向改变的快慢五、分析和解决匀速圆周运动问题的步骤01.明确研究对象,确定圆心位置及半径大小;02.对研究对象进行受力分析03.找出向心力的来源及大小;04.代入向心力公式列出方程05.结合其它条件列出相关方程;06.解联合方程组,求出所求物理量。
圆周运动名词解释圆周运动是指一个物体沿着一个固定的圆形轨道运动的现象。
在这种运动中,物体保持相对于圆心的距离不变,同时围绕圆心做匀速运动。
1.圆周运动的基本概念圆周运动是一种有规律的运动方式,它的特点是物体在运动过程中保持与圆心的距离不变,同时沿着圆形轨道做匀速运动。
这种运动通常出现在天体运动、机械运动和粒子运动等领域。
2.圆周运动的要素圆周运动包括以下要素:2.1圆心:圆周运动的轨道中心点,物体围绕圆心做匀速运动。
2.2半径:圆周运动的轨道半径,表示物体与圆心之间的距离,不随时间变化。
2.3角速度:物体在圆周运动中的角位移与时间的比值,通常用符号ω表示。
2.4周期:物体绕圆心一周所需要的时间,通常用符号T表示。
2.5频率:物体绕圆心做一周所产生的频率,是周期的倒数,通常用符号f表示。
3.圆周运动的公式圆周运动中,角速度、周期和频率之间存在以下关系:ω=2π/Tf=1/T4.圆周运动的应用圆周运动在实际生活和科学研究中有广泛应用,以下是其中几个例子:4.1天体运动:行星绕太阳的轨道就是圆周运动,圆周运动的规律性使得我们能够预测天体运动和观测天文现象。
4.2机械运动:例如风扇的叶片绕中心旋转、电动车轮的转动等都是圆周运动,圆周运动的规律性使得我们能够设计和控制机械装置。
4.3粒子运动:粒子在磁场中的运动、电子在原子轨道中的运动等都是圆周运动,圆周运动的规律性使得我们能够研究微观领域的现象和性质。
总结:圆周运动是物体沿着一个固定的圆形轨道做匀速运动的现象。
它具有一定的规律性和应用价值,在天体运动、机械运动和粒子运动等领域都有广泛应用。
了解圆周运动的基本概念、要素和公式,可以帮助我们更好地理解和应用这一运动形式。
一、描述圆周运动的物理量1.线速度v :做圆周运动的物体,某时刻t 经过A 点。
为了描述物体经过A 点附近时运动的快慢,可以从此时刻开始取一段很短的时间△t ,通过的弧长为△l 。
线速度l v t∆=∆。
⑴这里的v 就是以前我们学过的瞬时速度。
只不过在描述圆周运动时,我们称之为线速度。
⑵线速度是矢量,物体在A 点线速度的方向沿圆弧在该点的切线方向。
⑶如果物体沿着圆周运动,并且线速度的大小处处相等,这种运动叫做匀速圆周运动。
这里的“匀速”是指速率不变,匀速圆周运动是一种变速运动。
2.角速度ω:做圆周运动的物体,在很短的时间△t 内转过的圆心角为△θ。
角速度tθω∆=∆。
圆周运动的描述:线速度,角速度,向心力,向心加速度⑴θ单位:弧度,用rad 表示。
在国际单位制中,角的量度使用弧度。
360°相当于2πrad ,180°相当于πrad 。
角速度是描述物体绕圆心转动快慢的物理量,单位是rad/s 。
⑵角速度是矢量,不要求判断方向,对于匀速圆周运动来说,角速度是不变的。
3.周期T :做匀速圆周运动的物体,转过一周所用的时间。
周期用T 表示,单位是s 。
4.频率f :单位时间内质点完成周期性运动的次数。
频率等于周期的倒数f =1/T单位:Hz(赫兹)5.转速n :做圆周运动的物体,单位时间内转过的圈数。
技术上常用它来描述转动物体做圆周运动的快慢.转速用n 表示,单位是转/秒(r/s),或转/分(r/min)。
6.物理量之间的联系:2l r v t T π∆==∆ 2t Tθπω∆==∆ v r ω=【例1】下列关于匀速圆周运动的说法中正确的是( ) A .是速度不变的运动 B .是角速度不变的运动C .是角速度不断变化的运动D .是相对圆心位移不变的运动 考点:圆周运动的定义【例2】如图所示,皮带传动装置转动后,皮带不打滑,则皮带轮上A 、B 、C 三点的情况是( ) A .v A =v B ,v B >v C B .ωA =ωB ,v B =v C C .v A =v B ,ωB =ωC D .ωA >ωB ,v B =v C⑴同转动轴的各点角速度ω相等,⑵当皮带不打滑时,传动皮带与皮带连接的两轮边缘的各点线速度大小相等【例3】如图所示,一个球绕中心轴线以角速度转动,则( )A.A、B两点的角速度相等B.A、B两点的线速度相等C.若θ=30°,则:2v vA BD.以上答案都不对力是改变物体运动状态的原因什么力的作用使物体做圆周运动呢?1.小球受哪些力的作用?2.合外力是什么?使物体做匀速圆周运动的这个力有什么特点呢?做匀速圆周运动的物体受到一个指向圆心方向的合力,这个力叫向心力。
高一圆周运动的知识点圆周运动是物体在圆周轨道上做的运动,它是我们学习物理和数学中的一个重要概念。
下面,我们将详细介绍高一圆周运动的知识点。
一、基本概念1. 圆周运动:物体沿着圆的轨迹做匀速运动,称为圆周运动。
在圆周运动中,有两个重要的线量,即角速度和角加速度。
2. 角速度:角速度是单位时间内物体在圆周轨道上转过的角度。
通常用字母ω表示,单位是弧度/秒。
3. 角加速度:角加速度是角速度的变化率,表示单位时间内角速度的改变量。
通常用字母α表示,单位是弧度/秒²。
二、运动特性1. 匀速圆周运动:物体在圆周运动过程中角速度保持恒定,即物体在圆周轨道上的速度大小保持不变。
2. 加速度与速度的关系:在圆周运动中,物体的速度方向始终垂直于轨道的切线方向,因此物体的加速度方向与速度方向垂直,且大小与速度的平方和半径的乘积成正比。
三、圆周运动的公式1. 周期公式:圆周运动的周期T是单位时间内物体转过一个完整圆周的时间。
计算公式为T = 2π/ω,其中π是圆周率。
2. 向心加速度公式:在圆周运动中,向心加速度aᵥ表示物体向圆心的加速度。
根据公式aᵥ = ω²r,其中r是物体与圆心的距离。
3. 速度公式:在圆周运动中,物体的线速度v与角速度ω和半径r之间的关系为v = ωr。
四、应用示例1. 行星公转:行星绕太阳做圆周运动,行星和太阳之间的吸引力提供了向心力,使得行星能够保持在固定的轨道上。
2. 交通工具的弯道行驶:汽车、自行车等交通工具在弯道行驶时需要通过调整转向来改变向心力的方向和大小,以保持平衡和稳定。
3. 儿童游乐园旋转设备:旋转木马、过山车等游乐设施都是基于圆周运动的原理设计而成,具有很高的娱乐性和刺激性。
五、思考与拓展1. 圆周运动的速度与半径之间的关系是什么?请说明理由。
2. 圆周运动的向心加速度与角速度之间的关系是什么?有何实际应用?3. 如何通过改变角速度来调整圆周运动的特性?六、总结通过本文介绍,我们了解了高一圆周运动的基本概念、运动特性和公式,并了解了圆周运动在生活中的一些应用示例。
圆周运动知识点总结总结1. 圆周运动的基本概念在圆周运动中,物体沿着一个圆形轨道围绕一个点或轴线做运动。
这个点或轴线被称为圆周运动的中心。
在圆周运动中,物体离中心的距离被称为半径,用符号r表示。
围绕圆心的角度称为角度,通常用符号θ表示。
当物体在圆周运动中通过一个完整的圆周,它所围绕的角度是360度,或者用弧度表示为2π弧度。
2. 圆周运动的运动学描述在圆周运动中,物体在单位时间内通过的角度称为角速度,通常用符号ω表示。
角速度是一个矢量量,它的大小等于单位时间内旋转的角度。
角速度的单位通常是弧度每秒(rad/s)。
物体在圆周运动中所围绕的圆周的长度称为弧长,通常用符号s表示。
弧长和半径之间的关系可以用下面的公式描述:s = rθ在圆周运动中,物体在单位时间内通过的弧长称为线速度,通常用符号v表示。
线速度的大小等于弧长与时间的比值,即v = s/t。
线速度和角速度之间的关系可以用下面的公式描述:v = rω这个公式表明线速度和角速度是成正比的关系。
当半径增大时,线速度也会增大;当角速度增大时,线速度也会增大。
这也说明了在圆周运动中,线速度的方向是垂直于半径的方向。
线速度的方向与角速度的方向有一定的关系,具体关系可根据右手螺旋法则来确定。
3. 圆周运动的动力学描述在圆周运动中,物体所受的向心力(或者称为离心力)是造成它做圆周运动的根本原因。
向心力的大小等于物体的质量和其线速度的平方与半径的乘积之比,即F_c = mv^2/r其中F_c表示向心力,m表示物体的质量,v表示物体的线速度,r表示物体所围绕的圆周的半径。
向心力的方向始终指向圆周运动的中心。
向心力是一种虚拟力,它并不是真实存在的力,但是它却能够改变物体的运动状态,使得物体在圆周运动中始终保持向中心的方向运动。
圆周运动中的向心力和角速度之间有一定的关系。
向心力的大小和角速度的平方成正比,即F_c = mrω^2这个关系表明当角速度增大时,向心力也会增大,从而使得物体在圆周运动中的向中心的加速度也会增大。
圆周运动的规律及其应用知识点总结与典例【知识点梳理】知识点一 匀速圆周运动及描述1.匀速圆周运动(1)定义:做圆周运动的物体,若在相等的时间内通过的圆弧长相等,就是匀速圆周运动。
(2)特点:加速度大小不变,方向始终指向圆心,是变加速运动。
(3)条件:合外力大小不变、方向始终与速度方向垂直且指向圆心。
2.描述圆周运动的物理量物理量 意义、方向公式、单位 线速度(v )①描述圆周运动的物体运动快慢的物理量 ②是矢量,方向和半径垂直,和圆周相切 ①v =Δs Δt =2πr T ②单位:m/s 角速度(ω)①描述物体绕圆心转动快慢的物理量 ②中学不研究其方向①ω=ΔθΔt =2πT ②单位:rad/s 周期(T )和转速(n )或频率(f )①周期是物体沿圆周运动一周的时间 ②转速是物体单位时间转过的圈数,也叫频率①T =2πrv 单位:s ②n 的单位:r/s 、r/min ,f 的单位:Hz向心加速度(a )①描述速度方向变化快慢的物理量 ②方向指向圆心①a =v 2r =rω2 ②单位:m/s 23.线速度、角速度、周期、向心加速度之间的关系 (1)v =ωr =2πT r =2πrf .(2)a n =v 2r =rω2=ωv =4π2T 2r =4π2f 2r . 知识点二 匀速圆周运动的向心力1.向心力的理解 (1)作用效果向心力产生向心加速度,只改变速度的方向,不改变速度的大小。
(2)大小F =m v 2r =mω2r =m 4π2T 2r =mωv =4π2mf 2r 。
(3)方向始终沿半径方向指向圆心,时刻在改变,即向心力是一个变力。
(4)来源向心力可以由一个力提供,也可以由几个力的合力提供,还可以由一个力的分力提供。
2.离心现象(1)现象做圆周运动的物体,在所受合外力突然消失或不足以提供圆周运动所需向心力的情况下,就做逐渐远离圆心的运动。
(2)受力特点①当F n=mω2r时,物体做匀速圆周运动。