2017-2018学年人教B版选修4-5 2.4 最大值与最小值问题,优化的数学模型 学案
- 格式:doc
- 大小:358.02 KB
- 文档页数:10
数学人教B版教材目录(必修选修)人教B版-----------------------------------必修1-----------------------------------第一章集合1.1集合与集合的表示方法1.1.1集合的概念1.1.2集合的表示方法1.2集合之间的关系与运算1.2.1集合之间的关系1.2.2集合的运算第二章函数2.1函数2.1.1函数2.1.2函数的表示方法2.1.3函数的单调性2.1.4函数的奇偶性2.1.5用计算机作函数的图形(选学)2.2一次函数和二次函数2.2.1一次函数的性质与图象2.2.2二次函数的性质与图象2.2.3待定系数法2.3函数的应用(Ⅰ)2.4函数与方程2.4.1函数的零点求函数零点2.4.2近似解的一种方法----二分法第三章基本初等函数(Ⅰ)3.1指数与指数函数3.1.1实数指数幂及其运算3.1.2指数函数3.2对数与对数函数3.2.1对数及其运算3.2.2对数函数3.2.3指数函数与对数函数的关系3.3幂函数3.4函数的应用(Ⅱ)-----------------------------------必修2-----------------------------------第一章立体几何初步1.1空间几何体1.1.1构成空间几何体的基本元素1.1.2棱柱、棱锥、棱台的结构特征1.1.3圆柱、圆锥、圆台和球1.2点、线、面之间的位置关系1.2.1平面的基本性质与推论1.2.2空间中的平行关系1.2.3空间中的垂直关系第二章平面解析几何初步2.1平面真角坐标系中的基本公式2.1.1数轴上的基本公式2.1.2平面直角坐标系中的基本公式2.2直线方程2.2.1直线方程的概念与直线的斜率2.2.2直线方程的几种形式2.2.3两条直线的位置关系2.2.4点到直线的距离2.3圆的方程2.3.1圆的标准方程2.3.2圆的一般方程2.3.3直线与圆的位置关系2.3.4圆与圆的位置关系2.4空间直角坐标系2.4.1空间直角坐标系2.4.2空间两点的距离公式-----------------------------------必修3-----------------------------------第一章算法初步1.1.3算法的三种基本逻辑结构和框图表示1.2基本算法语句1.2.1赋值、输入、输出语句1.2.2条件语句1.2.3循环语句1.3中国古代数学中的算法案例第二章统计2.1随机抽样2.1.1简单随机抽样2.1.2系统抽样2.1.3分层抽样2.1.4数据的收集2.2用样本估计总体2.2.1用样本的频率估计总体的分布2.2.2用样本的数字特征估计总体的数字特征2.3变量的相关性2.3.1变量间的相关关系2.3.2两个变量的线性相关第三章概率3.1随机现象3.1.1随机事件3.1.2时间与基本事件空间3.1.3频率与概率3.1.4概率的加法公式3.2古典概型3.2.1古典概型3.2.2概率的一般加法公式(选学)3.3随机数的含义与应用3.3.1几何概型3.3.2随机数的含义与应用3.4概率的应用-----------------------------------必修4-----------------------------------第一章基本初等函(Ⅱ)1.1任意角的概念与弧度制1.1.1角的概念推广1.1.2弧度制和弧度制与角度制的换算1.2任意角的三角函数1.2.1三角函数的定义1.2.2单位圆与三角函数线1.2.3同角三角函数的基本关系1.2.4诱导公式1.3三角函数的图像与性质1.3.1正弦函数的图象与性质1.3.2余弦函数、正切函数的图象与性质1.3.3已知三角函数值求角第二章平面向量2.1向量的线性运算2.1.1向量的概念2.1.2向量的加法2.1.3向量的减法2.1.4数乘向量2.1.5向量共线的条件与向量坐标运算2.2向量的分解与向量的坐标运算2.2.1平面向量基本定理2.2.2向量的正交分解与向量的直角坐标运算2.2.3用平面向量坐标表示向量共线的条件2.3平面向量的数量积2.3.1向量数量积的物理背景与定义2.3.2向量数量积的运算律2.3.3向量数量积的坐标运算与度量公式2.4向量的应用2.4.1向量在集合中的应用2.4.2向量在物理中的应用第三章三角恒等变换3.1和角公式3.1.1两角和与差的余弦3.1.2两角和与差的正弦3.1.3两角和与差的正切3.2倍角公式和半角公式3.2.1倍角公式3.2.2半角的正弦、余弦和正切3.3三角函数的积化和差与和差化积-----------------------------------必修5-----------------------------------第一章解直角三角形1.1正弦定理和余弦定理1.1.1正弦定理1.1.2余弦定理1.2应用举例第二章数列2.1数列2.1.1数列2.1.2数列的递推公式(选学)2.2等差数列2.2.1等差数列2.2.2等差数列的前n项和2.3等比数列2.3.1等比数列2.3.2等比数列的前n项和第三章不等式3.1不等关系与不等式3.1.1不等关系与不等式3.1.2不等式的性质3.2均值不等式3.3一元二次不等式及其解法3.4不等式的实际应用3.5二元一次不等式(组)与简单线性规划问题3.5.1二元一次不等式(组)所表示的平面区域3.5.2简单线性规划-----------------------------------选修1-1-----------------------------------第一章常用逻辑用语1.1命题与量词1.2基本逻辑联结词1.3充分条件、必要条件与命题的.第二章圆锥曲线与方程2.1椭圆2.1.1椭圆及其标准方程2.1.2椭圆的几何性质2.2双曲线2.2.1双曲线及其标准方程2.2.2双曲线的几何性质2.3抛物线2.3.1抛物线及其标准方程2.3.2抛物线的几何性质第三章导数及其应用3.1导数3.1.1函数的平均变化率3.1.2瞬时速度与导数3.1.3导数的几何含义3.2导数的运算3.2.1常数与幂函数的导数3.2.2导数公式表3.2.3导数的四则运算法则3.3导数的应用3.3.1利用导数判断函数的单调性3.3.2利用导数研究函数的极值3.3.3导数的实际应用-----------------------------------选修1-2-----------------------------------第一章统计案例1.1独立性检验1.2回归分析第二章推理与证明2.1合情推理与演绎推理2.1.1合情推理2.1.2演绎推理2.2直接证明与间接证明2.2.1综合法与分析法2.2.2反证法第三章数系的扩充与复数的引入3.1数系的扩充与复数的引入3.1.1实数系3.1.2复数的引入3.2复数的运算3.2.1复数的加法与减法3.2.2复数的乘法与除法第四章框图,4.1流程图4.2结构图-----------------------------------选修2-1-----------------------------------第一章常用逻辑用语1.1命题与量词1.2基本逻辑联结词1.3充分条件、必要条件与命题的.第二章锥曲线与方程2.1曲线与方程2.1.1曲线与方程的概念2.1.2由曲线求它的方程,由方程研究曲线的性质2.2椭圆2.2.1椭圆的标准方程2.2.2椭圆的几何性质2.3双曲线2.3.1双曲线的标准方程2.3.2双曲线的几何性质2.4抛物线2.4.1抛物线的标准方程2.4.2抛物线的几何性质2.5直线与圆锥曲线第三章空间向量与立体几何3.1空间向量及其运算3.1.1空间向量的线性运算3.1.2空间向量的基本定理3.1.3两个向量的数量积3.1.4空间向量的直角坐标运算3.2空间向量在立体几何中的应用3.2.1直线的方向向量与直线的向量方程3.2.2平面的法向量与平面的向量表示3.2.3直线与平面的夹角3.2.4二面角及其度量3.2.5距离-----------------------------------选修2-2-----------------------------------第一章导数及其应用1.1导数1.1.1函数的平均变化率1.1.2瞬时速度与导数1.1.3导数的几何意义1.2导数的运算1.2.1常用函数与幂函数的导数1.2.2导数公式表及数学软件的应用1.2.3导数的四则运算法则1.3导数的应用1.3.1利用导数判断函数的单调性1.3.2利用导数研究函数的极值1.3.3导数的实际应用1.4定积分与微积分基本定理1.4.1曲边梯形面积与定积分1.4.2微积分基本定理第二章推理与证明2.1合情推理与演绎推理2.1.1合情推理2.1.2演绎推理2.2直接证明与间接证明2.2.1综合法与分析法2.2.2反证法2.3数学归纳法第三章数系的扩充与复数3.1数系的扩充与复数的概念3.1.1实数系3.1.2复数的概念3.1.3复数的几何意义3.2复数的运算3.2.1复数的加法与减法3.2.2复数的乘法3.2.3复数的除法-----------------------------------选修2-3-----------------------------------第一章计数原理1.1基本计数原理1.2排列与组合1.2.1排列1.2.2组合1.3二项式定理1.3.1二项式定理1.3.2杨辉三角第二章概率2.1离散型随机变量及其分布列2.1.1离散型随机变量2.1.2离散型随机变量的分布列2.1.3超几何分布2.2条件概率与事件的独立性2.2.1条件概率2.2.2事件的独立性2.2.3独立重复试验与二项分布2.3随机变量的数学特征2.3.1离散型随机变量的数学期望2.3.2离散型随机变量的方差2.4正态分布第三章统计案例3.1独立性检验3.2回归分析-----------------------------------选修4-1-----------------------------------第一章相似三角形定理与圆幂定理1.1相似三角形1.1.1相似三角形判定定理1.1.2相似三角形的性质1.1.3平行切割定理1.1.4锐角三角函数与射影定理1.2圆周角与弦切角1.2.1圆的切线1.2.2圆周角定理1.2.3弦切角定理1.3圆幂定理与圆内接四边形1.3.1圆幂定理1.3.2圆内接四边形的性质与判定第二章圆锥、圆锥与圆锥曲线2.1平行投影与圆柱面的平面截线2.1.1平行投影的性质2.1.2圆柱面的平面截线2.2用内切球探索圆锥曲线的性质2.2.1球的切线与切平面2.2.2圆柱面的内切球与圆柱面的平面截线2.2.3圆锥面及其内切球2.2.4圆锥曲线的统一定义-----------------------------------选修4-2-----------------------------------第一章二阶矩阵与平面图形的变换1.1二阶矩阵1.2二阶矩阵与平面向量的乘法1.2.1二阶矩阵与平面向量的乘法1.2.2矩阵变换1.2.3几类特殊的矩阵变换1.3二阶方阵的乘法1.3.1二阶方阵的乘法1.3.2矩阵乘法的运算律第二章逆矩阵及其应用2.1逆矩阵2.1.1逆矩阵的定义2.1.2逆矩阵的性质2.1.3用二阶行列式求逆矩阵2.2二元一次方程组的矩阵解法2.2.1二元一次方程组解的含义2.2.2二元一次方程组的矩阵解法2.2.3解的存在性与唯一性第三章变换的不变量3.1平面变换的不变量3.1.1特征值与特征向量3.1.2特征值与特征向量的求法3.1.3特征值的不变性n3.2A?的简单表示-----------------------------------选修4-4-----------------------------------第一章坐标系1.1直角坐标系,平面上的伸缩变换1.1.1直角坐标系1.1.2平面的伸缩变换1.2极坐标系1.2.1平面上点的极坐标1.2.2极坐标与直角坐标的关系1.3曲线的极坐标方程1.4圆的极坐标方程1.4.1圆心在极轴上且过极点的圆a,?1.4.2圆心在点?2?处且过极点的圆1.5柱坐标系和球坐标系1.5.1柱坐标系1.5.2球坐标系第二章参数方程2.1曲线的参数方程2.1.1抛射体的运动2.1.2曲线的参数方程2.2直线和圆的参数方程2.2.1直线的参数方程2.2.2圆的参数方程2.3圆锥曲线的参数方程2.3.1椭圆的参数方程2.3.2抛物线的参数方程2.3.3双曲线的参数方程2.4一些常见曲线的参数方程2.4.1摆线的参数方程2.4.2圆的渐开线的参数方程-----------------------------------选修4-5-----------------------------------第一章不等式的基本性质和证明的基本方法1.1不等式的基本性质和一元二次不等式的解法1.1.1不等式的基本性质1.1.2一元一次不等式和一元二次不等式的解法1.2基本不等式1.3绝对值不等式的解法1.3.1,a某?b,≤c,,a某?b,≥c型不等式的解法1.3.2,某?a,+,某?b,≤c,,某?a,+,某?b,≥c型不等式的解法1.4绝对值的三角不等式1.5不等式证明的基本方法1.5.1比较法1.5.2综合法和分析法1.5.3反证法和放缩法第二章柯西不等式与排序不等式及其应用2.1柯西不等式2.1.1平面上的柯西不等式的代数和向量形式2.1.2柯西不等式的一般形式及其参数配方法的证明2.2排序不等式2.3平均值不等式(选学)2.4最大值与最小值问题,优化的数学模型第三章数学归纳法与贝努利不等式3.1数学归纳法原理3.1.1数学归纳法原理3.1.2数学归纳法应用举例3.2用数学归纳法证明不等式,贝努利不等式3.2.1用数学归纳法证明不等式3.2.2用数学归纳法证明内努利不等式。
2.4 最大值与最小值问题,优化的数学模型1.理解最值概念,并能应用柯西不等式、平均值不等式求函数的最值.2.能利用不等式解决有关的实际问题.[基础·初探]教材整理 最值问题,优化的数学模型1.最值设D 为f (x )的定义域,如果存在x 0∈D ,使得f (x )≤f (x 0)(f (x )≥f (x 0)),x ∈D ,则称f (x 0)为f (x )在D 上的最大(小)值,x 0称为f (x )在D 上的最大(小)值点. 寻求函数的最大(小)值及最大(小)值问题统称为最值问题,它属于更一般的问题——极值问题的一个特别的情况.2.分离常数法分离常数法就是在分子中凑出与分母相同的项,然后约分.这在求含有分式的最值问题时经常用到.这种类型的最值问题也可以用去分母的方法转化成关于x 的二次方程,然后利用判别式求最值.用平均值不等式来解此类问题时,特别要注意等号成立的条件.1.已知0<x <1,则x (1-x )取最大值时x 的值为( )A.13B.12C.14D.23【解析】 ∵0<x <1,∴x (1-x )≤⎣⎢⎡⎦⎥⎤x +(1-x )22=14, 当且仅当x =12时取等号.【答案】 B2.已知t >0,则函数y =t 2-4t +1t的最小值为________. 【解析】 ∵t >0,∴y =t 2-4t +1t=t +1t -4≥2-4=-2.【答案】 -2[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1: 解惑: 疑问2: 解惑: 疑问3: 解惑:[小组合作型]设ax +by +cz =δ为常数,求ω=l x +m y +n z 的最小值.【导学号:38000045】【精彩点拨】 题设中的ω与δ的形式符合柯西不等式的形式,可以借助柯西不等式求式子的最值.【自主解答】 由柯西不等式得ω·δ=⎝⎛⎭⎪⎫l x 2+⎝ ⎛⎭⎪⎫m y 2+⎝ ⎛⎭⎪⎫n z 2·[(ax )2+(by )2+(cz )2]≥(al +bm +cn )2,。
人教版高中选修(B版)4-52.4最大值与最小值问题,优化的
数学模型教学设计
概述
本文主要介绍了人教版高中选修(B版)第四章第52.4小节的最大值与最小值问题,并提供了相应的优化的数学模型教学设计。
本章的主要内容是介绍函数极值问题,包括最大值和最小值的定义、求解方法及其应用。
最大值与最小值问题是数学中的一个非常重要的研究方向,对于理解和应用数学知识具有重要的作用。
准备知识
在学习最大值与最小值问题之前,需要掌握以下几个方面的知识:
•函数的定义及性质;
•导数的定义及应用;
•极值的定义概念;
•极值的求解方法。
学习目标
通过学习本小节的内容,学生应该能够掌握以下几个方面的知识:
•最大值与最小值的定义及性质;
•最大值与最小值的求解方法;
•最大值与最小值问题在实际生活中的应用。
1。
平均值不等式(选学)最大值与最小值问题,优化的数学模型[读教材填要点]1. 平均值不等式(1)定理1(平均值不等式): 设a i , a 2,…,a n 为n 个正数,则 a i + a 2+…+ a *、 n ---------------a i a 2…a n , 等号成立 ? 岂=a 2=・・・=a n .① 推论1:设a i , a 2,…,a n 为n 个正数,且 a i a 2…a n = 1,贝U a i + a 2 + ^+ a n >n. 且等号成立? a ^= a ? = •••= a n = 1.② 推论2:设C 为常数,且a 1, a 2,…,a n 为n 个正数;则当a 1 + a 2+^+ a n = nC 时, a 1a 2 …a n < C ,且等号成立? a 】=a ? = •••= a 』. ⑵定理2:设a 1, a :,…,a n 为n 个正数,则 n ----------- n ______________a1a2…an > 1丄1丄丄1,a 1 a 2 a n 等号成立 ? a 1= a ?=•••= a n . ⑶定理3:设a 1, a :,…,a n 为正数,则等号成立 ? a 1= a 2=・・・=a n . 推论:设a 1, a 2,…,a n 为n 个正数,则2. 最值问题设 D 为 f(x)的定义域,如果存在 X o € D ,使得 f(x)W fU o )(f(x) >f(x o )), x € D ,拍象问题情境牝,新知无师自通[对应学生用书P33]2. 3〜2.4a 1 + a 2 +•+ a nn丄'a n(a 1+ a :+…+ a n )d +右+…+右)》沁.则称f(x o)为f(x)在D上的最大(小)值,x o称为f(x)在D上的最大(小)值点,寻求函数的最x()()[]1a_2f b Vab(1)(2)⑶[1]6 10 16.y 9x 1 9 1x y x yx 4 y 12x 4 y 12 (x y)min 16・f(x) 3-(x 0)f(x) 1 P34](x 9y)(x y)高频考点题组化.名师一点就通x2x 3x 2.62xi)f(x) 12xf(x)max2]x22x (1(1y22 ,6y x(1 x2)x呢y x(ix2)2X2)2x22x2(1(1 x2)x2 131 x2 1(1)x2)2x)(1x2427.x2(1 x)2解:y = x (1 — x) = x x(1 — x) 1=x x (2 — 2x)x 2v 1 孜+ x + 2 — 2x1 x 8 - 土 、2 3 _2 27_27'当且仅当x = 2 — 2x ,即x = 3时取等号.34此时,y max =.□目 1利用平均值不等式解应用题[例3]已知圆锥的底面半径为 R ,高为H ,求圆锥的内接圆柱体的高 h 为何值时,圆 柱的体积最大?并求出这个最大的体积.[思路点拨]本题考查算术一几何平均不等式在实际问题中的应用, 解答本题需要作出圆锥、圆柱的轴截面,利用相似三角形建立各元素之间的关系, 等式求最大值.[精解详析]设圆柱体的底面半径为 r ,如图,由相似三角形的性质可得 H — h _ 匚 H = R ,R …r = H (H — h).2n R 2--V 圆柱=n h = -^2(H — h) h(0v h v H).根据平均不等式可得=27的.(1)在解求最值应用题时,先必须确定好目标函数,再用“平均值不等式”求最值.⑵在确定目标函数时,必须使函数成为一元函数,即只能含一个变量,否则是无法求 最值的.3. 如图(1)所示,将边长为1的正六边形铁皮的六个角各切去一个全等的四边形,再沿 虚线折起,做成一个无盖的正六棱柱容器,如图 (2)所示,求这个正六棱柱容器容积的最大然后利用算术一几何平均不24T R H — h H —4 n R H 3 "HF 3H _ h i当且仅当一厂=h ,即h =尹时,V 圆柱最大=27n 2H.2如图可知2h + 3x = 3,即 h = 23(1 - x),所以V = S 底人=6X —^3%2 h41 3.当且仅当2= i —x 即x = 2时,等号成立.2 32 1所以当底面边长为3时,正六棱柱容器容积最大值为3燦[:训舊超芙蛙、兰在锹娈走泓 [对应学 生用书P35]一、选择题121.函数y = 3x + _2(x>0)的最小值是( 入 A . 6 C . 9c 12 3x 3x 12 3/3x 3x 12y = 3x + x 2= 2+7+=》3 込三 7 =9,答案:C2.已知x + 2y + 3z = 6,则2x + 4y + 8z 的最小值为(值.解:设正六棱柱容器底面边长为穿x2#(1— x) = 23 X 穿X ,二+;+1—x 2 2 _______ < 3 .) B . 6.6 D . 12解析: 当且仅当 3x2 -2,即x = 2时取等号.xx(x>0),高为 h ,A122x>0,4y>0,8z>0 2x 4y 8z2y—3Zx 2y 40 ig(n2x3z2212^5 2x22y4 12.23z222‘z x 22yx 4y4ig yio. xy loo.lg xy2nx+o_1)n+1 x Jn nn(n 1) igloo 2.ax ~nx4y 40 lg x ig y104xy1 2x1x -xn 1(n N )二、填空题5. _______________________________________________________ 设x, y€ R,且xy 丰0,则x2+ y・步+ 4y2的最小值为__________________________________ .解析:x2+ 1 X2+ 4y2= 1 + 4+ 4x2y2+ x2y2> 1 + 4 + 2 - 4x2y2-^= 9,当且仅当4x2y2 =x2^时等号成立,即IxyU#时等号成立.答案:96. ____________________________________________________ 若x, y € R且xy= 1,则£+ y £+ x/勺最小值是_____________________________________________ .解析:•/ x>0, y>0,xy= 1,••• x+y -+ x = 1 + 2 x2卜乞+ xyy x y x> 1 + 3^x2y2= 4,2 2当且仅当—=y = xy,y x即x = y= 1时取等号.答案:47. 对于x€ [0,扌,,不等式壬 +—— > 16恒成立,则正数p的取值范围为、一'2丿sin x cos x解析:令t= sin2x,则cos2x= 1 —t. 又x € 0, t € (0,1).不等式一―+— > 16可化为sin x cos xP> 16—1 (1 —t), 而y = 16—十(1 —t)=17—;+ 16t W 17 —2 '1 16t= 9,当;=16t,即t =1时取等号,t 4因此原不等式恒成立,只需p> 9.答案:[9 ,+^ )&设三角形三边长为3,4,5, P是三角形内的一点,则P到这三角形三边距离乘积的最大值是_________ .解析:设P到长度为3,4,5的三角形三边的距离分别是x, y,乙三角形的面积为S.36S 1(3x 4y 5z)32 42 52 1S 23 46.3x 4y 5z 2 6 12.3习3x 4y 5z 3x 4y 5z 12.b- ya - X o24V2(.aabbx1-Vb -ya - X240V2o24Vo24VV2oQo 480V4V2Q00V 201615.4.3 (xX (.aab(xyz)maxbx.m m4801-V0013V 2 240100VV36答:轮船航行速度为 20千米/小时时,每千米航行费用总和最小. 11•如图所示,在一张半径是2米的圆桌的正中央上空挂一盏电灯•大家知道,灯挂得太高了,桌子边缘处的亮度就小;挂得太低, 桌子的边缘处仍然是不亮的•由物理学知道,桌子边缘一点处的照亮 度E 和电灯射到桌子边缘的光线与桌子的夹角B 的正弦成正比,而和这里k 是一个和灯光强度有关的常数•那么究竟应该怎样选择灯 的高度h ,才能使桌子边缘处最亮?解:「r = cos 0.E 2= * sin 2 0 cos 4 016k 2 2 2 =32 (2sin 0 cos 0 cos 0 22222k 2sin 0+ cos 0+ cos 0 3 _ _108’当且仅当 2sin 2 e= cos 2 0 即卩 tan 2 0=1, tan0=h = 2tan 0= 2,即 h = \/2米时,E 最大.这一点到光源的距离r 的平方成反比•即E =譽02...E = k sin民os 0_ _ n ^^(o<毕口等号,。
高中数学人教B版教材目录高中数学(B版)必修一第一章集合1.1集合与集合的表示方法1.2集合之间的关系与运算本章小结阅读与欣赏聪明在于学习,天才由于积累──自学成才的华罗庚第二章函数2.1函数2.2一次函数和二次函数2.3函数的应用(Ⅰ)2.4函数与方程本章小结(1)阅读与欣赏函数概念的形成与发展第三章基本初等函数(Ⅰ)3.1指数与指数函数3.2对数与对数函数3.3幂函数3.4函数的应用(Ⅱ)实习作业本章小结阅读与欣赏对数的发明对数的功绩附录1科学计算自由软件──SCILAB简介附录1部分中英文词汇对照表后记高中数学(B版)必修二第一章立体几何初步1.1空间几何体实习作业1.2点、线、面之间的位置关系本章小结第二章平面解析几何初步2.1平面真角坐标系中的基本公式2.2直线方程2.3圆的方程2.4空间直角坐标系本章小结阅读与欣赏附录部分中英文词汇对照表后记高中数学(B版)必修三第一章算法初步1.1算法与程序框图1.2基本算法语句1.3中国古代数学中的算法案例本章小结附录参考程序第二章统计2.1随机抽样2.2用样本估计总体2.3变量的相关性实习作业本章小结阅读与欣赏附录随机数表第三章概率3.1随机现象3.2古典概型3.3随机数的含义与应用3.4概率的应用本章小结阅读与欣赏后记高中数学(B版)必修四第一章基本初等函(Ⅱ)1.1任意角的概念与弧度制1.2任意角的三角函数1.3三角函数的图象与性质数学建模活动本章小结阅读与欣赏第二章平面向量2.1向量的线性运算2.2 向量的分解与向量的坐标运算2.3平面向量的数量积2.4向量的应用本章小结阅读与欣赏第三章三角恒等变换3.1和角公式3.2倍角公式和半角公式3.3三角函数的积化和差与和差化积本章小结阅读与欣赏附录部分中英文词汇对照表后记高中数学(B版)必修五第一章解直角三角形1.1正弦定理和余弦定理1.2应用举例实习作业本章小结阅读与欣赏第二章数列2.1数列2.2等差数列2.3等比数列本章小结阅读与欣赏第三章不等式3.1不等关系与不等式3.2均值不等式3.3一元二次不等式及其解法3.4不等式的实际应用3.5二元一次不等式(组)与简单线性规划问题本章小结附录部分中英文词汇对照表后记高中课标实验教材B版选修1-1选修1-1扉页本册导引编写人员版权页目录第一章常用逻辑用语1.1 命题与量词1.1.1 命题1.1.2 量词1.2 基本逻辑联结词1.2.1 “且”与“或”1.2.2 “非”(否定)1.3 充分条件、必要条件与命题的四种形式1.3.1 推出与充分条件、必要条件1.3.2 命题的四种形式本章小结阅读与欣赏什么是数理逻辑第二章圆锥曲线与方程2.1 椭圆2.1.1 椭圆及其标准方程2.1.2 椭圆的几何性质2.2 双曲线2.2.1 双曲线及其标准方程2.2.2 双曲线的几何性质2.3 抛物线2.3.1 抛物线级其标准方程2.3.2 抛物线的几何性质本章小结阅读与欣赏圆锥面与圆锥曲线第三章导数及其应用3.1 导数3.1.1 函数的平均变化率3.1.2 瞬时速度与导数3.1.3 导数的几何意义3.2 导数的运算3.2.1 常数与幂函数的导数3.2.2 导数公式表3.2.3 导数的四则运算法则3.3 导数的应用3.3.1 利用导数判断函数的单调性3.3.2 利用导数研究函数的极值3.3.3 导数的实际应用本章小结阅读与欣赏微积分与极限思想附录部分中英文词汇对照表后记高中课标实验教材B版选修1-2封面扉页编写人员版权页本册导引目录第一章统计案例1.1 独立性检验1.2 回归分析本章小结阅读与欣赏“回归”一词的由来附表相关性检验的临界值表第二章推理与证明2.1 合情推理与演绎推理2.1.1 合情推理2.1.2 演绎推理2.2 直接证明与间接证明2.2.1 综合法与分析法2.2.2 反证法本章小结阅读与欣赏《原本》与公理化思想数学证明的机械化——机器证明第三章数系的扩充与复数的引入3.1 数系的扩充与复数的引入3.1.1 实数系3.1.2 复数的引入3.2 复数的运算3.2.1 复数的加法和减法3.2.2 复数的乘法和除法本章小结阅读与欣赏复平面与高斯第四章框图4.1 流程图4.2 结构图本章小结阅读与欣赏冯·诺伊曼附录部分中英文词汇对照表后记高中课标实验教材B版选修2-1选修2-1扉页本册引导编写人员版权页目录第一章常用逻辑用语1.1 命题与量词1.1.1 命题1.1.2 量词1.2 基本逻辑联结词1.2.1 “且”与“或”1.2.2 “非”(否定)1.3 充分条件、必要条件与命题的四种形式1.3.1 推出与充分条件、必要条件本章小结阅读与欣赏什么是数理逻辑第二章圆锥曲线与方程2.1 曲线与方程2.1.1 曲线与方程的概念2.1.2 由曲线求它的方程、由方程研究曲线的性质2.2 椭圆2.2.1 椭圆的标准方程2.2.2 椭圆的几何性质2.3 双曲线2.3.1 双曲线的标准方程2.3.2 双曲线的几何性质2.4 抛物线2.4.1 抛物线的标准方程2.4.2 抛物线的几何性质2.5 直线与圆锥曲线本章小结阅读与欣赏圆锥面与圆锥曲线第三章空间向量与立体几何3.1 空间向量及其运算3.1.1 空间向量的线性运算3.1.2 空间向量的基本定理3.1.3 两个向量的数量积3.1.4 空间向量的直角坐标运算3.2 空间向量在立体几何中的应用3.2.1 直线的方向向量与直线的向量方程3.2.2 平面的法向量与平面的向量表示3.2.3 直线与平面的夹角3.2.4 二面角及其度量3.2.5 距离(选学)本章小结阅读与欣赏向量的叉积及其性质附录部分中英文词汇对照表后记高中课标实验教材B版选修2-2选修2-2版权页编写内容本册引导目录第一章导数及其应用1.1 导数1.1.1 函数的平均变化率1.1.2 瞬时速度与导数1.1.3 导数的几何意义1.2 导数的运算1.2.1 常数函数与冥函数的导数1.2.2 导数公式表及数学软件的应用1.2.3 导数的四则运算法则1.3 导数的应用1.3.1 利用导数判断函数的单调性1.3.2 利用导数研究函数的极值1.3.3 导数的实际应用1.4 定积分与微积分基本定理1.4.1 曲边梯形面积与定积分1.4.2 微积分基本定理本章小结阅读与欣赏微积分与极限思想第二章推理与证明2.1 合情推理与演绎推理2.1.1 合情推理2.1.2 演绎推理2.2 直接证明与间接证明2.2.1 综合法与分析法2.2.2 反证法2.3 数学归纳法2.3.1 数学归纳法2.3.2 数学归纳法应用举例本意小结阅读与欣赏《原本》与公理化思想第三章数系的扩充与复数3.1 数系的扩充与复数的概念3.1.1 实数系3.1.2 复数的概念3.1.3 复数的几何意义3.2 复数的运算3.2.1 复数的加法与减法3.2.2 复数的乘法3.2.3 复数的除法本章小节阅读与欣赏复平面与高斯附录部分中英文词汇对照表后记高中课标实验教材B版选修2-3选修2-3扉页本册导引版权页目录编写人员第一章计数原理1.1 基本计数原理1.2 排列与组合1.2.1 排列1.2.2 组合1.3 二项式定理1.3 二项式定理1.3.2 杨辉三角本章小结第二章概率2.1 离散型随机变量及其分布列2.1.1 离散型随机变量2.1.2 离散型随机变量的分布列2.1.3 超几何分布2.2 条件概率与事件的独立性2.2.1 条件概率2.2.2 事件的独立性2.2.3 独立重复试验与二项分布2.3 随机变量的数字特征2.3.1 离散型随机变量的数学期望2.3.2 离散型随机变量的方差2.4 正态分布本章小结阅读与欣赏关于“玛丽莲问题”的争论第三章统计案例3.1 独立性检验3.2 回归分析本章小结阅读与欣赏“回归”一词的由来附表附录部分中英文词汇对照表后记高中数学(B版)选修4-5第一章不等式的基本性质和证明的基本方法1.1 不等式的基本性质和一元二次不等式的解法1.2基本不等式1.3绝对值不等式的解法1.4绝对值的三角不等式1.5不等式证明的基本方法本章小结第二章柯西不等式与排序不等式及其应用2.1 柯西不等式2.2排序不等式2.3平均值不等式(选学)2.4最大值与最小值问题,优化的数学模型本章小结阅读与欣赏第三章数学归纳法与贝努利不等式3.1数学归纳法原理3.2用数学归纳法证明不等式,贝努利不等式本章小结阅读与欣赏附录部分中英文词汇对照表后记。
2017-2018学年高中数学人教B版选修4-5全册同步配套教学案目录第一章1.1 1.1.1不等式的基本性质第一章1.1 1.1.2一元一次不等式和一元二次不等式的解法第一章1.2 基本不等式第一章1.3绝对值不等式的解法第一章1.4绝对值的三角不等式第一章1.51.5.1比较法第一章1.51.5.2综合法和分析法第一章1.51.5.3反证法和放缩法第一章章末小结知识整合与阶段检测第二章2.1 柯西不等式第二章2.2 排序不等式第二章2.3~2.4 平均值不等式(选学)最大值与最小值问题优化的数学模型第二章章末小结知识整合与阶段检测第三章3.1 数学归纳法原理第三章3.2 用数学归纳法证明不等式贝努利不等式第三章章末小结知识整合与阶段检测1.1不等式的基本性质和一元二次不等式的解法 1.1.1 不等式的基本性质[对应学生用书P1][读教材·填要点]1.实数的大小的几何意义和代数意义之间的联系 设a ,b ∈R ,则 ①a >b ⇔a -b >0; ②a =b ⇔a -b =0; ③a <b ⇔a -b <0. 2.不等式的基本性质[小问题·大思维]1.若x >y ,a >b ,则在①a -x >b -y ,②a +x >b +y ,③ax >by ,④x -b >y -a ,⑤ay >bx这五个不等式中,恒成立的不等式有哪些? 提示:令x =-2,y =-3,a =3,b =2, 符合题设条件x >y ,a >b ,则∵a -x =3-(-2)=5,b -y =2-(-3)=5, ∴a -x =b -y ,因此①不成立.又∵ax =-6,by =-6,∴ax =by ,因此③也不正确. 又∵a y =3-3=-1,b x =2-2=-1,∴a y =bx,因此⑤不正确. 由不等式的性质可推出②④恒成立. 即恒成立的不等式有②④. 2.若a <b ,一定有1a >1b吗?提示:不一定.如a =-1,b =2.事实上, 当ab >0时,若a <b ,则有1a >1b ;当ab <0时,若a <b ,则有1a <1b;当ab =0时,若a <b ,则1a 与1b 中有一个式子无意义.[对应学生用书P2][例1] x ∈R ,比较x 3-1与2x 2-2x 的大小.[思路点拨] 本题考查利用作差法比较两个代数式的大小.解答本题需要将作差后的代数式分解因式,然后根据各因式的符号判断x 3-1与2x 2-2x 的大小.[精解详析] (x 3-1)-(2x 2-2x ) =(x 3-x 2)-(x 2-2x +1) =x 2(x -1)-(x -1)2 =(x -1)(x 2-x +1)∵x 2-x +1=⎝⎛⎭⎫x -122+34≥34>0, ∴当x >1时,(x -1)(x 2-x +1)>0. 即x 3-1>2x 2-2x ;当x =1时,(x -1)(x 2-x +1)=0, 即x 3-1=2x 2-2x .当x <1时,(x -1)(x 2-x +1)<0, 即x 3-1<2x 2-2x .(1)用作差法比较两个数(式)的大小时,要按照“三步一结论”的程序进行,即:作差→变形→定号→结论,其中变形是关键,定号是目的.(2)在变形中,一般是变形得越彻底越有利于下一步的判断.变形的常用技巧有:因式分解、配方、通分、分母有理化等.(3)在定号中,若为几个因式的积,需每个因式均先定号,当符号不确定时,需进行分类讨论.1.当a ≠0时,比较(a 2+2a +1)(a 2-2a +1)与(a 2+a +1)(a 2-a +1)的大小. 解:两式作差得(a 2+2a +1)(a 2-2a +1)-(a 2+a +1)(a 2-a +1) =[(a 2+1)2-(2a )2]-[(a 2+1)2-a 2]=-a 2. ∵a ≠0,∴-a 2<0.∴(a 2+2a +1)(a 2-2a +1)<(a 2+a +1)(a 2-a +1).[例2] 下列命题中正确的是( ) (1)若a >b ,c >b ,则a >c ; (2)若a >b ,则lg ab >0;(3)若a >b ,c >d ,则ac >bd ; (4)若a >b >0,则1a <1b ;(5)若a c >bd,则ad >bc ;(6)若a >b ,c >d ,则a -d >b -c . A .(1)(2) B .(4)(6) C .(3)(6)D .(3)(4)(5)[思路点拨] 本题考查对不等式的性质的理解,解答本题需要利用不等式的性质或利用特殊值逐项判断.[精解详析] (1)错误.因为当取a =4,b =2,c =6时,有a >b ,c >b 成立,但a >c 不成立.(2)错误.因为a 、b 符号不确定,所以无法确定a b >1是否成立,从而无法确定lg ab >0是否成立.(3)错误.此命题当a 、b 、c 、d 均为正数时才正确.(4)正确.因为a >b ,且a 、b 同号,所以ab >0,两边同乘以1ab ,得1a <1b .(5)错误.只有当cd >0时,结论才成立.(6)正确.因为c >d ,所以-d >-c ,又a >b , 所以a -d >b -c . 综上可知(4)(6)正确. [答案] B运用不等式的性质时要注意条件,如倒数法则要求两数同号;两边同乘一个数,不等号方向是否改变要视此数的正负而定;同向不等式可以相加,异向不等式可以相减.2.若m ,n ∈R ,则1m >1n 成立的一个充要条件是( )A .m >0>nB .n >m >0C .m <n <0D .mn (m -n )<0解析:1m >1n ⇔1m -1n >0⇔n -m mn >0⇔mn (n -m )>0⇔mn (m -n )<0.答案:D[例3] 已知π<α+β<4π3,-π<α-β<-π3,求2α-β的取值范围.[思路点拨] 解答本题时,将α+β,α-β看作整体,再求出2α-β的取值范围. [精解详析] 设2α-β=A (α+β)+B (α-β), 则2α-β=(A +B )α+(A -B )β.比较两边系数得⎩⎪⎨⎪⎧A +B =2,A -B =-1⇒⎩⎨⎧A =12,B =32.∴2α-β=12(α+β)+32(α-β).∵π2<12(α+β)<23π, -3π2<32(α-β)<-π2, ∴-π<2α-β<π6.故2α-β∈⎝⎛⎭⎫-π,π6.(1)若已知某两个代数式的取值范围,求另一个代数式的取值范围时,应利用待定系数法把所求代数式用已知的两代数式表示,进而利用同向不等式的可加性求其范围,否则可能导致所求代数式范围变大.(2)同一问题中应用同向不等式相加性质时,不能多次使用,否则可能导致范围扩大.3.若已知二次函数y =f (x )的图象过原点,且1≤f (-1)≤2,3≤f (1)≤4.求f (-2)的范围. 解:法一:∵f (x )过原点,∴可设f (x )=ax 2+bx .∴⎩⎪⎨⎪⎧f (1)=a +b ,f (-1)=a -b . ∴⎩⎨⎧a =12[f (1)+f (-1)],b =12[f (1)-f (-1)].∴f (-2)=4a -2b =3f (-1)+f (1). ∵1≤f (-1)≤2,3≤f (1)≤4. ∴6≤f (-2)≤10. 法二:设f (x )=ax 2+bx , 则f (1)=a +b ,f (-1)=a -b .令m (a +b )+n (a -b )=f (-2)=4a -2b ,∴⎩⎪⎨⎪⎧ m +n =4,m -n =-2.∴⎩⎪⎨⎪⎧m =1,n =3.∴f (-2)=(a +b )+3(a -b )=f (1)+3f (-1). ∵1≤f (-1)≤2,3≤f (1)≤4, ∴6≤f (-2)≤10.[对应学生用书P3]一、选择题1.已知a ,b ,c ,d 为实数,且c >d ,则“a >b ”是“a -c >b -d ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件解析:由⎩⎪⎨⎪⎧ a -c >b -d ,c >d ⇒a >b ;而当a =c =2,b =d =1时,满足⎩⎪⎨⎪⎧a >b ,c >d ,但a -c >b -d 不成立,所以“a >b ”是“a -c >b -d ”的必要而不充分条件.答案:B2.已知a ,b ,c ∈R ,且ab >0,则下面推理中正确的是( ) A .a >b ⇒am 2>bm 2 B .a c >bc ⇒a >bC .a 3>b 3⇒1a <1bD .a 2>b 2⇒a >b解析:对于A ,若m =0,则不成立;对于B ,若c <0,则不成立;对于C ,a 3-b 3>0⇒(a -b )(a 2+ab +b 2)>0,∵a 2+ab +b 2=(a +b 2)2+34b 2>0恒成立,∴a -b >0.∴a >b .又∵ab >0,∴1a <1b .∴C 成立.对于D ,a 2>b 2⇒(a -b )(a +b )>0,不能说a >b . 答案:C3.设a ,b ∈R ,若a -|b |>0,则下列不等式正确的是( ) A .b -a >0 B .a 3+b 3<0 C .a 2-b 2<0D .b +a >0解析:∵a -|b |>0,∴a >|b |>0.∴不论b 取任何实数不等式a +b >0都成立. 答案:D4.如果a ∈R ,且a 2+a <0,那么a ,a 2,-a ,-a 2的大小关系是( ) A .a 2>a >-a 2>-a B .-a >a 2>-a 2>a C .-a >a 2>a >-a 2D .a 2>-a >a >-a 2解析:∵a 2+a <0,即a (a +1)<0,可得,-1<a <0, ∴-a >a 2>0,∴0>-a 2>a . 综上有-a >a 2>-a 2>a . 答案:B 二、填空题5.若f (x )=3x 2-x +1,g (x )=2x 2+x -1,则f (x )与g (x )的大小关系是f (x )________g (x ). 解析:f (x )-g (x )=(3x 2-x +1)-(2x 2+x -1)=x 2-2x +2=(x -1)2+1≥1>0,∴f (x )>g (x ). 答案:>6.已知12<a <60,15<b <36,则a -b 的取值范围分别是________. 解析:∵12<a <60,-36<-b <-15,∴-24<a -b <45. 答案:(-24,45)7.给出下列条件:①1<a <b ;②0<a <b <1;③0<a <1<b .其中能推出log b 1b <log a1b <log a b 成立的条件的序号是________.(填所有可能的条件的序号)解析:∵log b 1b =-1,若1<a <b ,则1b <1a<1<b ,∴log a 1b <log a 1a =-1,故条件①不可以;若0<a <b <1,则b <1<1b <1a .∴log a b >log a 1b >log a 1a =-1=log b 1b ,故条件②可以;若0<a <1<b ,则0<1b <1,∴log a 1b>0,log a b <0,条件③不可以.故应填②. 答案:②8.设x =a 2b 2+5,y =2ab -a 2-4a ,若x >y ,则实数a ,b 满足的条件是________________. 解析:∵x >y ,∴a 2b 2+5-2ab +a 2+4a =a 2+4a +4+a 2b 2-2ab +1 =(a +2)2+(ab -1)2>0. ∴ab ≠1或a ≠-2. 答案:ab ≠1或a ≠-2. 三、解答题9.已知-π2≤α<β≤π2,求α+β2,α-β2的范围.解:∵-π2≤α<β≤π2,∴-π4≤α2<π4,-π4<β2≤π4. 因而两式相加得-π2<α+β2<π2.又∵-π4<β2≤π4,∴-π4≤-β2<π4.∴-π2≤α-β2<π2.又∵α<β,∴α-β2<0.∴-π2≤α-β2<0.即α+β2∈⎝⎛⎭⎫-π2,π2,α-β2∈⎣⎡⎭⎫-π2,0. 10.已知a ,b ∈{正实数}且a ≠b ,比较a 2b +b 2a 与a +b 的大小.解:∵⎝⎛⎭⎫a 2b +b 2a -(a +b )=a 2b -b +b2a -a =a 2-b 2b +b 2-a 2a =(a 2-b 2)⎝⎛⎭⎫1b -1a =(a 2-b 2)(a -b )ab ,=(a -b )2(a +b )ab ,又∵a >0,b >0,且a ≠b , ∴(a -b )2>0,a +b >0,ab >0, ∴a 2b +b 2a>a +b . 11.已知α,β满足⎩⎪⎨⎪⎧-1≤α+β ≤1,1≤α+2β ≤3,试求α+3β的取值范围.解:设α+3β=λ(α+β)+u (α+2β) =(λ+u )α+(λ+2u )β.比较α,β的系数,得⎩⎪⎨⎪⎧ λ+u =1,λ+2u =3,⇒⎩⎪⎨⎪⎧λ=-1,u =2.由题意得-1≤-α-β≤1,2≤2α+4β≤6, 两式相加,得1≤α+3β≤7. 故α+3β的取值范围是[1,7].1.1.2一元一次不等式和一元二次不等式的解法[对应学生用书P4][读教材·填要点]1.一元二次不等式只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.2.二次函数、二次方程、二次不等式之间的关系[小问题·大思维]1.“若ax2+bx+c<0(a≠0)的解集是空集,则a、b、c满足的关系是b2-4ac<0且a>0”是否正确?提示:当Δ=0时,易知ax2+bx+c<0(a>0)的解集也是∅,从而满足的条件应为“a>0且b2-4ac≤0”.2.当a<0时,若方程ax2+bx+c=0有两个不等实根α,β且α<β,则不等式ax2+bx+c>0的解集是什么?提示:借助函数f(x)=ax2+bx+c的图象可知,不等式的解集为{x|α<x<β}.3.一元二次不等式与二次函数有什么关系?提示:一元二次不等式ax2+bx+c>0(a>0)的解集,就是二次函数y=ax2+bx+c(a>0)的图象在x轴上方的点的横坐标x的集合,ax2+bx+c<0(a>0)的解集,就是二次函数y=ax2+bx+c(a>0)的图象在x轴下方的点的横坐标x的集合.[对应学生用书P5][例1] 不等式x -2x 2-1<0的解集为( )A .{x |1<x <2}B .{x |x <2且x ≠1}C .{x |-1<x <2且x ≠1}D .{x |x <-1或1<x <2}[思路点拨] 根据不等式性质把ba <0转化为ab <0,再求解.[精解详析] 因为不等式x -2x 2-1<0,等价于(x +1)(x -1)(x -2)<0,所以该不等式的解集是{x |x <-1或1<x <2}. [答案] D解分式不等式总的原则是利用不等式的同解原理将其转化为整式不等式(组)求解.即f (x )g (x )≥0⇒⎩⎪⎨⎪⎧f (x )·g (x )≥0g (x )≠0⇒f (x )·g (x )>0或f (x )=0.f (x )g (x )>0⇒⎩⎪⎨⎪⎧f (x )>0g (x )>0或⎩⎪⎨⎪⎧f (x )<0g (x )<0⇒f (x )·g (x )>0.1.解不等式:x +1x -2≤2.解:∵x +1x -2≤2,∴x +1x -2-2≤0.即-x +5x -2≤0.∴x -5x -2≥0.∴⎩⎪⎨⎪⎧(x -5)(x -2)≥0,x -2≠0,∴x <2或x ≥5. 即原不等式的解集为{x |x <2或x ≥5}.[例2] 解关于x 的不等式:ax 2-(a +1)x +1<0. [思路点拨] 由于a ∈R ,故分a =0,a >0,a <0讨论. [精解详析] 若a =0,原不等式可化为-x +1<0,即x >1.若a <0,原不等式可化为⎝⎛⎭⎫x -1a (x -1)>0, 即x <1a或x >1.若a >0,原不等式可化为⎝⎛⎭⎫x -1a (x -1)<0 (*)其解的情况应由1a 与1的大小关系决定,故(1)当a =1时,由(*)式可得x ∈∅; (2)当a >1时,由(*)式可得1a <x <1;(3)当0<a <1时,由(*)式可得1<x <1a.综上所述:当a <0时,解集为⎩⎨⎧x ⎪⎪⎭⎬⎫x <1a 或x >1; 当a =0时,解集为{x |x >1};当0<a <1时,解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1<x <1a ; 当a =1时,解集为∅;当a >1时,解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1a<x <1.解含参数的一元二次不等式时要注意对参数分类讨论.讨论一般分为三个层次,第一层次是二次项系数为零和不为零;第二层次是有没有实数根的讨论,即判别式Δ>0,Δ=0,Δ<0;第三层次是根的大小的讨论.2.若k ∈R ,求解关于x 的不等式:x 22-x <(k +1)x -k2-x.解:不等式x 22-x <(k +1)x -k2-x 可化为x 2-(k +1)x +k 2-x <0,即(x -2)(x -1)(x -k )>0.当k <1时,x ∈(k,1)∪(2,+∞); 当k =1时,x ∈(2,+∞);当1<k <2时,x ∈(1,k )∪(2,+∞); 当k ≥2时,x ∈(1,2)∪(k ,+∞).[例3] 国家为了加强对烟酒生产的宏观调控,实行征收附加税政策,现知某种酒每瓶70元,不加收附加税时,每年大约产销100万瓶,若政府征收附加税,每销售100元要征税R 元(叫做税率R %),则每年的销售将减少10R 万瓶,要使每年在此项经营中所收附加税金不少于112万元,问R 应怎样确定?[思路点拨] 由题意求出在此项经营中所收附加税金,建立不等关系转化为不等式问题求解.[精解详析] 设产销量为每年x 万瓶,则销售收入为每年70x 万元, 从中征收的税金为70x ·R %万元,其中x =100-10R , 由题意得70(100-10R )R %≥112, 整理,得R 2-10R +16≤0.∵Δ=36>0,方程R 2-10R +16=0的两个实数根为x 1=2,x 2=8.然后画出二次函数y =R 2-10R +16的图象,由图象得不等式的解集为{R |2≤R ≤8}. 答:当2≤R ≤8时,每年在此项经营中所收附加税金不少于112万元.解一元二次不等式应用题的关键在于构造一元二次不等式模型,即分析题目中有哪些未知量,然后选择其中起关键作用的未知量,设此未知量为x ,用x 来表示其他未知量,再根据题目中的不等关系列不等式.3.据调查,湖南某地区有100万从事传统农业的农民,人均年收入3 000元.为了增加农民的收入,当地政府积极引资建立各种加工企业,对当地的农产品进行深加工,同时吸收当地部分农民进入加工企业工作.据估计,如果有x (x >0)万人进入企业工作,那么剩下从事传统农业的农民的人均年收入有望提高2x %,而进入企业工作的农民人均年收入为3 000a 元(a >0为常数).(1)在建立加工企业后,要使该地区从事传统农业的农民的年总收入不低于加工企业建立前的年总收入,求x 的取值范围;(2)在(1)的条件下,当地政府应安排多少万农民进入加工企业工作,才能使这100万农民的人均年收入达到最大?解:(1)根据题意,得(100-x )·3 000·(1+2x %)≥100×3 000, 即x 2-50x ≤0,解得0≤x ≤50. 又x >0,故x 的取值范围是(0,50]. (2)设这100万农民的人均年收入为y 元,则 y =(100-x )×3 000×(1+2x %)+3 000ax 100=-60x 2+3 000(a +1)x +300 000100=-35[x -25(a +1)]2+3 000+375(a +1)2(0<x ≤50).①若0<25(a +1)≤50,即0<a ≤1, 则当x =25(a +1)时,y 取最大值; ②若25(a +1)>50,即a >1, 则当x =50时,y 取最大值.答:当0<a ≤1时,安排25(a +1)万人进入加工企业工作,当a >1时,安排50万人进入加工企业工作,才能使这100万人的人均年收入最大.[对应学生用书P6]一、选择题1.已知全集U =R ,集合M ={x |x 2-2x -3≤0},则∁U M =( ) A .{x |-1≤x ≤3} B .{x |-3≤x ≤1} C .{x |x <-3或x >1}D .{x |x <-1或x >3}解析:因为M ={x |-1≤x ≤3},全集U =R , 所以∁U M ={x |x <-1或x >3}. 答案:D2.关于x 的不等式x 2-ax -20a 2<0任意两个解的差不超过9,则a 的最大值与最小值的和是( )A .2B .1C .0D .-1解析:方程x 2-ax -20a 2=0的两根是x 1=-4a ,x 2=5a ,由关于x 的不等式x 2-ax -20a 2<0任意两个解的差不超过9,得|x 1-x 2|=|9a |≤9,即-1≤a ≤1. 答案:C3.不等式f (x )=ax 2-x -c >0的解集为{x |-2<x <1},则函数y =f (-x )的图象为( )解析:由题意得⎩⎪⎨⎪⎧a <0,-2+1=1a ,-2×1=-c a,解得a =-1,c =-2, 则函数y =f (-x )=-x 2+x +2. 答案:C4.已知a ∈[-1,1],不等式x 2+(a -4)x +4-2a >0恒成立,则x 的取值范围为( ) A .(-∞,2)∪(3,+∞) B .(-∞,1)∪(2,+∞) C .(-∞,1)∪(3,+∞)D .(1,3)解析:把不等式的左端看成关于a 的一次函数, 记f (a )=(x -2)a +(x 2-4x +4), 则f (a )>0对于任意的a ∈[-1,1]恒成立, 有f (-1)=x 2-5x +6>0,① 且f (1)=x 2-3x +2>0,② 联立①②解得x <1或x >3.故选C. 答案:C 二、填空题5.若不等式-x 2+2x -m >0在x ∈[-1,0]上恒成立,则m 的取值范围是________. 解析:由m <-x 2+2x 知m 只需小于u =-x 2+2x ,x ∈[-1,0]的最小值即可. 又∵u 在[-1,0]上递增, ∴u min =-1-2=-3. ∴m <-3.答案:(-∞,-3)6.已知x =1是不等式k 2x 2-6kx +8≥0(k ≠0)的解,则k 的取值范围是______________. 解析:由题意知,k 2-6k +8≥0, 即(k -2)(k -4)≥0,∴k ≥4或k ≤2,又∵k ≠0,∴k 的取值范围是(-∞,0)∪(0,2]∪[4,+∞). 答案:(-∞,0)∪(0,2]∪[4,+∞)7.若不等式2x -1>m (x 2-1)对满足-2≤m ≤2的所有m 都成立,则x 的取值范围为________________.解析:(等价转化法)将原不等式化为: m (x 2-1)-(2x -1)<0. 令f (m )=m (x 2-1)-(2x -1),则原问题转化为当-2≤m ≤2时,f (m )<0恒成立,只需⎩⎪⎨⎪⎧ f (-2)<0,f (2)<0即可,即⎩⎪⎨⎪⎧-2(x 2-1)-(2x -1)<0,2(x 2-1)-(2x -1)<0,解得-1+72<x <1+32.答案:⎝⎛⎭⎪⎫-1+72,1+328.已知方程x 2+(2m -3)x +m 2-15=0的两个根一个大于-2,一个小于-2,则实数m 的取值范围为________.解析:设函数f (x )=x 2+(2m -3)x +m 2-15, 则由题意:⎩⎪⎨⎪⎧Δ=(2m -3)2-4(m 2-15)>0,f (-2)<0, 即⎩⎪⎨⎪⎧-12m +69>0,m 2-4m -5<0. ∴-1<m <5. 答案:(-1,5) 三、解答题9.若不等式(1-a )x 2-4x +6>0的解集是{x |-3<x <1}. (1)解不等式2x 2+(2-a )x -a >0;(2)b 为何值时,ax 2+bx +3≥0的解集为R? 解:(1)由题意知1-a <0,且-3和1是方程(1-a )x 2-4x +6=0的两根,∴⎩⎨⎧1-a <0,41-a=-2,61-a =-3,解得a =3.∴不等式2x 2+(2-a )x -a >0, 即为2x 2-x -3>0, 解得x <-1或x >32.∴所求不等式的解集为⎩⎨⎧⎭⎬⎫x | x <-1或x >32.(2)ax 2+bx +3≥0,即为3x 2+bx +3≥0. 若此不等式解集为R ,则b 2-4×3×3≤0, ∴-6≤b ≤6.10.一个服装厂生产风衣,日销售量x (件)与售价p (元/件)之间的关系为p =160-2x ,生产x 件的成本R =500+30x 元.(1)该厂日产量多大时,日利润不少于1 300元?(2)当日产量为多少时,可获得最大利润,最大利润是多少? 解:(1)由题意知,日利润y =px -R , 即y =(160-2x )x -(500+30x ) =-2x 2+130x -500, 由日利润不少于1 300元, 得-2x 2+130x -500≥1 300, 即x 2-65x +900≤0,解得20≤x ≤45.故当该厂日产量在20~45件时,日利润不少于1 300元. (2)由(1)得,y =-2x 2+130x -500 =-2⎝⎛⎭⎫x -6522+3 2252, 由题意知,x 为正整数.故当x =32或33时,y 最大为1 612.所以当日产量为32或33件时,可获得最大利润,最大利润为1 612元. 11.已知二次函数f (x )=ax 2+x ,若对任意x 1,x 2∈R ,恒有2f ⎝⎛⎭⎫x 1+x 22≤f (x 1)+f (x 2)成立,不等式f (x )<0的解集为A .(1)求集合A ;(2)设集合B ={x ||x +4|<a },若集合B 是集合A 的子集,求a 的取值范围.解:(1)对任意的x 1,x 2∈R , f (x 1)+f (x 2)-2f ⎝⎛⎭⎫x 1+x 22=12a (x 1-x 2)2≥0,要使上式恒成立,所以a ≥0.由f (x )=ax 2+x 是二次函数知a ≠0,故a >0. 由f (x )=ax 2+x =ax ⎝⎛⎭⎫x +1a <0, 解得A =⎝⎛⎭⎫-1a ,0. (2)解得B =(-a -4,a -4),因为集合B 是集合A 的子集,所以a -4≤0,且-a -4≥-1a. 解得0<a ≤-2+ 5.即a 的取值范围是(0,-2+5].1.2基本不等式[对应学生用书P7][读教材·填要点]1.定理1设a ,b ∈R ,则a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. 2.定理2(基本不等式或平均值不等式)如果a ,b a =b 时,等号成立.即:两个正数的算术平均不小于(即大于或等于)它们的几何平均.3.定理3(三个正数的算术—几何平均值不等式)如果a ,b ,c 为正数,则a +b +c 3≥a =b =c 时,等号成立.4.定理4(一般形式的算术—几何平均值不等式) 如果a 1,a 2,…,a n 为n 个正数,则 a 1+a 2+…+a nn≥ 并且当且仅当a 1=a 2=…=a n 时,等号成立.[小问题·大思维]1.在基本不等式a +b2≥ab 中,为什么要求a ,b ∈(0,+∞)?提示:对于不等式a +b2≥ab ,如果a ,b 中有两个或一个为0,虽然不等式仍成立,但是研究的意义不大,而且a ,b 至少有一个为0时,不能称ab 为几何平均(或等比中项),因此规定a ,b ∈(0,+∞).2.满足不等式a +b +c 3≥3abc 成立的a ,b ,c 的范围是什么?提示:a ,b ,c 的范围为a ≥0,b ≥0,c ≥0.[对应学生用书P8][例1] 已知a ,b ,c 为正实数,且abc =1 求证:(a +b )(b +c )(c +a )≥8.[思路点拨] 本题考查基本不等式在证明不等式中的应用,解答本题需要分析不等式的特点,先对a +b ,b +c ,c +a 分别使用基本不等式,再把它们相乘.[精解详析] ∵a ,b ,c 为正实数, ∴a +b ≥2ab >0, b +c ≥2bc >0, c +a ≥2ca >0, 由上面三式相乘可得 (a +b )(b +c )(c +a ) ≥8ab ·bc ·ca =8abc . 即(a +b )(b +c )(c +a )≥8.(1)用基本不等式证明不等式时,应首先依据不等式两边式子的结构特点进行恒等变形,使之具备基本不等式的结构和条件,然后合理地选择基本不等式或其变形形式进行证明.(2)本题证明过程中多次用到基本不等式,然后利用同向不等式的可加性得出所证的不等式.1.已知a ,b ∈(0,+∞),求证:(a +b )⎝⎛⎭⎫1a +1b ≥4. 证明:∵a >0,b >0,∴a +b ≥2ab >0,① 当且仅当a =b 时取等号. 1a +1b≥21ab>0,② 当且仅当1a =1b ,即a =b 时取等号.①×②,得(a +b )⎝⎛⎭⎫1a +1b ≥2ab ·21ab=4, 当且仅当a =b 时取等号. ∴(a +b )⎝⎛⎭⎫1a +1b ≥4.[例2] (1)已知a ,b ,c ∈R +,求证:a 2+b 2+c 2+⎝⎛⎭⎫1a +1b +1c 2≥6 3.(2)设a 1,a 2,a 3均为正数,且a 1+a 2+a 3=m ,求证:1a 1+1a 2+1a 3≥9m.[思路点拨] 本题考查平均不等式的应用.解答(1)题时可重复使用均值不等式,(2)题需要先观察求证式子的结构,然后通过变形转化为用平均不等式证明.[精解详析] (1)a 2+b 2+c 2+⎝⎛⎭⎫1a +1b +1c 2 ≥33a 2b 2c 2+931a 2·1b 2·1c 2≥233a 2b 2c 2·931a 2·1b 2·1c 2=63,当且仅当a =b =c =43时等号成立. (2)∵⎝⎛⎭⎫1a 1+1a 2+1a 3·m =(a 1+a 2+a 3)·⎝⎛⎭⎫1a 1+1a 2+1a 3≥33a 1·a 2·a 3·3 31a 1·1a 2·1a 3=9·3a 1·a 2·a 3·1a 1·1a 2·1a 3=9.当且仅当a 1=a 2=a 3=m3时等号成立.又∵m >0,∴1a 1+1a 2+1a 3≥9m.三个正数的算术—几何平均不等式定理,是根据不等式的意义、性质和比较法证出的,因此,凡是可以利用该定理证明的不等式,一般都可以直接应用比较法证明,只是在具备条件时,直接应用该定理会更简便.若不直接具备“一正二定三相等”的条件,要注意经过适当的恒等变形后再使用定理证明.连续多次使用平均值不等式定理时要注意前后等号成立的条件是否保持一致.2.已知a ,b ,c ∈R +,证明⎝⎛⎭⎫1a 2+1b 2+1c 2(a +b +c )2≥27. 证明:∵a ,b ,c ∈R +, ∴a +b +c ≥33abc >0.∴(a +b +c )2≥93a 2b 2c 2 又1a 2+1b 2+1c 2≥331a 2b 2c2>0, ∴⎝⎛⎭⎫1a 2+1b 2+1c 2(a +b +c )2≥331a 2b 2c 2·93a 2b 2c 2 =27.当且仅当a =b =c 时,等号成立. ∴⎝⎛⎭⎫1a 2+1b 2+1c 2(a +b +c )2≥27.[对应学生用书P9]一、选择题1.设x 、y 为正实数,且xy -(x +y )=1,则( ) A .x +y ≥2(2+1) B .x +y ≤2(2+1) C .x +y ≤(2+1)2D .x +y ≥(2+1)2解析:x >0,y >0,xy -(x +y )=1⇒xy =1+(x +y )⇒1+(x +y )≤⎝⎛⎭⎫x +y 22⇒x +y ≥2(2+1).答案:A2.已知圆柱的轴截面周长为6,体积为V ,则下列关系式总成立的是( ) A .V ≥π B .V ≤π C .V ≥18πD .V ≤18π解析:设圆柱的底面半径为r ,高为h , 则由题意得:4r +2h =6,即2r +h =3, 于是有V =πr 2h ≤π·⎝⎛⎭⎫r +r +h 33=π⎝⎛⎭⎫333=π,当且仅当r =h 时取等号. 答案:B3.设x ,y ,z ∈R +且x +y +z =6,则lg x +lg y +lg z 的取值范围是( ) A .(-∞,lg 6] B .(-∞,3lg 2] C .[lg 6,+∞) D .[3lg 2,+∞) 解析:∵lg x +lg y +lg z =lg(xyz ),而xyz ≤⎝⎛⎭⎫x +y +z 33,∴lg(xyz )≤lg 8=3lg 2(当且仅当x =y =z =2时,等号成立). 答案:B4.设a ,b ,c ∈(0,+∞)且a +b +c =1,令x =⎝⎛⎭⎫1a -1⎝⎛⎭⎫1b -1⎝⎛⎭⎫1c -1,则x 的取值范围为( )A.⎣⎡⎭⎫0,18 B.⎣⎡⎭⎫18,1 C .[1,8)D .[8,+∞)解析:∵x =⎝⎛⎭⎫1a -1⎝⎛⎭⎫1b -1⎝⎛⎭⎫1c -1 =1-a a ·1-b b ·1-c c =(b +c )·(c +a )·(a +b )abc ≥2bc ·2ca ·2ababc=8,当且仅当a =b =c 时取等号,∴x ≥8. 答案:D 二、填空题5.已知x ,y ∈R +,且满足x 3+y 4=1,则xy 的最大值为________.解析:因为x >0,y >0, 所以x 3+y 4≥2x 3·y 4= xy3,即 xy3≤1,解得xy ≤3,所以其最大值为3. 答案:36.设a >1,t >0,则12log a t 与log a t +12的大小关系为12log a t ________log a t +12(填“<”“≥”或“≤”).解析:因为12log a t =log a t ,又t >0又t +12≥ t . 而a >1,∴log a t +12≥log a t ,故填“≤”.答案:≤7.函数y =x 2x 4+9(x ≠0)有最大值________,此时x =________.解析:∵x ≠0,∴x 2>0.∴y =x 2x 4+9=1x 2+9x2≤12x 2·9x2=16, 当且仅当x 2=9x 2,即x 4=9,x =±3时取等号,即当x =±3时,y max =16.答案:16±38.已知a >0,b >0,c >0,且a +b +c =1,则abc 的最大值是________. 解析:∵a ,b ,c ∈(0,+∞),∴1=a +b +c ≥33abc . 0<abc ≤⎝⎛⎭⎫133=127,当且仅当a =b =c =13时取等号.答案:127三、解答题9.求函数y =2x 2+3x (x >0)的最小值.解:由x >0知2x 2>0,32x >0,则y =2x 2+3x =2x 2+32x +32x≥332x 2·32x ·32x =3392.当且仅当2x 2=32x ,即x =334时,y min =3392=32336.10.已知a ,b 为正实数,a +b =1. 求证:⎝⎛⎭⎫a +1a 2+⎝⎛⎭⎫b +1b 2≥252. 证明:∵a >0,b >0,a +b =1. ∴1=a +b ≥2ab ,ab ≤12.∴1ab ≥4.∵a +b 2≤a 2+b 22,∴a 2+b 22≥⎝⎛⎭⎫a +b 22.∴⎝⎛⎭⎫a +1a 2+⎝⎛⎭⎫b +1b 2≥2⎣⎢⎡⎦⎥⎤a +1a +b +1b 22=⎝⎛⎭⎫1+1a +1b 22≥⎝⎛⎭⎫1+21ab 22≥252.∴⎝⎛⎭⎫a +1a 2+⎝⎛⎭⎫b +1b 2≥252. 当且仅当a =b =12时等号成立.11.设a ,b ,c 为正实数, 求证:1a 3+1b 3+1c3+abc ≥2 3.证明:因为a ,b ,c 为正实数,由算术—几何平均不等式可得 1a 3+1b 3+1c 3≥331a 3·1b 3·1c 3, 即1a 3+1b 3+1c 3≥3abc (当且仅当a =b =c 时,等号成立). 所以1a 3+1b 3+1c 3+abc ≥3abc +abc .而3abc+abc ≥23abc·abc =23(当且仅当a 2b 2c 2=3时,等号成立), 所以1a 3+1b 3+1c 3+abc ≥23(当且仅当a =b =c =63时,等号成立).1.3绝对值不等式的解法[对应学生用书P10][读教材·填要点]1.含绝对值的不等式|x|≤a与|x|≥a的解集2.|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法(1)|ax+b|≤c⇔-c≤ax+b≤c;(2)|ax+b|≥c⇔ax+b≥c或ax+b≤-c.3.|x-a|+|x-b|≥c和|x-a|+|x-b|≤c型不等式的解法(1)分区间讨论法:以绝对值的零点为分界点,将数轴分为几个区间,利用“零点分段法”求解,体现分类讨论的思想.确定各个绝对值符号内多项式的正、负进而去掉绝对值符号是解题关键.(2)图象法:构造函数,结合函数的图象求解.(3)几何法:利用绝对值不等式的几何意义求解.[小问题·大思维]1.|x|以及|x-a|±|x-b|表示的几何意义是什么?提示:|x|的几何意义是数轴上表示数x的点到原点O的距离;|x-a|±|x-b|的几何意义是数轴上表示数x的点与表示数a,b的点的距离之和(差).2.如何解|x-a|<|x-b|、|x-a|>|x-b|(a≠b)型的不等式的解集?提示:可通过两边平方去绝对值符号的方法求解.[对应学生用书P10][例1]解下列不等式:(1)1<|x-2|≤3;(2)|2x +5|>7+x ; (3)1x 2-2≤1|x |. [思路点拨] 本题考查较简单的绝对值不等式的解法.解答本题(1)可利用公式转化为|ax +b |>c (c >0)或|ax +b |<c (c >0)型不等式后逐一求解,也可利用绝对值的定义分两种情况去掉绝对值符号,还可用平方法转化为不含绝对值的不等式.(2)可利用公式法转化为不含绝对值的不等式. (3)可分类讨论去掉分母和绝对值.[精解详析] (1)法一:原不等式等价于不等式组⎩⎪⎨⎪⎧ |x -2|>1,|x -2|≤3,即⎩⎪⎨⎪⎧x <1或x >3,-1≤x ≤5,解得-1≤x <1或3<x ≤5,所以原不等式的解集为{x |-1≤x <1或3<x ≤5}. 法二:原不等式可转化为:①⎩⎪⎨⎪⎧ x -2≥0,1<x -2≤3,或②⎩⎪⎨⎪⎧x -2<0,1<-(x -2)≤3,由①得3<x ≤5,由②得-1≤x <1,所以原不等式的解集是{x |-1≤x <1或3<x ≤5}. (2)由不等式|2x +5|>7+x ,可得2x +5>7+x 或2x +5<-(7+x ), 整理得x >2或x <-4.∴原不等式的解集是{x |x <-4或x >2}. (3)①当x 2-2<0且x ≠0,即当-2<x <2, 且x ≠0时,原不等式显然成立. ②当x 2-2>0时,原不等式与不等式组⎩⎨⎧|x |>2,x 2-2≥|x |等价,x 2-2≥|x |即|x |2-|x |-2≥0, ∴|x |≥2,∴不等式组的解为|x |≥2, 即x ≤-2或x ≥2. ∴原不等式的解集为(-∞,-2]∪(-2,0)∪(0,2)∪[2,+∞).含一个绝对值不等式的常见类型及其解法:(1)形如|f (x )|<a ,|f (x )|>a (a ∈R )型不等式 此类不等式的简单解法是等价命题法,即 ①当a >0时,|f (x )|<a ⇒-a <f (x )<a . |f (x )|>a ⇔f (x )>a 或f (x )<-a . ②当a =0时,|f (x )|<a 无解. |f (x )|>a ⇔f (x )≠0.③当a <0时,|f (x )|<a 无解. |f (x )|>a ⇔f (x )有意义.(2)形如|f (x )|<g (x ),|f (x )|>g (x )型不等式 此类不等式的简单解法是等价命题法,即 ①|f (x )|<g (x )⇔-g (x )<f (x )<g (x ),②|f (x )|>g (x )⇔f (x )>g (x )或f (x )<-g (x )(其中g (x )可正也可负). 若此类问题用分类讨论法来解决,就显得较复杂. (3)形如a <|f (x )|<b (b >a >0)型不等式 此类问题的简单解法是利用等价命题法,即 a <|f (x )|<b (0<a <b )⇔a <f (x )<b 或-b <f (x )<-a . (4)形如|f (x )|<f (x ),|f (x )|>f (x )型不等式 此类题的简单解法是利用绝对值的定义,即 |f (x )|>f (x )⇔f (x )<0, |f (x )|<f (x )⇔x ∈∅.1.设函数f (x )=|2x -a |+5x ,其中a >0. (1)当a =3时,求不等式f (x )≥5x +1的解集; (2)若不等式f (x )≤0的解集为{x |x ≤-1},求a 的值. 解:(1)当a =3时,不等式f (x )≥5x +1可化为|2x -3|≥1, 由此可得x ≥2或x ≤1.故不等式f (x )≥5x +1的解集为{x |x ≤1或x ≥2}.(2)由f (x )≤0得|2x -a |+5x ≤0,此不等式可化为不等式组⎩⎪⎨⎪⎧x ≥a 2,2x -a +5x ≤0或⎩⎪⎨⎪⎧x <a 2,-(2x -a )+5x ≤0,即⎩⎨⎧x ≥a 2,x ≤a7或⎩⎨⎧x <a 2,x ≤-a3,因为a >0,所以不等式组的解集为⎩⎨⎧⎭⎬⎫x | x ≤-a 3.由题设可得-a3=-1,故a =3.[例2] 解不等式|x +7|-|3x -4|+3-22>0. [思路点拨] 先求出零点即x =-7,43,再分段讨论.[精解详析] 原不等式化为 |x +7|-|3x -4|+2-1>0,当x >43时,原不等式为x +7-(3x -4)+2-1>0,得x <5+22,即43<x <5+22; 当-7≤x ≤43时,原不等式为x +7+(3x -4)+2-1>0, 得x >-12-24,即-12-24<x ≤43;当x <-7时,原不等式为 -(x +7)+(3x -4)+2-1>0, 得x >6-22,与x <-7矛盾; 综上,不等式的解为-12-24<x <5+22.(1)|x -a |+|x -b |≥c 、|x -a |+|x -b |≤c (c >0)型不等式的三种解法:分区间(分类)讨论法、图象法和几何法.分区间讨论的方法具有普遍性,但较麻烦;几何法和图象法直观,但只适用于数据较简单的情况.(2)|x -a |+|x -b |≥c 、|x -a |+|x -b |≤c (c >0)型不等式的图象解法和画出函数f (x )=|x -a |+|x -b |-c 的图象是密切相关的,其图象是折线,正确地画出其图象的关键是写出f (x )的分段表达式.不妨设a <b ,于是f (x )=⎩⎪⎨⎪⎧-2x +a +b -c , (x ≤a ),b -a -c , (a <x <b ),2x -a -b -c , (x ≥b ).这种图象法的关键是合理构造函数,正确画出函数的图象,求出函数的零点,体现了函数与方程结合、数形结合的思想.(3)形如|f (x )|<|g (x )|型不等式此类问题的简单解法是利用平方法,即 |f (x )|<|g (x )|⇔[f (x )]2<[g (x )]2 ⇔[f (x )+g (x )][f (x )-g (x )]<0.2.设函数f (x )=|2x +1|-|x -3|. (1)解不等式f (x )≥4; (2)求函数y =f (x )的最小值.解:(1)由题意得,f (x )=|2x +1|-|x -3| =⎩⎪⎨⎪⎧-x -4, x <-12,3x -2, -12≤x ≤3,x +4, x >3,所以不等式f (x )≥4,等价于⎩⎪⎨⎪⎧ x <-12,-x -4≥4或⎩⎪⎨⎪⎧-12≤x ≤3,3x -2≥4或⎩⎪⎨⎪⎧x >3,x +4≥4,解得x ≤-8或x ≥2.所以原不等式的解集为{x |x ≤-8或x ≥2}. (2)由(1)知,当x <-12时,f (x )=-x -4,所以f (x )在⎝⎛⎭⎫-∞,-12上单调递减; 当-12≤x ≤3时,f (x )=3x -2,所以f (x )在⎣⎡⎦⎤-12,3上单调递增; 当x >3时,f (x )=x +4,所以f (x )在(3,+∞)上单调递增.故当x =-12时,y =f (x )取得最小值,此时f (x )min =-72.[例3] 设函数f (x )=|x -1|+|x -a |. 如果∀x ∈R ,f (x )≥2,求a 的取值范围.[思路点拨] 本题考查绝对值不等式的解法.解答本题应先对a 进行分类讨论,求出函数f (x )的最小值,然后求a 的取值范围.[精解详析] 若a =1,f (x )=2|x -1|,不满足题设条件. 若a <1,f (x )=⎩⎪⎨⎪⎧-2x +a +1, x ≤a ,1-a , a <x <1,2x -(a +1), x ≥1,f (x )的最小值为1-a .若a >1,f (x )=⎩⎪⎨⎪⎧-2x +a +1, x ≤1,a -1, 1<x <a ,2x -(a +1), x ≥a ,f (x )的最小值为a -1.所以∀x ∈R ,f (x )≥2的充要条件是|a -1|≥2,从而a 的取值范围为(-∞,-1]∪[3,+∞).含有参数的不等式的求解问题分两类,一类不需要对参数进行讨论,另一类如本例,对参数a 进行讨论,得到关于参数a 的不等式(组),进而求出参数的取值范围.3.(辽宁高考)已知函数f (x )=|x -a |,其中a >1. (1)当a =2时,求不等式f (x )≥4-|x -4|的解集;(2)已知关于x 的不等式|f (2x +a )-2f (x )|≤2的解集为{x |1≤x ≤2},求a 的值. 解:(1)当a =2时,f (x )+|x -4|=⎩⎪⎨⎪⎧-2x +6, x ≤2,2, 2<x <4,2x -6, x ≥4.当x ≤2时,由f (x )≥4-|x -4|,得-2x +6≥4, 解得x ≤1;当2<x <4时,f (x )≥4-|x -4|无解;当x ≥4时,由f (x )≥4-|x -4|,得2x -6≥4, 解得x ≥5.所以f (x )≥4-|x -4|的解集为{x |x ≤1或x ≥5}. (2)记h (x )=f (2x +a )-2f (x ), 则h (x )=⎩⎪⎨⎪⎧-2a , x ≤0,4x -2a , 0<x <a ,2a , x ≥a .由|h (x )|≤2,解得a -12≤x ≤a +12.又已知|h (x )|≤2的解集为{x |1≤x ≤2}, 所以⎩⎨⎧a -12=1,a +12=2,于是a =3.[对应学生用书P12]一、选择题1.若不等式|ax +2|<6的解集为(-1,2),则实数a 的取值为( ) A .8 B .2 C .-4D .-8解析:原不等式化为-6<ax +2<6, 即-8<ax <4. 又∵-1<x <2,∴验证选项易知a =-4适合. 答案:C2.如果1x <2和|x |>13同时成立,那么x 的取值范围是( )A.⎩⎨⎧⎭⎬⎫x | -13<x <12 B.⎩⎨⎧⎭⎬⎫x | x >12或x <-13C.⎩⎨⎧⎭⎬⎫x | x >12 D.⎩⎨⎧⎭⎬⎫x | x <-13或x >13解析:解不等式1x <2得x <0或x >12;解不等式|x |>13得x >13或x <-13.如图所示:∴x 的取值范围为⎩⎨⎧⎭⎬⎫x | x >12或x <-13.答案:B3.如果关于x 的不等式|x -a |+|x +4|≥1的解集是全体实数,则实数a 的取值范围是( )A .(-∞,3]∪[5,+∞)B .[-5,-3]C .[3,5]D .(-∞,-5]∪[-3,+∞)解析:在数轴上,结合绝对值的几何意义可知a ≤-5或a ≥-3. 答案:D4.若关于x 的不等式|x +1|≥kx 恒成立,则实数k 的取值范围是( ) A .(-∞,0] B .[-1,0] C .[0,1]D .[0,+∞)解析:作出y =|x +1|与l1;y =kx 的图象如图,当k <0时,直线一定经过第二、四象限,从图看出明显不恒成立;当k =0时,直线为x 轴,符合题意;当k >0时,要使|x +1|≥kx 恒成立,只需k ≤1.综上可知k ∈[0,1]. 答案:C 二、填空题5.不等式|2x +1|-2|x -1|>0的解集为________.解析:原不等式即|2x +1|>2|x -1|,两端平方后解得12x >3,即x >14.答案:⎩⎨⎧⎭⎬⎫x | x >146.不等式|x +1||x +2|≥1的实数解集为________.解析:|x +1||x +2|≥1⇔|x +1|≥|x +2|,x +2≠0⇔(x +1)2≥(x +2)2,x ≠-2⇔x ≤-32,x ≠-2.答案:(-∞,-2)∪⎝⎛⎦⎤-2,-327.若不等式| x +1x | >|a -2|+1对于一切非零实数x 均成立,则实数a 的取值范围是________.解析:∵|x +1x |≥2,∴|a -2|+1<2,即|a -2|<1,解得1<a <3.答案:1<a <38.若关于x 的不等式|x -1|+|x -a |≥a 的解集为R (其中R 是实数集),则实数a 的取值范围是________.解析:不等式|x -1|+|x -a |≥a 恒成立, a 不大于|x -1|+|x -a |的最小值, ∵|x -1|+|x -a |≥|1-a |,∴|1-a |≥a,1-a ≥a 或1-a ≤-a ,解得a ≤12.答案:⎝⎛⎦⎤-∞,12 三、解答题9.解不等式|2x -4|-|3x +9|<1. 解:(1)当x >2时,原不等式可化为⎩⎪⎨⎪⎧x >2,(2x -4)-(3x +9)<1, 解得x >2.(2)当-3≤x ≤2时,原不等式可化为⎩⎪⎨⎪⎧ -3≤x ≤2,-(2x -4)-(3x +9)<1, 解得-65<x ≤2.(3)当x <-3时,原不等式可化为⎩⎪⎨⎪⎧x <-3,-(2x -4)+(3x +9)<1, 解得x <-12.综上所述,原不等式的解集为⎩⎨⎧⎭⎬⎫x | x <-12或x >-65.10.已知函数f (x )=|2x -1|+|x -2a |. (1)当a =1时,求f (x )≤3的解集;(2)当x ∈[1,2]时,f (x )≤3恒成立,求实数a 的取值范围. 解:(1)当a =1时,原不等式可化为|2x -1|+|x -2|≤3,当x >2时,得3x -3≤3,则x ≤2,无解;当12≤x ≤2时,得x +1≤3,则x ≤2,所以12≤x ≤2; 当x <12时,得3-3x ≤3,则x ≥0,所以0≤x <12.综上所述,原不等式的解集为[0,2]. (2)原不等式可化为|x -2a |≤3-|2x -1|, 因为x ∈[1,2],所以|x -2a |≤4-2x , 即2x -4≤2a -x ≤4-2x ,故3x -4≤2a ≤4-x 对x ∈[1,2]恒成立.当1≤x ≤2时,3x -4的最大值为2,4-x 的最小值为2, 所以a 的取值范围为1.11.已知函数f (x )=|x +3|+|x -a |(a >0). (1)当a =4时,已知f (x )=7,求x 的取值范围; (2)若f (x )≥6的解集为{x |x ≤-4或x ≥2},求a 的值.解:(1)因为|x +3|+|x -4|≥|x +3-x +4|=7,当且仅当(x +3)(x -4)≤0时等号成立. 所以f (x )=7时,-3≤x ≤4,故x ∈[-3,4]. (2)由题知f (x )=⎩⎪⎨⎪⎧a -3-2x , x ≤-3,a +3, -3<x <a ,2x +3-a , x ≥a ,当a +3≥6时,不等式f (x )≥6的解集为R ,不合题意;当a +3<6时,不等式f (x )≥6的解为⎩⎪⎨⎪⎧ x ≤-3,a -3-2x ≥6或⎩⎪⎨⎪⎧x ≥a ,2x +3-a ≥6,即⎩⎪⎨⎪⎧ x ≤-3,x ≤a -92或⎩⎪⎨⎪⎧x ≥a ,x ≥a +32.又因为f (x )≥6的解集为{x |x ≤-4或x ≥2}, 所以a =1.1.4绝对值的三角不等式[对应学生用书P13][读教材·填要点]绝对值的三角不等式(1)定理1:若a ,b 为实数,则|a +b |≤|a |+|b |. 当且仅当ab ≥0时,等号成立.(2)定理2:设a ,b ,c 为实数,则|a -c |≤|a -b |+|b -c |,等号成立⇔(a -b )(b -c )≥0,即b 落在a ,c 之间.①推论1:||a |-|b ||≤|a +b | ②推论2:||a |-|b ||≤|a -b |[小问题·大思维]1.|a +b |与|a |-|b |,|a -b |与|a |-|b |及|a |+|b |分别具有什么关系? 提示:|a |-|b |≤|a +b |,|a |-|b |≤|a -b |≤|a |+|b |.2.不等式|a |-|b |≤|a ±b |≤|a |+|b |中“=”成立的条件分别是什么?提示:不等式|a |-|b |≤|a +b |≤|a |+|b |,右侧“=”成立的条件是ab ≥0,左侧“=”成立的条件是ab ≤0,且|a |≥|b |;不等式|a |-|b |≤|a -b |≤|a |+|b |,右侧“=”成立的条件是ab ≤0,左侧“=”成立的条件是ab ≥0且|a |≥|b |.3.绝对值不等式|a -c |≤|a -b |+|b -c |的几何解释是什么?提示:在数轴上,a ,b ,c 所对应的点分别为A ,B ,C ,当点B 在点A ,C 之间时,|AC |=|AB |+|BC |;当点B 不在点A ,C 之间时,|AC |<|AB |+|BC |.[对应学生用书P13][例1] (1)以下四个命题:①若a ,b ∈R ,则|a +b |-2|a |≤|a -b |; ②若|a -b |<1,则|a |<|b |+1; ③若|x |<2,|y |>3,则|x y |<23;④若AB ≠0,则lg |A |+|B |2≥12( lg|A |+lg|B |).其中正确的命题有( )A .4个B .3个C .2个D .1个(2)不等式|a +b ||a |-|b |≥1成立的充要条件是________.[思路点拨] 本题考查绝对值的三角不等式定理的应用及充要条件等问题.解答问题(1)可利用绝对值的三角不等式定理,结合不等式的性质、基本定理等一一验证;解答问题(2)应分|a |>|b |与|a |<|b |两类讨论.[精解详析] (1)|a +b |=|(b -a )+2a |≤|b -a |+2|a | =|a -b |+2|a |,∴|a +b |-2|a |≤|a -b |,①正确; 1>|a -b |≥|a |-|b |,∴|a |<|b |+1,②正确; |y |>3,∴1|y |<13.又∵|x |<2,∴|x ||y |<23.③正确;⎝⎛⎭⎫|A |+|B |22=14(|A |2+|B |2+2|A ||B |), ≥14(2|A ||B |+2|A ||B |)=|A ||B |, ∴2lg |A |+|B |2≥lg|A ||B |.∴lg|A |+|B |2≥12(lg|A |+lg|B |),④正确. (2)当|a |>|b |时,有|a |-|b |>0, ∴|a +b |≥||a |-|b ||=|a |-|b |. ∴必有|a +b ||a |-|b |≥1.即|a |>|b |是|a +b ||a |-|b |≥1成立的充分条件. 当|a +b ||a |-|b |≥1时,由|a +b |>0, 必有|a |-|b |>0. 即|a |>|b |,故|a |>|b |是|a +b ||a |-|b |≥1成立的必要条件. 故所求为:|a |>|b |. [答案] (1)A (2)|a |>|b |。
2.4 最大值与最小值问题,优化的数学模型1.理解最值概念,并能应用柯西不等式、平均值不等式求函数的最值.2.能利用不等式解决有关的实际问题.[基础·初探]教材整理 最值问题,优化的数学模型 1.最值设D 为f (x )的定义域,如果存在x 0∈D ,使得f (x )≤f (x 0)(f (x )≥f (x 0)),x ∈D ,则称f (x 0)为f (x )在D 上的最大(小)值,x 0称为f (x )在D 上的最大(小)值点.寻求函数的最大(小)值及最大(小)值问题统称为最值问题,它属于更一般的问题——极值问题的一个特别的情况.2.分离常数法分离常数法就是在分子中凑出与分母相同的项,然后约分.这在求含有分式的最值问题时经常用到.这种类型的最值问题也可以用去分母的方法转化成关于x 的二次方程,然后利用判别式求最值.用平均值不等式 解此类问题时,特别要注意等号成立的条件.1.已知0<x <1,则x (1-x )取最大值时x 的值为( ) A.13 B.12 C.14 D.23 【解析】 ∵0<x <1, ∴x (1-x )≤⎣⎢⎡⎦⎥⎤x +(1-x )22=14, 当且仅当x =12时取等号.【答案】 B2.已知t >0,则函数y =t 2-4t +1t 的最小值为________.【解析】 ∵t >0,∴y =t 2-4t +1t=t +1t -4≥2-4=-2. 【答案】 -2[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1: 解惑: 疑问2: 解惑: 疑问3: 解惑:[小组合作型]设ax +by +cz =δ为常数,求ω=l x +m y +nz 的最小值.【导学号:38000045】【精彩点拨】 题设中的ω与δ的形式符合柯西不等式的形式,可以借助柯西不等式求式子的最值.【自主解答】 由柯西不等式得ω·δ=⎝⎛⎭⎪⎫l x 2+⎝⎛⎭⎪⎫m y 2+⎝⎛⎭⎪⎫n z 2·[(ax )2+(by )2+(cz )2]≥(al +bm +cn )2,所以ω≥(al +bm +cn )2δ.由柯西不等式成立的条件得x =k la ,y =kmb ,z =kn c .其中,k =δal +bm +cn.它们使得ax +by +cz =δ,且ω=(al +bm +cn )2δ,所以ω的最小值为(al+bm +cn )2δ.利用柯西不等式求最值时,必须验证等号成立的条件是否满足.[再练一题]2.设x ,y ,z ∈R ,且(x -1)216+(y +2)25+(z -3)24=1.求x +y +z 的最大值和最小值.【解】 根据柯西不等式,知[42+(5)2+22]·⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x -142+⎝ ⎛⎭⎪⎫y +252+⎝ ⎛⎭⎪⎫z -322≥⎣⎢⎡⎦⎥⎤4·x -14+5·y +25+2·z -322,当且仅当x -116=y +25=z -34,即x =215,y =-1,z =195或x =-115,y =-3,z =115时等号成立.∴25×1≥(x +y +z -2)2. ∴|x +y +z -2|≤5, ∴-3≤x +y +z ≤7,即x +y +z 的最大值为7,最小值为-3.本地销售,该地区政府每投资x 万元,所获利润为P =-1160(x -40)2+10万元,为顺应开发大西北的宏伟决策,该地区政府在制订经济发展十年规划时,拟开发此种土特产品,而开发前后用于该项目投资的专项财政拨款每年都是60万元,若开发该产品,必须在前5年中,每年从60万元专款中拿出30万元投资修建一条公路,且5年可以修通,公路修通后该土特产品在异地销售,每投资x 万元,可获利润Q =-159160(60-x )2+1192(60-x )万元.问:从10年的总利润 看,该项目有无开发价值?【精彩点拨】 分别求出开发前、后该项目10年利润的最大值,比较大小即可.【自主解答】 若按原 投资环境不变,由题设知,每年只需从60万元中拿出40万元投资,可获最大利润10万元.这样10年总利润最大值为W =10×10=100(万元).若对该产品开发,则前5年中,当x =30时,P max =758,前5年总利润为W 1=758×5=3758(万元);设后5年中,x 万元用于本地销售投资,60-x 万元用于异地销售投资,则总利润W 2=⎣⎢⎡⎦⎥⎤-1160(x -40)2+10×5+⎝ ⎛⎭⎪⎫-159160x 2+1192x ×5=-5(x -30)2+4 500, 当x =30时,(W 2)max =4 500.∴10年总利润最大值为3758+4 500(万元). 因3758+4 500>100,故该项目具有极大的开发价值.1.本题实际上是两个二次函数的叠加问题,叠加后的二次函数最值要比叠加前的二次函数最值大,从而得解.本题的现实意义也很大.2.解不等式应用题的步骤(1)认真审题,抓住问题中的关键词,找准不等关系;(2)引入数学符号,用不等式表示不等关系,使其数学化;(3)求解不等式;(4)还原实际问题.[再练一题]2.某农贸公司按每担200元收购某农产品,并按每100元纳税10元(又称征税率为10个百分点),计划可收购a万担,政府为了鼓励收购公司多收购这种农产品,决定将征税率降低x(x≠0)个百分点,预测收购量可增加2x个百分点.(1)写出税收y(万元)与x的函数关系式;(2)要使此项税收在税率调节后,不少于原计划税收的83.2 ,试确定x的取值范围.【解】(1)降低税率后的税率为(10-x) ,农产品的收购量为a(1+2x )万担,收购总金额为200a(1+2x )万元.依题意:y=200a(1+2x )(10-x)=150a(100+2x)(10-x)(0<x<10).(2)原计划税收为200a·10 =20a(万元).依题意得:150a(100+2x)(10-x)≥20a×83.2 ,化简得,x2+40x-84≤0,∴-42≤x≤2.又∵0<x<10,∴0<x≤2,∴x的取值范围是0<x≤2.[探究共研型]探究 利用不等式解决实际问题的步骤是什么?【提示】 利用不等式解决实际应用问题,一般可分四个步骤: (1)阅读理解材料,弄清问题背景.(2)建立合理的数学模型,将实际问题转化为数学问题. (3)运用不等式的知识、手段讨论不等式关系. (4)做出结论.然后利用柯西不等式、均值不等式或二次函数等方法 求最值.如图2-4-1所示,把一块边长是a 的正方形铁片的各角切去大小相同的小正方形,再把它的边沿着虚线翻折成一个无盖方底的盒子,问切去的正方形边长是多少时,才能使盒子的容积最大?图2-4-1【精彩点拨】 设切去的小正方形的边长为x ,由题意可知,折成的盒子的底面边长为a -2x ,高为x ,这时盒子的容积为V =(a -2x )2x ,再利用三个正数的算术-几何平均值不等式,变形为xyz ≤⎝ ⎛⎭⎪⎫x +y +z 33求解即可. 【自主解答】 设切去的小正方形的边长为x ⎝ ⎛⎭⎪⎫x <a 2,无盖方底盒子的容积为V ,则V =(a -2x )2x =14(a -2x )·(a -2x )×4x ≤14⎣⎢⎡⎦⎥⎤(a -2x )+(a -2x )+4x 33=2a 327. 当且仅当a -2x =a -2x =4x ,即当x =a6时,不等式取等号,此时V 取最大值2a 327,即当切去的小正方形边长是原 正方形边长的16时,折成的盒子容积最大.在解决实际问题时,阅读理解题意,建立数学模型是关键,在求解数学模型时,平均值不等式是常用的手段之一.[再练一题]3.用一块钢锭浇铸一个厚度均匀且全面积为2平方米的正四棱锥形有盖容器(如图2-4-2),设容器的高为h 米,盖子边长为a 米.图2-4-2(1)求a 关于h 的函数解析式;(2)设容器的容积为V 立方米,则当h 为何值时,V 最大?求出V 的最大值. (求解本题时,不计容器的厚度) 【解】 (1)设h ′为正四棱锥的斜高, 由已知⎩⎪⎨⎪⎧a 2+4·12h ′a =2,h 2+14a 2=h ′2,解得a =1h 2+1(h >0). (2)由V =13ha 2=h 3(h 2+1)(h >0),易得V =13⎝ ⎛⎭⎪⎫h +1h . ∵h +1h ≥2h ·1h =2,∴V ≤16.等号当且仅当h =1h,即h =1时取得.故当h =1米时,V 有最大值,V 的最大值为16立方米.[构建·体系]最值问题—⎪⎪⎪⎪⎪⎪—最大值、最小值——分离常数法——应用1.已知x >1,y >1,且lg x +lg y =4,那么lg x ·lg y 的最大值是( ) A.2 B.12 C.14D.4【解析】 ∵4=lg x +lg y ≥2lg x ·lg y , ∴lg x ·lg y ≤4. 【答案】 D2.已知a ,b 为正数,且a +b =1,则(4a +1+4b +1)2的最大值是( )【导学号:38000046】A.2 6B. 6C.6D.12【解析】 (4a +1+4b +1)2 =(1×4a +1+1×4b +1)2≤(12+12)(4a +1+4b +1)=2[4(a +b )+2]=2×(4×1+2)=12, 当且仅当4b +1=4a +1,即a =b =12时等号成立. 【答案】 D3.数列{a n }的通项公式a n =nn 2+90,则数列{a n }中的最大项是( )A.第9项B.第8项和第9项C.第10项D.第9项和第10项 【解析】 a n =n n 2+90=1n +90n ≤12n ×90n=1610,当且仅当n=90n,即n=310时等号成立.又n为正整数,检验可知选D.【答案】 D4.函数y=5x-1+10-2x的最大值为________. 【解析】因为函数的定义域为[1,5],且y>0,则y=5x-1+2·5-x≤52+(2)2×(x-1)2+(5-x)2=27×4=6 3.当且仅当2·x-1=5·5-x时,等号成立,即x=12727时,函数取最大值6 3.【答案】6 35.(1)求函数y=x2+5x2+4的最小值;(2)求函数y=cos2x(1+sin x)的最大值;(3)设x>1,求函数y=log2x+log x4的最小值. 【解】(1)设l=x2+4,则l≥2,于是y=x2+4+1x2+4=l+1l.∵y′=1-1l2=l2-1l2,∴当l∈[2,+∞)时,y′>0,即在[2,+∞)上函数单调递增,∴当l=2,即x=0时,y取得最小值,最小值为y=2+12=52.(2)y=(1-sin2x)(1+sin x)=(1-sin x)(1+sin x)(1+sin x)=4(1-sin x )·1+sin x 2·1+sin x2≤4⎝ ⎛⎭⎪⎫1-sin x +1+sin x 2+1+sin x 233=4×827=3227.等号成立⇔1-sin x =1+sin x 2⇔sin x =13,方程sin x =13有解,于是函数y =cos 2x (1+sin x )有最大值3227.(3)当x >1时,log 2x >0,log x 4>0,于是 y =log 2x +log x 4=log 2x +2log 2x ≥2 2.等号成立⇔log 2x =2log 2x ⇔log 2x =2(log 2x =-2舍去)⇔x =22,于是y min=22.我还有这些不足:(1) (2) 我的课下提升方案:(1) (2)。