学年高中数学人教B版选修独立性检验
- 格式:doc
- 大小:63.00 KB
- 文档页数:4
1.1 独立性检验1.理解相互独立事件的概念,了解独立性检验的思想和方法.(重点)2.会利用2×2列联表求χ2,并能根据χ2值与临界值的比较进行独立性检验.(重点、难点)[基础·初探]教材整理1 独立事件阅读教材P 3~P 4例2以上部分,完成下列问题. 1.独立事件的定义一般地,对于两个事件A ,B ,如果有P (AB )=P (A )·P (B ),则称事件A 与B 相互独立,简称A 与B 独立.2.如果A ,B 相互独立,则A 与B ,A 与B ,A 与B 也相互独立.甲、乙两人分别独立地解一道题,甲做对的概率是12,甲、乙都做错的概率是16,则乙做对的概率是_______________________________________.【解析】 设“甲、乙做对”分别为事件A ,B ,则P (A )=12,P (A B )=16, 由P (A B )=(1-P (A ))·(1-P (B )),得⎝ ⎛⎭⎪⎫1-12·()1-P (B )=16, 解得P (B )=23. 【答案】 23教材整理2 2×2列联表与χ2统计量的计算公式 阅读教材P 4~P 5第10行以上部分,完成下列问题. 1.对于两个事件A ,B ,用下表表示抽样数据:表中:n +1=n 11+n 21,+2=n 12+n 22,1+=n 11+n 12,2+=n 21+n 22,n =n 11+n 21+n 12+n 22.形如此表的表格为2×2列联表. 2.统计量χ2的计算公式χ2=n (n 11n 22-n 12n 21)2n 1+n 2+n +1n +2.下面是一个2×2列联表:A.94,96B.52,50C.52,60D.54,52【解析】 ∵a +21=73,∴a =52. 又b =a +8=52+8=60. 【答案】 C教材整理3独立性检验思想阅读教材P4倒数第5行~P8,完成下列问题.1.用H0表示事件A与B独立的判定式,即H0:P(AB)=P(A)P(B),称H0为统计假设.2.用χ2与其临界值3.841与6.635的大小关系来决定是否拒绝统计假设H0,如下表:判断(正确的打“√”,错误的打“×”)(1)甲、乙两人分别对一目标射击一次,记“甲射击一次击中目标”为事件A,“乙射击一次击中目标”为事件B,则事件A与事件B是相互独立事件.()(2)在使用χ2统计量作2×2列联表的独立性检验时,要求表中的4个数据可以是任意的.()(3)当χ2>3.841认为两事件有99%的关系.()【解析】(1)根据题意,“甲的射击”与“乙的射击”没有关系,是相互独立.(2)由2×2列联表知,每表中的4个数据大于等于5.(3)由临界值知,当χ2>3.841时有95%的把握认为两事件有关.【答案】(1)√(2)×(3)×[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:解惑:疑问2:解惑: 疑问3: 解惑:[小组合作型]机地抽取一粒,求:(1)两粒都能发芽的概率; (2)至少有一粒种子能发芽的概率; (3)恰好有一粒种子能发芽的概率.【精彩点拨】 甲(或乙)中的种子是否发芽对乙(或甲)中的种子是否发芽的概率是没有影响的,故“甲批种子中某粒种子发芽”与“乙批种子中某粒种子发芽”是相互独立事件.因此可以求出这两个事件同时发生的概率.对于(2)(3)应把符合条件的事件列举出来或考虑其对立面.【自主解答】 设以A ,B 分别表示“取自甲、乙两批种子中的某粒种子发芽”这一事件,A -,B -则表示“取自甲、乙两批种子中的某粒种子不发芽”这一事件,则P (A )=0.8,P (B )=0.7,且A ,B 相互独立,故有(1)P (AB )=P (A )P (B )=0.8×0.7=0.56, 故两粒都能发芽的概率为0.56.(2)法一 P (A ∪B )=P (A )+P (B )-P (AB )=0.8+0.7-0.56=0.94. 法二 至少有一粒种子能发芽的对立事件为两粒种子都不发芽,即 P (A ∪B )=1-P (A - B -)=1-P (A -)P (B -)=1-(1-0.8)×(1-0.7) =0.94.故至少有一粒种子能发芽的概率为0.94.(3)P (A B -∪A -B )=P (A B -)+P (A -B )=0.8×(1-0.7)+(1-0.8)×0.7=0.38. 故恰好有一粒种子能发芽的概率为0.38.1.求解简单事件概率的思路:(1)确定事件间的关系,即两事件是互斥事件还是对立事件; (2)判断事件发生的情况并列出所有事件;(3)确定是利用和事件的概率公式还是用积事件的概率公式计算. 2.求解复杂事件概率的思路:(1)正向思考:通过“分类”或“分步”将较复杂事件进行分解,转化为简单的互斥事件的和事件或相互独立的积事件;(2)反向思考:对于含有“至少”“至多”等事件的概率问题,可转化为求其对立事件的概率.[再练一题]1.甲、乙、丙三位学生用计算机联网学习数学,每天独立完成6道数学题,已知甲及格的概率是810,乙及格的概率是610,丙及格的概率是710,三人各答一次,求三人中只有一人答题及格的概率是多少?【解】 设“甲、乙、丙三人答题及格”分别为事件A ,B ,C ,则P (A )=810,P (B )=610,P (C )=710,设“三人各答题一次只有一人及格”为事件D ,则D 的情况为A B -C -,A -B C -,A -B -C ,所以P (D )=P (A B -C -)+P (A -B C -)+P (A -B -C )=P (A )P (B -)P (C -)+P (A -)P (B )P (C -)+P (A -)P (B -)·P (C )=810×⎝ ⎛⎭⎪⎫1-610⎝ ⎛⎭⎪⎫1-710+⎝ ⎛⎭⎪⎫1-810×610×⎝ ⎛⎭⎪⎫1-710+⎝ ⎛⎭⎪⎫1-810⎝ ⎛⎭⎪⎫1-610×710=47250.上的70人,六十岁以下的54人.六十岁以上的人中有43人的饮食以蔬菜为主,另外27人则以肉类为主;六十岁以下的人中有21人饮食以蔬菜为主,另外33人则以肉类为主.请根据以上数据作出饮食习惯与年龄的列联表,并利用n 11n 1+与n 21n 2+判断二者是否有关系.【精彩点拨】 对变量进行分类→求出分类变量的不同取值→作出2×2列联表→【自主解答】 饮食习惯与年龄2×2列联表如下:n 11n 1+=4364≈0.67. n 21n 2+=2760=0.45. 显然二者数据具有较为明显的差距,据此可以在某种程度上认为饮食习惯与年龄有关系.1.作2×2列联表时,注意应该是4行4列,计算时要准确无误.2.作2×2列联表时,关键是对涉及的变量分清类别.[再练一题]2.题中条件不变,尝试用|n 11n 22-n 12n 21|的大小判断饮食习惯与年龄是否有关. 【解】 将本例2×2列联表中的数据代入可得 |n 11n 22-n 12n 21|=|43×33-21×27|=852.相差较大,可在某种程度上认为饮食习惯与年龄有关系.[探究共研型]探究 【提示】 利用χ2进行独立性检验,可以对推断的正确性的概率作出估计,样本容量n越大,这个估计值越准确,如果抽取的样本容量很小,那么利用χ2进行独立性检验的结果就不具有可靠性.探究2在χ2运算后,得到χ2的值为29.78,在判断变量相关时,P(χ2≥6.635)≈0.01和P(χ2≥7.879)≈0.005,哪种说法是正确的?【提示】两种说法均正确.P(χ2≥6.635)≈0.01的含义是在犯错误的概率不超过0.01的前提下认为两个变量相关;而P(χ2≥7.879)≈0.005的含义是在犯错误的概率不超过0.005的前提下认为两个变量相关.为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:(1).(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中需要志愿者提供帮助的老年人的比例?说明理由.【精彩点拨】题中给出了2×2列联表,从而可通过求χ2的值进行判定.对于(1)(3)可依据古典概率及抽样方法分析求解.【自主解答】(1)调查的500位老年人中有70位需要志愿者提供帮助,因此该地区老年人中,需要帮助的老年人的比例的估计值为70500=14%.(2)χ2=500×(40×270-30×160)2200×300×70×430≈9.967.由于9.967>6.635,所以有99%的把握认为该地区的老年人是否需要帮助与性别有关.(3)由(2)的结论知,该地区老年人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法进行抽样,这比采用简单随机抽样方法更好.1.检验两个变量是否相互独立,主要依据是利用χ2=n (n 11n 22-n 12n 21)2n 1+n 2+n +1n +2公式计算χ2的值,再利用该值与3.841,6.635两个值进行比较作出判断.2.χ2计算公式较复杂,一是公式要清楚;二是代入数值时不能张冠李戴;三是计算时要细心.3.统计的基本思维模式是归纳,它的特征之一是通过部分数据的性质来推测全部数据的性质.因此,统计推断是可能犯错误的,即从数据上体现的只是统计关系,而不是因果关系.[再练一题]3.某大学餐饮中心为了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:的饮食习惯方面有差异”.【解】 将2×2列联表中的数据代入公式计算,得χ2=n (n 11n 22-n 12n 21)2n 1+n 2+n +1n +2=100×(60×10-20×10)270×30×80×20=10021≈4.762.因为4.762>3.841,所以有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”.[构建·体系]1.为了研究高中学生对乡村音乐的态度(喜欢和不喜欢两种态度)与性别的关系,运用2×2列联表进行独立性检验,经计算χ2=8.01,则认为“喜欢乡村音乐与性别有关系”的把握性约为()A.0.1%B.1%C.99%D.99.9%【解析】因为χ2=8.01>6.635,所以有99%以上的把握认为“喜欢乡村音乐与性别有关系”.【答案】 C2.在研究吸烟与患肺癌的关系中,通过收集数据、整理分析数据得“吸烟与患肺癌有关”的结论,并且在犯错误的概率不超过0.01的前提下认为这个结论是成立的,下列说法中正确的是()A.100个吸烟者中至少有99人患有肺癌B.1个人吸烟,那么这个人有99%的概率患有肺癌C.在100个吸烟者中一定有患肺癌的人D.在100个吸烟者中可能一个患肺癌的人也没有【解析】独立性检验的结果与实际问题有差异,即独立性检验的结论是一个数学统计量,它与实际问题中的确定性存在差异.【答案】 D3.有两个分类变量X与Y的一组数据,由其列联表计算得χ2≈4.523,则认为“X与Y有关系”犯错误的概率为()A.95%B.90%C.5%D.10%【解析】P(χ2≥3.841)≈0.05,而χ2≈4.523>3.841.这表明认为“X与Y有关系”是错误的可能性约为0.05,即认为“X与Y有关系”犯错误的概率为5%.【答案】 C4.甲、乙两人分别对一目标射击一次,记“甲射击一次,击中目标”为事件A,“乙射击一次,击中目标”为事件B,则在A与B,A与B,A与B,A与B 中,满足相互独立的有________对.【导学号:37820000】【解析】由已知:A与B相互独立,则A与B,A与B,A与B均相互独立,故有4对.【答案】 45.已知甲、乙两袋中分别装有编号为1,2,3,4的四个小球,现从两袋中各取一球,设事件A=“两球的编号都是偶数”,B=“两球的编号之和大于6”.判断事件A,B是否相互独立.【解】P(A)=416=14,P(B)=316.又AB=“两球的编号都为4”,P(AB)=1 16.显然P(AB)≠P(A)P(B),所以事件A,B不相互独立.我还有这些不足:(1)(2)我的课下提升方案:(1)(2)。
§1.1.1 独立性检验
一.学习目标
1.了解独立性检验(只要求2⨯2列联表)的基本思想、方法及其简单应用
2.了解假设检验的基本思想、方法及其简单应用
重点:能够根据题目所给数据列出列联表及求2χ
难点:独立性检验的基本思想、方法及其初步应用
二、自主学习
三.合作探究
调查某医院某段时间内婴儿出生的时间与性别的关系,得到下面的数据表
.试问能有多大把握认为
规律方法 解决一般的独立性检验问题的步骤:
(1)通过列联表确定n 11,n 12,n 21,n 22,n 的值,根据实际问题需要的可信程度确定临界值
3.841和6.635;
(2)利用2χ=
112212211212()n n n n n n n n n ++++- 求出2χ的值; (3)若2χ>3.841,有95%的把握说事件A 与B 有关;当2χ>6.635,有99%的把握说事件A 与B
有关;当2
χ≤3.841时,认为事件A 与B 是无关的.
四.自我检测
1.如果根据性别与饮酒的列联表,得到k≈3.852>3.841,那么判断性别与饮酒有关时这种判断出错的可能性为()
A. 20%
B.50%
C.10%
D.5%
2.有2⨯2列联表如下:
由上表可计算≈____________
3.为了研究性格与血型的关系,抽取80名被测试者,相关数据如下表,试判断性格与血型是否相
五、学习小结
六、自我评价
你完成本节导学案的情况为().
A. 很好
B. 较好
C. 一般
D. 较差。
1.1独立性检验(第二课时)一、【知识与技能目标】1.了解2×2列联表的意义和 统计量的作用.2.通过案例分析,了解独立性检验的基本思想、方法和其初步应用。
二、【情感、态度与价值目标】通过对数据的收集、整理和分析,增强学生的社会实践能力,培养学生的分析问题、解决问题的能力。
三、【学法指导】独立性检验的基本思想是统计中的假设检验思想,通过统计量的值来判定两个事件是否有关,的值越大,两个事件有关的把握越大.四、【教学过程】 (一)复习引入1、引例1:掷一颗骰子一次,设事件A :“出现偶数点”,事件B :“出现3点或6点”,试判断事件A ,事件B 的关系?解析:P (A )=36=12,P (B )=26=13,P (AB )=16=12×13,即P (AB )=P (A )P (B ),因此,事件A 与B 相互独立.2、引例2 从一副52张的扑克牌(不含大小王)中,任意抽一张出来,设事件A :“抽到黑桃”,事件B :“抽到Q”,试判断事件A 与事件B 的关系? 解析:,415213)(==A P ,521)(,131524)(===AB P B P ),()()(B P A P AB P =∴ 则:A 与B 相互独立。
(二)探究新知例2.为了了解患慢性支气管炎与吸烟是否有关,进行了一次抽样调查,共调查了339名50岁以上的人,调查结果如下:2χ2χ2χ思考一:根据这些数据能否断定“患慢性支气管炎与吸烟有关吗”? 思考二在吸烟的人中,患病的比重是 ,在不吸烟的人中,患病的比重是上面的分析,得到的直观印象是吸烟和患慢性支气管炎有关,那么事实是否真的如此呢?它们有多大的把握认为两者有关?这需要用统计观点来考察这个问题。
2、先假设:吸烟与患慢性支气管炎没有关系,看看能够推出什么样的结论。
把例题表中的数字用字母代替,得到如下列联表:如果成立,则在吸烟的人中患病的比例与不吸烟的人中患病的比例应差不多,由此可得,即n 11(n 21+n 22)≈n 21(n 11+n 12)⇒n 11n 22-n 21n 12≈0,因此,|n 11n 22-n 21n 12|越小,患病与吸烟之间的关系越弱,否则,关系越强.H 4320.1%205≈139.7%134≈112111122122n n n n n n ≈++0H为了使不同样本容量的数据有统一的评判标准,我们构造一个统计量‘‘卡方”:-----------(1)若H0 成立,即“吸烟与患支气管炎没有关系”,则 应很小。
《独立性检验》教学设计岳娜山东省昌乐县及第中学独立性检验山东省昌乐县及第中学岳娜一、教学内容分析这一节的教学为选修1-2第一章第二节,是新课标新增的内容,课题趣味性较强,充分体现了数学在实际生活中的应用,对于提高学生的学习兴趣有较大作用。
通过探究“吸烟是否与患肺癌有关系”引出独立性检验的问题通过列联表、等高条形图,使学生直观感觉到吸烟和患肺癌可能有关系这一直觉来自于观测数据问题是这种来自数据观测能够在多大程度上代表总体,这节课就是为了解决这个问题,让学生亲身体验直观感受的基础上,提高学生的数据分析能力。
二、教学目标知识目标:(1)通过对典型案例的研究,了解独立性检验的基本思想;(2)掌握独立性检验的基本方法及初步应用。
能力目标:(1)通过对案例的分析,提高学生分析、解决实际问题的能力;(2)培养通过收集数据,并依据独立性检验的原理作出合理推断的良好习惯。
情感目标:(1)在自主探究与讨论交流过程中,培养学生的合作意识和创新精神;(2)充分体现数学的趣味性,提高学生学习兴趣。
三、教法与学法设计1、教法设计:创设情境,提出问题——分组讨论,合作交流——共同探究,概念形成,——概念深化,重点精讲——典型例题,分析应用——课堂练习,堂堂达标2、教学方法:引导发现法、探索讨论法等引导发现法能充分调动学生的积极性和主动性;探索讨论法(1)有利于学生对知识进行主动建构;(2)有利于突出重点、突破难点。
3、采用多媒体演示,利用网络;4、采用学案(全批全改),充分保证每个学生的自主学习;5、开展积极的合作、交流,体现合作探究精神。
四、教学重点与难点1、教学重点:用独立性检验的方法判断两个分类变量的关系2、教学难点:把握独立性检验的基本思想并体会初步应用,掌握K2的公式,并根据观测值判断两各变量是否相关。
五、教学准备1、硬件环境:多媒体教室,能够接入互联网;2、多媒体课件。
第三章统计案例
§3.1独立性检验
一、基础过关
1.下面是一个2×2
则表中a、b处的值分别为() A.94、96 B.52、50 C.52、60 D.54、52 2.在2×2列联表中,四个变量的取值n11,n12,n21,n22应是() A.任意实数B.正整数
C.不小于5的整数D.非负整数
3.如果有99%的把握认为“x与y有关系”,那么χ2满足() A.χ2>6.635 B.χ2≥5.024
C.χ2≥7.879 D.χ2>3.841
4.在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是() A.若χ2>6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病
B.从独立性检验可知,有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患有肺病
C.若从χ2统计量中得出有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误
D.以上三种说法都不正确
5.某高校“统计初步”课程的教师随机调查了一些学生,具体数据如下表所示,为了判断
选修统计专业是否与性别有关系,根据表中数据,得到χ2=50×(13×20-10×7)2 23×27×20×30
≈4.844,因为4.844>3.841.所以选修统计专业与性别有关系,那么这种判断出错的可能性为________.
二、能力提升
6.在2×2列联表中,两个分类变量有关系的可能性越大,相差越大的两个比值为()
A.n11
n11+n12与
n21
n21+n22
B.
n11
n21+n22
与
n21
n11+n12
C.n11
n11+n22与
n21
n12+n21
D.
n11
n12+n22
与
n21
n11+n21
7.在一项打鼾与患心脏病的调查中,共调查了1 671人,经过计算得χ2=27.63,根据这一数据分析,我们有理由认为打鼾与患心脏病是________的(有关、无关).
8.在使用独立性检验时,下列说法正确的个数为______.
①对事件A与B的检验无关时,两个事件互不影响;②事件A与B关系越密切,则χ2
就越大;③χ2的大小是判定事件A与B是否相关的唯一根据;④若判定两事件A与B有关,则A发生B一定发生.
9
计算χ2≈______,从而得出结论:服用此药的效果与患者的性别有关,这种判断出错的可能性为______.
10.某县对在职的71名高中数学教师就支持新的数学教材还是支持旧的数学教材做了调查,
根据此资料,你是否认为教龄的长短与支持新的数学教材有关?
11.在一次天气恶劣的飞行航程中,调查了男女乘客在飞机上晕机的情况:男乘客晕机的有24人,不晕机的有31人;女乘客晕机的有8人,不晕机的有26人.请你根据所给数据判定:在天气恶劣的飞行航程中,男乘客是否比女乘客更容易晕机?
12.在对人们的休闲方式的一次调查中,共调查了124人,其中女性70人,男性54人.女性中有43人主要的休闲方式是看电视,另外27人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,另外33人主要的休闲方式是运动.
(1)根据以上数据建立一个2×2列联表;
(2)判断性别与休闲方式是否有关系.
三、探究与拓展
13.某教育机构为了研究人具有大学专科以上学历(包括大学专科)和对待教育改革态度的关
对于教育机构的研究项目,根据上述数据能得出什么结论?
答案
1.C 2.C 3.A 4.C 5.5% 6.A 7.有关 8.1 9.4.882 5% 10.解 由公式得
χ2=n (n 11n 22-n 12n 21)2n 1+n 2+n +1n +2
=71×(12×24-25×10)237×34×22×49
≈0.08. ∵χ2<3.841.
∴我们没有理由说教龄的长短与支持新的数学教材有关. 11.解
由公式可得 χ2=
89×(24×26-31×8)2
55×34×32×57
≈3.689<3.841,
故我们没有理由认为“在天气恶劣的飞行航程中,男乘客比女乘客更容易晕机”. 12.解 (1)列联表如下:
(2)χ2=124×(43×33-27×21)2
70×54×64×60≈6.201,
∵χ2>3.841且χ2<6.635.
∴有95%的把握认为性别与休闲方式有关. 13.解 χ2=392×(39×167-157×29)2
196×196×68×324
≈1.78.
因为1.78<3.841,所以我们没有理由说人具有大学专科以上学历(包括大学专科)和对待教育改革态度有关.。