数学问题杂谈 (41)
- 格式:ppt
- 大小:48.00 KB
- 文档页数:8
辽宁省大连市名校联盟2024-2025学年七年级上学期期中考试数学试题一、单选题1.如果收入100元记为100+元,那么支出300元应记为()A .100-元B .100+元C .300-元D .300+元2.如图,数轴上M ,N 点表示的数互为相反数,则点N 表示的数为()A .9-B .0C .9D .无法确定3.河南省统筹安排2023年学生资助相关资金65亿元,确保经济困难学生应助尽助、精准帮扶.科学记数法表示数据“65亿”为()A .86510⨯B .100.6510⨯C .96.510⨯D .86.510⨯4.如图所示,数轴上的点A 、B 分别对应有理数a 、b ,下列结论正确的是()A .a b >B .||||a b >C .a b-<D .0a b +<5.在有理数1-,0,3,13-中,最小的数是()A .13-B .1-C .0D .36.下列运算正确的是()A .113422⎛⎫---= ⎪⎝⎭B .055-=-C .34143⎛⎫⨯-= ⎪⎝⎭D .()242÷-=7.下列选项中,能用26a +表示的是().A .整条线段长度:B .长方形周长:C .这个图形的面积:D .长方形周长:8.代数式x 2﹣1y的正确解释是()A .x 与y 的倒数的差的平方B .x 的平方与y 的倒数的差C .x 的平方与y 的差的倒数D .x 与y 的差的平方的倒数9.下列说法中,正确的是()A .22a b -的系数为2-B .0是单项式C .21a a -+是三次二项式D .34a b 的次数是310.已知:a 、b 互为相反数,c 、d 互为倒数,m 的绝对值是6;则代数式()202342a b cd m +-+的值为()A .8或16-B .8C .16-D .2012二、填空题11.−2的绝对值是.12.1500米跑步测试,如果某同学跑完全程的成绩是t 秒,那么他跑步的平均速度是米/秒.13.将式子()()()()()16297119++----+++写成省略加号的和的形式,并交换加数的位置,使正负号相同的加数结合在一起.14.清初数学家梅文鼎在著作《平三角举要》中,对南宋数学家秦九韶提出的计算生角形面积的“三斜求积术”给出了一个完整的证明,证明过程中创造性地设计直角三角形,得出了一个结论:如图,AD 是锐角ABC V 的高,若设边BC 的长为a ,边AC 的长为b ,边AB 的c ,则2212c b BD a a ⎛⎫-=+ ⎪⎝⎭.当6a =,5b =,7c =时,BD =.15.如图,用同样规格的黑白两种正方形瓷砖铺设正方形地面,观察图形并猜想填空:当黑色瓷砖为28块时,白色瓷砖为块.三、解答题16.计算.(1)18(5)(7)(11)-++---+(2)3212(10.5)[3(3)]3---÷⨯--17.下面是小宇同学进行整式化简的过程,请认真阅读并完成相应任务.()226253ab ab ab ab ---()226106ab ab ab ab =---第一步226106ab ab ab ab =---第二步226610ab ab ab ab=---第三步11ab=-第四步任务一:①以上化简步骤中,第一步的依据是__________;②以上化简步骤中,从第__________步开始出现错误,错误的原因是__________;任务二:请你写出该整式正确的化简过程,并求当3a =,2b =-时该整式的值.18.在学习完《有理数》后,小奇对运算产生了浓厚的兴趣.对有理数a 、b 、c ,在乘法运算中满足①交换律:ab ba =②乘法分配律:()a b c ac bc +=+.借助有理数的运算,定义了一种新运算“⊕”,规则如下:2a b a b a ⊕=⨯-⨯(1)求4(1)⊕-的值;(2)求2(35)-⊕-⊕的值.19.实数a ,b ,c 在数轴上的位置如图所示.(1)用“<、>、=”填空:a b +_____0,a b -_____0,c a -_____0;(2)化简:||||||c b b a c -+--;20.书是人类进步的阶梯!为爱护书一般都将书本用封皮包好,现有一本《数学杂谈》如图1,该书的长为21cm ,宽为15cm ,厚度为2cm ,小华用一张长方形纸(如图2所示)包好了这本书.在图2的包书纸示意图中,虚线是折痕,阴影是裁掉的部分,四角均为大小相同的正方形,正方形的边长为折进去的宽度.设用该包书纸包这本书时折进去的宽度为a cm .(1)该包书纸的长为______cm ,宽为______cm ;(用含a 的代数式表示)(2)当2a =时,求该包书纸的面积(含阴影部分).21.近几年时间,全球的新能源汽车发展迅猛,尤其对于我国来说,新能源汽车产销量都大幅增加.某出租车司机新换了一辆新能源纯电汽车,他连续7天记录了每天行驶的路程(如表).(以50千米为标准,多于50千米的记为“+”,不足50千米的记为“-”,刚好50千米的记为“0”)第一天第二天第三天第四天第五天第六天第七天路程(km )8-12-16-022+31+33+(1)这7天中行驶路程最多的一天比行驶路程最少的一天多走__________千米;(2)请求出这位出租车司机的新能源汽车这七天一共行驶了多少千米?(3)已知该出租车司机原来的燃油车每行驶100千米的油耗约需汽油6.5升,汽油价8.2元/升,而新能源汽车每行驶100千米耗电量约为15度,每度电为0.56元,请估计这位出租车司机换成新能源汽车后这7天的行驶费用比原来大约节省多少钱?22.某学校给学生编制的“身份识别条形码”中共有12位数字(均为09~之间的自然数),它是由11位数字代码和最后1位的校验码构成,具体结构如图1:其中校验码是按照特定的算法计算得来的,用于校验身份识别条形码中前11位数字代码的正确性,具体算法说明如下:步骤1:计算前11位数字中奇数位数字的和,记为m ;步骤2:计算前11位数字中偶数位数字的和,记为n ;步骤3:计算3m n +,记为p ;步骤4:取不小于p 且为10的整数倍的最小数q ;步骤5:计算q p -,结果即为校验码.阅读上述材料,回答下列问题:(1)某同学的“身份识别条形码”为04220220133□,则计算过程中p的值为,校验码W的值是.(请在横线上直接写出答案)(2)如图2,某同学的“身份识别条形码”中的一位数字不小心污损了,设这个数字为x,你能否通过其他信息还原出这位数字x,进而确定这位同学的班级吗?如果能,请用数学符号语言写出你的说理过程,如果不能,说明为什么.23.已知数轴上三点A、O、B对应的数分别为5 、0、1,点M为数轴上任意一点,其对应的数为x.请解决下列问题:(1)填空:①A、B两点间的距离是;②如果点M到点A、点B的距离相等,那么x的值是;③如果点M从点A出发第一次向左运动1个单位长度,然后在新的位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度…按照如此规律不断地左右运动,当运动了2023次时,那么x的值是;(2)当x为何值时,点M到点A、点B的距离之和是8?。
常见数学问题解答常见的数学问题和疑惑数学作为一门基础学科,在我们的学习生活中扮演着重要的角色。
然而,常常有一些数学问题和疑惑困扰着我们。
本文将解答一些常见的数学问题和疑惑,帮助读者更好地理解数学知识。
一、为什么除以0是没有意义的?在数学中,当我们进行除法运算时,我们将一个数除以另一个数得到一个商。
然而,当我们试图用0去除一个数时,结果就会变得模糊不清。
为什么呢?假设我们有一个数a,我们想要用0去除它,即a ÷ 0。
我们可以假设存在一个数x,使得0 * x =a。
但是,这个假设不成立,因为0与任何数相乘得到的结果都是0。
因此,我们无法找到一个确切的数x来满足等式0 * x =a。
这也就是为什么除以0是没有意义的。
数学上,我们称这种情况为“除以0的结果为无穷大”。
二、为什么分母不能为0?在分式中,分母表示我们将某个数分成多少份。
然而,当我们把一个数分成0份时,这个概念就变得没有意义了。
假设我们有一个分数a/b,其中b表示分母。
如果b等于0,那么我们试图将a分成0份。
但是,仔细思考一下,我们会发现没有任何一种情况下我们能够把一个数分成0份。
因此,分母为0是没有意义的,数学上称之为“分母不能为0”。
三、为什么负数乘以负数得到正数?在初学数学的时候,我们知道两个正数相乘得到正数,两个负数相乘得到负数。
但是为什么负数乘以负数得到正数呢?假设我们有两个负数a和b,我们知道它们的乘积为ab。
现在,我们来考虑一个简单的例子,-2乘以-3,即-2 * -3。
根据之前的规律,我们知道这个结果应该是一个正数。
我们可以通过纸上计算来理解这个现象。
我们知道-2表示向左移动两个单位,而-3表示向左移动三个单位。
那么,我们把-2 * -3理解为“向左移动两个单位再向左移动三个单位”,这就相当于向左移动5个单位。
而向左移动5个单位,实际上就是向右移动5个单位,也就是正数5。
因此,负数乘以负数得到正数是根据数学定义和规律得出的。
数学趣味问答数学是一门充满乐趣的学科,它不仅存在于我们生活中的方方面面,也是一种思维的训练工具。
接下来,我将为大家带来一些有趣的数学问答,希望能够让你们在玩乐中体会到数学的魅力。
问:两个理数相除,商是1,余数是0,被除数是什么?答:被除数是0。
因为任何数除以0都是无穷大或无穷小,所以这个问题是没有意义的。
问:把1至100这100个整数横着排成一行,删除1号位上的数,将2号位上的数放到最后,删除3号位上的数,将4号位上的数放到最后,依此类推,最后会剩下哪个数?答:最后剩下的数是37。
这个问题其实是经典的约瑟夫问题,通过不断删除和移动的操作,最后剩下的数总是素数。
问:如果A+B=C,那么A、B、C可以填入以下哪组数字?a) 3, 5, 7 b) 2, 3, 5 c) 4, 5, 9 d) 6, 7, 11答:正确答案是d) 6, 7, 11。
因为在自然数范围内,两个奇数相加总是得到一个偶数,而两个偶数相加总是得到一个偶数。
问:用1、3、5、7、9这5个数字,能组成多少个互不相同、三位数,且各位数字互不相同的数?答:可以组成60个不同的三位数。
第一位有5种选择,第二位有4种选择,第三位有3种选择,所以总共有5*4*3=60种组合。
问:两个数的和是95,差是33,这两个数分别是多少?答:这两个数分别是64和31。
设其中一个数为x,则另一个数为95-x。
根据题意,可以列出方程 x + (95-x) = 95,解得x = 64,因此另一个数为95-64=31。
问:某校有60人,其中男生占总数的三分之二,女生占总数的五分之一,男生和女生各有多少人?答:男生有40人,女生有20人。
根据题意,男生人数是总数的三分之二,即60 * (2/3) = 40,女生人数是总数的五分之一,即60 * (1/5) = 20。
问:在一个圆桌上坐着6个人,他们互相握手问好,问共有多少次握手?答:共有15次握手。
我们可以用组合数的思想来解答这个问题。
第三章比例数学杂谈一、教学设计理念3-1 比例式3-1节的出发点是从日常生活中的一些事物含有比例的关系开始,从中抽取数学相关的知识,例如:棒球比赛中的打击率、篮球比赛中的命中率、⋯⋯。
由于国小的教材已处理了比与比值(含扩比与约比),因此先复习比与比值的意义及比值的求法,再将比值的计算推广到分数的比与小数的比,这些概念都会运用到之后的单元里。
当学生学会了比值的求法后,接下来介绍比例式的意义,这个单元的学习将衔接九上第2章的相似形。
在比例式的应用中,将介绍数学上一个重要的概念—参数式。
在课文中为了不增加学生学习的负担,这个名称不会出现,但是这个概念希望教师能够多加以介绍。
3-2 连比例以园游会卖的综合果汁为例引出连比例的关系,并且以调配出的口味一样作为连比例相等的引导,同时将连比例的应用与比例分配作结合。
而从连比例可以观察出其中的部分比,相对地,从部分的比如何求出连比,便是希望学生能透过实例观察而发现关键:找出相同的文字,并且其中所对应的数相同,便可以写出连比。
3-3 正比与反比正比与反比是理化课程里与日常生活中经常会碰到的例子,当然也有一些例子既不是正比也不是反比。
在正比的例子中,举出虎克定律,让学生了解弹簧秤的伸长量与所挂物重成正比,事实上,还有很多例子也都是成正比的关系,例如:在速率一定时,时间与距离成正比。
同样地,反比也是如此。
本单元只介绍正反比的概念与应用,至于正比与反比的图形,在本单元则不做介绍。
二、相关教学资源1. 相关属性都有可加性同一件事物可以同时具有数个属性,而且这些属性都可以量化。
例如:一包蔗糖有重量、体积、价钱,粗细均匀的粗铁线有长度、体积、重量、价钱等。
这些属性量化后的数值,具备可加性。
不仅可以2倍、3倍地增加,也可以做等分割(至少在理论上),因此也可以平分成p 份,拿q 份,而得到q p 倍。
当其中一个属性被q p倍,对每一种属性选定一个适当的单位,则该事物可以用(a , b , c , ……, k )描述之。