高考数学难点突破 难点19 解不等式
- 格式:doc
- 大小:232.00 KB
- 文档页数:7
第1讲——不等式(3大难点)难点1:基本不等式(1)——配凑均值不等式在高考数学中,我们经常会遇到求两个数的积的最大值,对于这类题我们需要构造不等式,利用基本不等式来求解,即a b +≥【例题】(多选)已知0a >,0b >,且21a b +=,则下列不等式一定成立的有 A.18ab ≤C.2214a b +≥ B.12a b +>D.41313a b +≥++ 【答案】ABD 【解析】由题意, 对于选项A ,我们发现要求的是从a 和b 的乘积的范围,而题目中所给的是2a 和b ,因此我们考虑配凑一个2ab .∵0a >,0b >,且21a b +=,∴22a b+≥ 化简得出ab 的不等式,而我们知道21a b +=,即可得出的范围.∴2121228a b ab +⎛⎫≤= ⎪⎝⎭,当且仅当122a b ==时,等号成立, A 正确; 对于选项B ,我们知道21a b +=,而我们要求的是a 和b 的和的取值范围,我们发现条件是两个数字的和,让我们求的也是两个数字的和,不能使用均值不等式,那该怎么办呢?对于题目条件是两个数字和的形式,我们可以借助题目条件进行换元,我们把其中一个字母用另一个字母来表示,进而利用等式和0a >,0b >求出a 和b 的和的取值范围. ∵12(0,1)b a =-∈,∴0,2a ∈ ⎪⎝⎭ ,∴11,12a b a ⎛⎫+=-∈ ⎪⎝⎭ ,B 正确; 对于选项C ,我们要求2a 和2b b 用含a 的式子表达,得出只含a 的表达式,即可求出2a 和2b 的和的取值范围.∵10,2a ⎛⎫∈ ⎪⎝⎭,∴222222211(12)5415555a b a a a a a ⎛⎫+=+-=-+=-+≥ ⎪⎝⎭, C 错误; 对于选项D , 我们要求411a b ++的范围,分母不是单独的a 和b 1a +和b 分别设为x 和y ,将求411a b++的范围转化为求41x y+的范围,将已知等式化为23x y +=.而所求的是分母中含有x 和y ,已知等式中含有x 和y ,因此我们为了消去分母中的x 和y 考虑用乘法,而由于等式和是3,因此用乘法时需要乘13.设110,x a y b =+>=>, ∴23x y +=,∴24814141141(2)133x y y xx y a b x y x y +++⎛⎫+=+=++= ⎪+⎝⎭,这样,分子和分母中都包含了x 和y ,相乘即可消掉,而基本不等式既可以转化成两数相乘,还可以求范围,因此我们考虑用基本不等式,即可求出411a b++的范围.∴8133y x+++≥=+,当且仅当2y x =时, ∵23x y += ,∴当3(4737x y ⎧=⎪⎪⎨⎪=⎪⎩时,等号成立,D 正确. 故选:ABD.【总结】在求解不等式问题的时候,我们需要注意以下几点:(1)换元法一般是将分母的式子设成两个新的未知量,然后将已知的等式化为两个未知数的等量关系,进而利用“1”的性质求解;(2)如果给出了一个含有,a b 等式,并且所求范围的式子中含有分母项,且分母中含有,a b ,就可以利用“1”的性质,使用不等式来进行计算.【变式训练1】(多选)已知正实数,a b 满足4a b +=,则下列说法正确的是 A. 4ab ≤ B. 223a b +≤ C.1494a b +≥ D.1111a b≤+【答案】ACD 【解析】对于 A , 利用基本不等式2a b+≥, 将 4a b += 代入,得 4ab ≤ , 当且仅当 2,2a b == 时等号成立, 故A 正确;对于B , 222()21628a b a b ab ab +=+-=-≥ , 当且仅当 2,2a b == 等号成立,故B 错误; 对于C ,1414559444444a b b a a b a b a b ⎛⎫⎛⎫+=++=++≥+= ⎪⎪⎝⎭⎝⎭, 当且仅当 48,33a b == 时等号成立,故C 正确; 对于D ,111114ab aba b a b a bab===≤+++, 当且仅当 2,2a b == 时等号成立, 故D 正确; 故选:ACD【变式训练2】已知821(0,0)a b a b +=>>,则ab 的最大值为 . 【答案】164【解析】由题意,211821821616264a b ab a b +⎛⎫=⨯⨯⨯= ⎪⎝⎭, 当且仅当11,164a b ==时取等号, ∴ab 的最大值为164.故答案为:164.难点2:基本不等式(1)——两个复杂分式求和的最小值在高考数学中,我们经常会遇到两个复杂分式求和的最小值,对于这类题我们需要通过乘以“1”的形式进行转化,而乘以的对象一般是两个分母的加和相关的形式,进而构造不等式,利用基本不等式来求解,即a b +≥【例1】已知实数,x y 满足0x y >>且2x y +≤,则213x y x y++-的最小值为 .【答案】34+ 【解析】由题意,题目给的是,x y 和x y +范围,我们要求的是213x y x y ++-的最小值,即是求213x y x y++-的范围,我们在上一道题中发现,对于这种分式的加和,我们一般是通过乘以“1”的形式进行转化,而乘以的对象一般是两个分母的加和相关的形式,因此我们需要先求3x y x y ++-的范围.∵()2,3222x y x y x y x y x y +≤++-=+=+, ∴()324x y x y x y ++-=+≤,即()1314x y x y ++-≤, 和难点1一样,我们将3x y +和x y -分别看成一个整体,已知的等式中含有3x y +和x y -,我们要求的式子分母中含有3x y +和x y -,若消去分母则需用乘法,而基本不等式既可以转化成两数相乘,还可以求范围,因此我们考虑用基本不等式,即可求出213x y x y++-的范围. ∴()2112112233334343x y x y x y x y x y x y x y x y x y x y ⎛⎫⎛⎫-++≥++-+=++ ⎪ ⎪+-+-+-⎝⎭⎝⎭, ∵0x y >>,∴0x y ->,∴2233x y x yx y x y-++≥+-当且仅当5xy=+∴min21334x y x y ⎛⎫++= ⎪+-⎝⎭,故答案为:34+. 【总结】在求解不等式问题的时候,我们需要注意以下几点: (1)求和的最小值的时候,往往考虑正用基本不等式;(2)如果给出了一个含有,a b 等式,并且所求范围的式子中含有分母项,且分母中含有,a b ,就可以利用“1”的性质,使用不等式来进行计算.【变式训练】若,00x y >>,且224log 3log 9log 81x y +=,则213x y+的最小值为 .【答案】43+ 【解析】由题意,∵0,0x y >>∴4224222222log 31log 3log 3log 3log 3log 42xy+===,()222222log 3log 9log 33log 3x y x y x y ++=⋅=,∴2222log 3log 3x y +=, ∴22x y +=,即()1212x y +=, ∴()21121124182232323323y x x y x y x y x y ⎛⎛⎫⎛⎫+=++=+++≥+ ⎪ ⎪ ⎝⎭⎝⎭⎝1823⎛== ⎝⎭当且仅当43y x x y =,即4322y xx y x y ⎧=⎪⎨⎪+=⎩,解得61x y ⎧=-⎪⎨=⎪⎩∴min21433x y ⎛⎫++= ⎪⎝⎭难点3:三个及以上正数的算术——几何平均不等式在高考数学中,我们遇到的不等式证明题往往是两个数以上的,对于两个数以上的这类不等式证明,如何配凑是解决此类问题的难点。
高考数学难点突破与解题方法随着高考日益逼近,数学作为一门重要的科目,成为许多考生头疼的难题。
其中,存在着一些难点,对于许多考生来说是必须要突破的难关。
本文将介绍一些高考数学难点的突破方法和解题技巧,帮助考生在考试中取得更好的成绩。
一、代数与函数代数与函数是高考数学中的一大难点,其中包括方程、函数和不等式。
首先,要熟练掌握基本的代数知识,比如一元二次方程、分式方程等,切忌死记硬背,要通过大量的练习来加深理解。
其次,要了解各类函数的性质,包括基本初等函数的图像、性质和变化规律等。
高考中常见的函数类型有线性函数、二次函数和指数函数等,掌握它们的性质和变化规律能够解决不少难题。
最后,对于不等式的解法,要掌握常见的不等式性质,比如绝对值不等式、二次式不等式等,通过画图或代入法来解决。
二、立体几何立体几何也是高考数学中的难点之一。
在解题时,要注重对图形性质的理解和几何关系的把握。
了解常见几何图形的特征和性质,包括正方体、正四面体和圆锥等,会对解题有很大帮助。
同时,还需要掌握立体几何的投影问题,如求柱体、圆柱和圆锥的截面面积和体积等。
通过多做一些相关的题目进行练习,能够提高解决立体几何难题的能力。
三、概率与统计概率与统计在高考数学中占有一定的比重,也是一些考生容易忽视的部分。
在解题时,要注意理解概率与统计的基本概念和原理。
掌握概率计算的方法,包括排列组合、事件的计算和条件概率等。
对于统计的问题,要熟悉常见统计量的计算,如均值、中位数和标准差等。
此外,还要注意对数据的分析与解读,包括直方图和折线图的解读,以及数据的比较和推断分析。
四、解题技巧在考试时,掌握一些解题技巧对于突破数学难点是非常有效的。
首先,要学会研读题目,理解题目所给的条件和要求,抓住关键信息。
其次,学会尝试多种解题方法,从不同的角度入手,比较其优劣并选择最合适的方法。
此外,要善于归纳总结,在做题过程中,记录解题思路和方法,方便日后进行复习和总结。
纵观近几年高考对于不等式综合问题的考查,主要有三类问题:恒成立问题、能成立问题以及恰成立问题,要求学生有较强的推理能力和准确的计算能力,才能顺利解答.从实际教学来看,这部分知识能力要求高、难度大,是学生掌握最为薄弱,看到就头疼的题目.分析原因,除了这类题目的入手确实不易之外,主要是学生没有形成解题的模式和套路,以至于遇到类似的题目便产生畏惧心理.本文就高中阶段出现这类问题加以类型的总结和方法的探讨.1 不等式恒成立问题新课标下的高考越来越注重对学生的综合素质的考察,恒成立问题便是一个考察学生综合素质的很好途径,它常以函数、方程、不等式和数列等知识点为载体,渗透着换元、化归、分类讨论、数形结合、函数与方程等思想方法,在培养思维的灵活性、创造性等方面起到了积极的作用.近几年的数学高考中频频出现恒成立问题,其形式逐渐多样化,但都与函数、导数知识密不可分.解决高考数学中的恒成立问题常用以下几种方法:①函数性质法;②主参换位法;③分离参数法;④数形结合法;⑤消元转化法.下面我就以近几年高考试题为例加以剖析.1.1 函数性质法一、一次函数——单调性法图1(1)二、二次函数——利用判别式、韦达定理及根的分布求解 有以下几种基本类型:类型1:设2()(0).f x ax bx c a =++≠(1)R x x f ∈>在0)(上恒成立00<∆>⇔且a ;(2)R x x f ∈<在0)(上恒成立00<∆<⇔且a .类型2:设2()(0).f x ax bx c a =++≠ (1)当>a 时,],[0)(βα∈>x x f 在上恒成立,222()00()0.b b ba aa f f ααββαβ⎧⎧⎧-<≤-≤->⎪⎪⎪⇔⎨⎨⎨⎪⎪⎪>∆<>⎩⎩⎩或或 ],[0)(βα∈<x x f 在上恒成立()0,()0.f f αβ<⎧⇔⎨<⎩(2)当0<a 时,],[0)(βα∈>x x f 在上恒成立()()0,0.f f αβ>⎧⎪⇔⎨>⎪⎩],[0)(βα∈<x x f 在上恒成立,222()00()0.b b ba a af f ααββαβ⎧⎧⎧-<≤-≤->⎪⎪⎪⇔⎨⎨⎨⎪⎪⎪>∆<<⎩⎩⎩或或 例2(2012蚌埠二中考试)已知不等式2440mx mx +-<对任意实数x 恒成立.则m 取值范围是( )A .()1,0-B .[]1,0-C .()(),10,-∞-+∞ D .(]1,0-思路分析:由不等式2440mx mx +-<对任意实数x 恒成立,知0m =或0,162160.m m m <⎧⎨+<⎩ 由此能求出m 的取值范围.例3(08年江西卷理12).已知函数()()()22241,f x mx m x g x mx =--+=,若对于任一实数x ,()f x 与()g x 的值至少有一个为正数,则实数m 的取值范围是 ( )A .()0,2B .()0,8C .()2,8D .(),0-∞思路分析:()f x 与()g x 的函数类型,直接受参数m 的影响,∴首先要对参数进行分类讨论,然后转换成不等式的恒成立的问题利用函数性质及图像解题.三、其它函数:()0f x >恒成立⇔min ()0f x >(注:若()f x 的最小值不存在,则()0f x >恒成立⇔()f x 的下界大于0);()0f x <恒成立⇔max ()0f x <(注:若()f x 的最大值不存在,则()0f x <恒成立⇔()f x 的上界小于0).例4(2013年高考重庆卷文)设0απ≤≤,不等式28(8sin )cos 20x x αα-+≥对x R ∈恒成立,则a 的取值范围为____________.例5(2013年高考浙江卷文)设a,b ∈R,若x ≥0时恒有0≤x 4-x 3+ax+b ≤(x 2-1)2,则ab 等于______________.例6(2013年上海高考数学试题文)设常数0a >,若291a x a x+≥+对一切正实数x 成立,则a 的取值范围为________.【答案】1[,)5+∞例7(07年重庆卷理20)已知函数)0(ln )(44>-+=x c bx x ax x f 在1=x 处取得极值3c --,其中a ,b 为常数.(1)试确定a ,b 的值; (2)讨论函数)(x f 的单调区间;(3)若对任意0>x ,不等式22)(c x f -≥恒成立,求c 的取值范围.思路分析:22)(c x f -≥恒成立,即 2min ()2f x c ≥-,要解决此题关键是求min ()f x ,0>x .例8(08天津文21).设函数432()2()f x x ax x b x R =+++∈,其中,a b R ∈.(Ⅲ)若对于任意的[]22a ∈-,,不等式()1f x ≤在[]11-,上恒成立,求b 的取值范围.(节选)思路分析:()1f x ≤,即max ()1f x ≤,[]22a ∈-,,x ∈[]11-,,要解决此题关键是求max ()f x .例9(09年全国卷II 文21)设函数321()(1)4243f x x a x ax a =-+++,其中常数1a >.(II )若当0x ≥时,()0f x >恒成立,求a 的取值范围.(节选)思路分析:利用导数求函数的最值,由恒成立条件得出不等式条件从而求出a 的范围.1.2 分离参数法——极端化原则若所给的不等式能通过恒等变形使参数与主元分离于不等式两端,从而问题转化为求主元函数的最值,进而求出参数范围.利用分离参数法来确定不等式(),0f x λ≥(D x ∈,λ为实参数)恒成立中参数λ的取值范围的基本步骤:(1)将参数与变量分离,即化为()()g f x λ≥(或()()g f x λ≤)恒成立的形式; (2)求()f x 在x D ∈上的最大(或最小)值;(3)解不等式()max ()g f x λ≥(或()()min g f x λ≤) ,得λ的取值范围. 适用题型:(1)参数与变量能分离;(2)函数的最值易求出.例10(2013新课标卷Ⅰ理11)已知函数22,0()ln(1),0x x x f x x x ⎧-+≤=⎨+>⎩,若|()f x |≥ax ,则a 的取值范围是A .(,0]-∞B .(,1]-∞C .[-2,1]D .[-2,0]例11 (07年山东卷文15)当(1,2)x ∈时,不等式240x mx ++<恒成立,则m 的取值范围是.(1)当b a ,满足什么条件时,)(x f 取得极值?(2)已知0>a ,且)(x f 在区间(0,1]上单调递增,试用a 表示出b 的取值范围. 思路分析:此题虽有三个变量x ,a ,b ,而x 的范围已知,最终要用a 表示出b 的取值范围,∴可以将a 看成一个已知数,对x 和b 进行离参.例13(2010天津高考理16).设函数2()1f x x =-,对任意2,3x ⎡⎫∈+∞⎪⎢⎣⎭,24()(1)4()x f m f x f x f m m ⎛⎫-≤-+ ⎪⎝⎭恒成立,则实数m 的取值范围是 .1.3 主参换位——反客为主法某些含参不等式恒成立问题,在分离参数会遇到讨论的麻烦或者即使能容易分离出参数与变量,但函数的最值却难以求出时,可考虑变换思维角度“反客为主”,即把习惯上的主元变与参数变量的“地位”交换一下,变个视角重新审查恒成立问题,往往可避免不必要的分类讨论或使问题降次、简化,起到“山穷水尽疑无路,柳暗花明又一村”的出奇制胜的效果.例14(07辽宁卷文科22)已知函数322()9cos 48cos 18sin f x x x x αβα=-++,()()g x f x '=,且对任意的实数 t 均有(1cos )0g t +≥,(3sin )0g t +≤.(Ⅰ) 求函数()f x 的解析式;(Ⅱ)若对任意的[26,6]m ∈-,恒有2()11f x x mx ≥--,求x 的取值范围.例15 (08安徽文科20).已知函数323()(1)132a f x x x a x =-+++,其中a 为实数. (Ⅱ)已知不等式2()1f x x x a '--+>对任意(0)a ∈+∞,都成立,求实数x 的取值范围.(节选)思路分析:已知参数a 的范围,要求自变量x 的范围,转换主参元x 和a 的位置,构造以a 为自变量x 作为参数的一次函数()g a ,转换成∀(0)a ∈+∞,,()0g a >恒成立再求解.1.4 数形结合——直观求解法若所给不等式进行合理的变形化为()()f x g x ≥(或()()f x g x ≤)后,能非常容易地画出不等号两边函数的图像,则可以通过画图直接判断得出结果.尤其对于选择题、填空题这种方法更显方便、快捷.例17.若不等式23log 0a x x -<在10,3x ⎛⎫∈ ⎪⎝⎭内恒成立,求实数a 的取值范围.1.5 消元转化法例19.已知f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若0)()(0],1,1[,>++≠+-∈nm n f m f n m n m 时,若12)(2+-≤at t x f 对于所有的]1,1[],1,1[-∈-∈a x 恒成立,求实数t 的取值范围.点评:对于含有两个以上变量的不等式恒成立问题,可以根据题意依次进行消元转化,从而转化为只含有两变量的不等式问题,使问题得到解决.上述例子剖析了近几年数学高考中恒成立问题的题型及解法,值得一提的是,各种类型各种方法并不是完全孤立的,虽然方法表现的不同,但其实质却都与求函数的最值是等价的,这也正体现了数学中的“统一美”.2 不等式能成立问题的处理方法若在区间D 上存在实数x 使不等式()f x k >成立,则等价于在区间D 上()max f x k >;若在区间D 上存在实数x 使不等式()f x k <成立,则等价于在区间D 上的()min f x k <.注意不等式能成立问题(即不等式有解问题)与恒成立问题的区别.从集合观点看,含参不等式()f x k <()()f x k >在区间D 上恒成立(){}()max D x f x k f x k ⇔⊆<⇔<(){}()()min D x f x k f x k ⇔⊆>⇔>,而含参不等式()f x k <()()f x k >在区间D 上能成立⇔至少存在一个实数x 使不等式()f x k <()()f x k >成立(){}()min D x f x k f x k ⇔<≠∅⇔<(){}()()max Dx f x k f x k ⇔<≠∅⇔>. 例20.若关于x 的不等式23x ax a --≤-的解集不是空集,则实数a 的取值范围是 .例21.已知函数()()21ln 202f x x ax x a =--≠存在单调递减区间,求a 的取值范围 3 不等式恰好成立问题的处理方法例22.已知()22x x a f x x++=当[)()1,,x f x ∈+∞的值域是[)0,+∞,试求实数a 的值.例23.已知两个函数()()232816,254f x x x k g x x x x =+-=++,其中k 为实数.⑶对任意[]12,3,3x x ∈-,都有()()12f x g x ≤,求k 的范围.。
难点19 解不等式不等式在生产实践和相关学科的学习中应用广泛,又是学习高等数学的重要工具,所以不等式是高考数学命题的重点,解不等式的应用非常广泛,如求函数的定义域、值域,求参数的取值范围等,高考试题中对于解不等式要求较高,往往与函数概念,特别是二次函数、指数函数、对数函数等有关概念和性质密切联系,应重视;从历年高考题目看,关于解不等式的内容年年都有,有的是直接考查解不等式,有的则是间接考查解不等式.●难点磁场(★★★★)解关于x 的不等式2)1(--x x a >1(a ≠1). ●案例探究[例1]已知f (x )是定义在[-1,1]上的奇函数,且f (1)=1,若m 、n ∈[-1,1],m +n ≠0时nm n f m f ++)()(>0.(1)用定义证明f (x )在[-1,1]上是增函数; (2)解不等式:f (x +21)<f (11-x ); (3)若f (x )≤t 2-2at +1对所有x ∈[-1,1],a ∈[-1,1]恒成立,求实数t 的取值范围.命题意图:本题是一道函数与不等式相结合的题目,考查学生的分析能力与化归能力,属★★★★★级题目.知识依托:本题主要涉及函数的单调性与奇偶性,而单调性贯穿始终,把所求问题分解转化,是函数中的热点问题;问题的要求的都是变量的取值范围,不等式的思想起到了关键作用.错解分析:(2)问中利用单调性转化为不等式时,x +21∈[-1,1],11-x ∈[-1,1]必不可少,这恰好是容易忽略的地方.技巧与方法:(1)问单调性的证明,利用奇偶性灵活变通使用已知条件不等式是关键,(3)问利用单调性把f (x )转化成“1”是点睛之笔.(1)证明:任取x 1<x 2,且x 1,x 2∈[-1,1],则f (x 1)-f (x 2)=f (x 1)+f (-x 2)=2121)()(x x x f x f --+·(x 1-x 2)∵-1≤x 1<x 2≤1,∴x 1+(-x 2)≠0,由已知2121)()(x x x f x f --+>0,又 x 1-x 2<0,∴f (x 1)-f (x 2)<0,即f (x )在[-1,1]上为增函数. (2)解:∵f (x )在[-1,1]上为增函数,∴⎪⎪⎪⎩⎪⎪⎪⎨⎧-<+≤-≤-≤+≤-112111111211x x x x 解得:{x |-23≤x <-1,x ∈R } (3)解:由(1)可知f (x )在[-1,1]上为增函数,且f (1)=1,故对x ∈[-1,1],恒有f (x )≤1,所以要f (x )≤t 2-2at +1对所有x ∈[-1,1],a ∈[-1,1]恒成立,即要t 2-2at +1≥1成立,故t 2-2at ≥0,记g (a )=t 2-2at ,对a ∈[-1,1],g (a )≥0,只需g (a )在[-1,1]上的最小值大于等于0,g (-1)≥0,g (1)≥0,解得,t ≤-2或t =0或t ≥2.∴t 的取值范围是:{t |t ≤-2或t =0或t ≥2}.[例2]设不等式x 2-2ax +a +2≤0的解集为M ,如果M ⊆[1,4],求实数a 的取值 范围.命题意图:考查二次不等式的解与系数的关系及集合与集合之间的关系,属★★★★级题目.知识依托:本题主要涉及一元二次不等式根与系数的关系及集合与集合之间的关系,以及分类讨论的数学思想.错解分析:M =∅是符合题设条件的情况之一,出发点是集合之间的关系考虑是否全面,易遗漏;构造关于a 的不等式要全面、合理,易出错.技巧与方法:该题实质上是二次函数的区间根问题,充分考虑二次方程、二次不等式、二次函数之间的内在联系是关键所在;数形结合的思想使题目更加明朗.解:M ⊆[1,4]有n 种情况:其一是M =∅,此时Δ<0;其二是M ≠∅,此时Δ>0,分三种情况计算a 的取值范围.设f (x )=x 2 -2ax +a +2,有Δ=(-2a )2-(4a +2)=4(a 2-a -2) (1)当Δ<0时,-1<a <2,M =∅[1,4](2)当Δ=0时,a =-1或2.当a =-1时M ={-1} [1,4];当a =2时,m ={2}[1,4]. (3)当Δ>0时,a <-1或a >2.设方程f (x )=0的两根x 1,x 2,且x 1<x 2,那么M =[x 1,x 2],M ⊆[1,4]⇔1≤x 1<x 2≤4⎩⎨⎧>∆≤≤>>⇔0,410)4(,0)1(且且a f f即⎪⎪⎩⎪⎪⎨⎧>-<>>->+-210071803a a a a a 或,解得:2<a <718,∴M ⊆[1,4]时,a 的取值范围是(-1,718). ●锦囊妙计解不等式对学生的运算化简等价转化能力有较高的要求,随着高考命题原则向能力立意的进一步转化,对解不等式的考查将会更是热点,解不等式需要注意下面几个问题:(1)熟练掌握一元一次不等式(组)、一元二次不等式(组)的解法.(2)掌握用序轴标根法解高次不等式和分式不等式,特别要注意因式的处理方法.(3)掌握无理不等式的三种类型的等价形式,指数和对数不等式的几种基本类型的解法. (4)掌握含绝对值不等式的几种基本类型的解法.(5)在解不等式的过程中,要充分运用自己的分析能力,把原不等式等价地转化为易解的不等式.(6)对于含字母的不等式,要能按照正确的分类标准,进行分类讨论. ●歼灭难点训练 一、选择题1.(★★★★★)设函数f (x )=⎪⎪⎩⎪⎪⎨⎧≥-<<-+-≤+)1(11)11(22)1()1(2x xx x x x ,已知f (a )>1,则a 的取值范围是( )A.(-∞,-2)∪(-21,+∞) B.(-21,21) C.(-∞,-2)∪(-21,1)D.(-2,-21)∪(1,+∞)二、填空题2.(★★★★★)已知f (x )、g (x )都是奇函数,f (x )>0的解集是(a 2,b ),g (x )>0的解集是(22a ,2b),则f (x )·g (x )>0的解集是__________. 3.(★★★★★)已知关于x 的方程sin 2x +2cos x +a =0有解,则a 的取值范围是__________. 三、解答题4.(★★★★★)已知适合不等式|x 2-4x +p |+|x -3|≤5的x 的最大值为3. (1)求p 的值;(2)若f (x )=11+-x x p p ,解关于x 的不等式f --1(x )>k x p +1log (k ∈R +)5.(★★★★★)设f (x )=ax 2+bx +c ,若f (1)=27,问是否存在a 、b 、c ∈R ,使得不等式:x 2+21≤f (x )≤2x 2+2x +23对一切实数x 都成立,证明你的结论. 6.(★★★★★)已知函数f (x )=x 2+px +q ,对于任意θ∈R ,有f (sin θ)≤0,且f (sin θ+2)≥2.(1)求p 、q 之间的关系式; (2)求p 的取值范围;(3)如果f (sin θ+2)的最大值是14,求p 的值.并求此时f (sin θ)的最小值. 7.(★★★★)解不等式log a (x -x1)>1 8.(★★★★★)设函数f (x )=a x 满足条件:当x ∈(-∞,0)时,f (x )>1;当x ∈(0,1]时,不等式f (3mx -1)>f (1+mx -x 2)>f (m +2)恒成立,求实数m 的取值范围.参考答案难点磁场解:原不等式可化为:2)2()1(--+-x a x a >0,即[(a -1)x +(2-a )](x -2)>0.当a >1时,原不等式与(x -12--a a )(x -2)>0同解. 若12--a a ≥2,即0≤a <1时,原不等式无解;若12--a a <2,即a <0或a >1,于是a >1时原不等式的解为(-∞,12--a a )∪(2,+∞).当a <1时,若a <0,解集为(12--a a ,2);若0<a <1,解集为(2,12--a a )综上所述:当a >1时解集为(-∞,12--a a )∪(2,+∞);当0<a <1时,解集为(2,12--a a );当a =0时,解集为∅;当a <0时,解集为(12--a a ,2).歼灭难点训练一、1.解析:由f (x )及f (a )>1可得:⎩⎨⎧>+-≤1)1(12a a ① 或⎩⎨⎧>+<<-12211a a ② 或⎪⎩⎪⎨⎧>-≥1111aa ③ 解①得a <-2,解②得-21<a <1,解③得x ∈∅ ∴a 的取值范围是(-∞,-2)∪(-21,1)答案:C 二、2.解析:由已知b >a 2∵f (x ),g (x )均为奇函数,∴f (x )<0的解集是(-b ,-a 2),g (x )<0的解集是(-2,22a b -).由f (x )·g (x )>0可得:⎪⎩⎪⎨⎧-<<--<<-⎪⎩⎪⎨⎧<<<<⎩⎨⎧<<⎩⎨⎧>>2222,0)(0)(0)(0)(2222a x b a x b b x a b x a x g x f x g x f 或即或 ∴x ∈(a 2,2b )∪(-2b,-a 2) 答案:(a 2,2b )∪(-2b,-a 2)3.解析:原方程可化为cos 2x -2cos x -a -1=0,令t =cos x ,得t 2-2t -a -1=0,原问题转化为方程t 2-2t -a -1=0在[-1,1]上至少有一个实根.令f (t )=t 2-2t -a -1,对称轴t =1,画图象分析可得⎩⎨⎧≤≥-0)1(0)1(f f 解得a ∈[-2,2].答案:[-2,2]三、4.解:(1)∵适合不等式|x 2-4x +p |+|x -3|≤5的x 的最大值为3,∴x -3≤0,∴|x -3|=3-x .若|x 2-4x +p |=-x 2+4x -p ,则原不等式为x 2-3x +p +2≥0,其解集不可能为{x |x ≤3}的子集,∴|x 2-4x +p |=x 2-4x +p .∴原不等式为x 2-4x +p +3-x ≤0,即x 2-5x +p -2≤0,令x 2-5x +p -2=(x -3)(x -m ),可得m =2,p =8.(2)f (x )=1818+-x x ,∴f --1(x )=log 8xx -+11 (-1<x <1),∴有log 8x x-+11>log 8kx +1,∴log 8(1-x )<log 8k ,∴1-x <k ,∴x >1-k . ∵-1<x <1,k ∈R +,∴当0<k <2时,原不等式解集为{x |1-k <x <1};当k ≥2时,原不等式的解集为{x |-1<x <1}.5.解:由f (1)=27得a +b +c =27,令x 2+21=2x 2+2x +23x ⇒=-1,由f (x )≤2x 2+2x +23推得 f (-1)≤23. 由f (x )≥x 2+21推得f (-1)≥23,∴f (-1)=23,∴a -b +c =23,故 2(a +c )=5,a +c =25且b =1,∴f (x )=ax 2+x +(25-a ).依题意:ax 2+x +(25-a )≥x 2+21对一切x ∈R 成立,∴a ≠1且Δ=1-4(a -1)(2-a )≤0,得(2a -3)2≤0,∴f (x )=23x 2+x +1 易验证:23x 2+x +1≤2x 2+2x +23对x ∈R 都成立.∴存在实数a =23,b =1,c =1,使得不等式:x 2+21≤f (x )≤2x 2+2x +23对一切x ∈R 都成立.6.解:(1)∵-1≤sin θ≤1,1≤sin θ+2≤3,即当x ∈[-1,1]时,f (x )≤0,当x ∈[1,3]时,f (x )≥0,∴当x =1时f (x )=0.∴1+p +q =0,∴q =-(1+p )(2)f (x )=x 2+px -(1+p ),当sin θ=-1时f (-1)≤0,∴1-p -1-p ≤0,∴p ≥0 (3)注意到f (x )在[1,3]上递增,∴x =3时f (x )有最大值.即9+3p +q =14,9+3p -1-p =14,∴p =3.此时,f (x )=x 2+3x -4,即求x ∈[-1,1]时f (x )的最小值.又f (x )=(x +23)2-425,显然此函数在[-1,1]上递增.∴当x =-1时f (x )有最小值f (-1)=1-3-4=-6.7.解:(1)当a >1时,原不等式等价于不等式组⎪⎪⎩⎪⎪⎨⎧>->-a xx11011由此得1-a >x 1.因为1-a <0,所以x <0,∴a-11<x <0. (2)当0<a <1时,原不等式等价于不等式组:⎪⎪⎩⎪⎪⎨⎧<->-a xx11011由 ①得x >1或x <0,由②得0 <x <a -11,∴1<x <a -11. 综上,当a >1时,不等式的解集是{x |a-11<x <0},当0<a <1时,不等式的解集为{x |1<x <a-11}.8.解:由已知得0<a <1,由f (3mx -1)>f (1+mx -x 2)>f (m +2),x ∈(0,1]恒成立.⎪⎩⎪⎨⎧+<-+-+<-⇔2111322m x mx xmx mx 在x ∈(0,1]恒成立. 整理,当x ∈(0,1)时,⎪⎩⎪⎨⎧+<--<1)1(1222x x m x x 恒成立,即当x ∈(0,1]时,⎪⎪⎩⎪⎪⎨⎧-+>-<112122x x m xx m 恒成立,且x =1时,⎪⎩⎪⎨⎧+<--<1)1(1222x x m xmx 恒成立, ∵2121212-=-x x x 在x ∈(0,1]上为减函数,∴x x 212-<-1, ∴m <x x 212-恒成立⇔m <0.又∵2112)1(112+-+-=-+x x x x ,在x ∈(0,1]上是减函数, ∴112-+x x <-1.∴m >112-+x x 恒成立⇔m >-1当x ∈(0,1)时,⎪⎪⎩⎪⎪⎨⎧-+>-<112122x x m xx m 恒成立⇔m ∈(-1,0)① 当x =1时,⎪⎩⎪⎨⎧+<--<1)1(1222x x m xmx ,即是⎩⎨⎧<<100m ∴m <0 ②∴①、②两式求交集m ∈(-1,0),使x ∈(0,1]时,f (3mx -1)>f (1+mx -x 2)>f (m +2)恒成立,m 的取值范围是(-1,0)① ②。