七、分子轨道理论(MO法) 1932年前后,美国人Mulliken和德国人Hund提出了分子轨道 理论,分子轨道理论和现代价键理论构成了现代共价键理论。 氢分子离子H2+ 是可以存在的。 1、分子轨道理论的要点 (1)分子轨道是由分子中原子的原子轨道线性组合而成,简 称 LCAO。 组合形成的分子轨道数与组合前的原子轨道数相等。
对称性不匹配
·· x _
_
+
+
· _·
+
+
它们重叠的结果是:一半正正重叠部分使系统能量降低, 另一半正负重叠部分使能量升高,两者效果抵消。系统 的总能量没有发生变化,形成非键轨道。
b. 能量近似原则 c. 最大重叠原则
-
+
-
+
-
+
-
ψ是两个对称性匹配的原子轨道同号叠加而成。在两核间电子 概率密度增大,对两核产生强烈的吸引作用,其能量低于原子 轨道,对成键有利。——成键轨道 成键轨道用符号σ,π,δ 表示 ψ* 是两个对称性匹配的原子轨道异号叠加 (或同号相减)而成。 电子在两核间出现概率密度减小,能量升高,对分子的稳定不 利,对原子的键合会起反作用——反键轨道 节面 反键轨道用符号σ*,π*,δ*表示 3、分子轨道中电子的填充顺序也遵从原子轨道填充电子的三 原理 4、分子轨道理论中,用键级的大小来说明两个相邻原子间成 键的强度,BO 键级可为整数,也可为分数,只要键级大于零,就可得到不同 稳定程度的分子。 5、按分子轨道沿键轴在空间分布的特征,可分为σ轨道、π轨 道和δ轨道三种
1 c1 a c2 b
* 1
c1 a c2 b
(2)成键轨道、反键轨道和非键轨道。 分子轨道能量低于组合前原子轨道能量者称为成键轨道(ψ1 ) 原子轨道线性组合成分子轨道后,分子轨道中能量高于组合前 原子轨道能量者称为反键轨 道 (ψ 1 * )。 组合前后能量相等者称为非键轨道。 2、有效组成分子轨道的条件 a.对称性匹配 只有对称性相同的原子轨道才能组成分子轨道。 此条件是指原子轨道ψa和ψb相对于成键原子间的键轴应有相 同的对称性。 原子轨道相互叠加组合成分子轨道时象波的叠加一样,须考虑 位相的正负号;原子轨道重叠的部分必须有相同的符号。 上述三种情况满足对称性匹配要求。 如果原子轨道在组成分子轨道时,一部分是(+,+ )重叠,另一部 分却是 ( +, -)重叠。