影响燃煤电厂湿法烟气脱硫效率的主要因素
- 格式:pdf
- 大小:270.89 KB
- 文档页数:2
燃煤电厂烟气脱硫技术简介摘要:现阶段,社会经济发展速度显著加快,一定程度上提升了人们物质生活水平,使煤炭资源紧张程度加剧,且可持续发展思想与环保理念深入人心。
火电厂污染物的排放量大,对于能源的消耗也更多,因而有必要加大控制力度,对脱硫脱硝与烟气防尘技术进行优化与改善,使污染物的实际排放量得以降低,全面优化能源的利用效果。
由此可见,深入研究并分析火电厂锅炉脱硫脱硝与烟气除尘技术十分有必要。
关键词:燃煤;电厂;烟气脱硫技术引言通过燃烧煤炭、天然气、石油等能源物质实现由化学能向电能的转化,是中国现阶段最主要的电力生产方式。
随着人们生活水平的提升,对于电能的需求也在不断增加,进而导致了较为严重的烟气污染问题。
在这样的情况下,有必要围绕电厂实际运行情况落实完善的锅炉烟气脱硫、脱硝及烟气除尘技术,同时进一步提升对于烟气污染的治理能力,确保可以在发电过程中有效落实可持续发展的绿色理念。
1燃煤电厂烟气脱硫技术各国从脱硫技术的要求出发,已经开发了很多燃煤锅炉控制SO2排量技术,并应用于工程中。
这些技术总结起来分为燃烧前脱硫、燃烧中脱硫和燃烧后脱硫。
利用化学、物理或生物方法脱去煤中硫被称为燃烧前脱硫,因其工艺成本高,尚未得到广泛应用。
在燃烧过程中对煤进行脱硫称为燃烧中脱硫,主要有循环流化床锅炉燃烧脱硫技术和炉内喷钙技术。
燃烧后脱硫(Flue Gas Desulfurization,FGD)是对燃烧后的烟气进行脱硫,主要有海水法、石灰石—石膏法、氨吸收法和双碱法,是目前世界范围内应用最广泛、规模最大的脱硫技术。
西安某火电厂1#、2#机组(2×300MW)采用石灰石—石膏湿法脱硫工艺,使用石灰石作为脱硫剂,工艺上将其研磨成细粉与水混合制成吸收浆,吸收浆与烟气在吸收塔内混合接触,浆液中的碳酸钙与烟气中SO2、空气混合接触并发生氧化反应,最终生成二水石膏。
脱硫后的烟气经换热器加热升温后排入空气,余下的石膏浆经脱水处理后回收并循环利用。
影响湿法烟气脱硫效率的因素及运行控制措施前言目前我厂两台600MW及两台1000MW燃煤发电机组所采用的石灰石——石膏湿法烟气脱硫系统运行情况良好,基本能够保持系统安全稳定运行,并且脱硫效率在95%以上。
但是,有两套脱硫系统也出现了几次烟气脱硫效率大幅波动的现象,脱脱效率由95%逐渐降到72%。
经过对吸收系统的调节,脱硫效率又逐步提高到95%。
脱硫效率的不稳定,会造成我厂烟气SO2排放量增加,不能达到节能环保要求。
本文将从脱硫系统烟气SO2的吸收反应原理出发,找出影响脱硫效率的主要因素,并制定运行控制措施,以保证我厂烟气脱硫系统的稳定、高效运行。
一、脱硫系统整体概述邹县发电厂三、四期工程两台600MW及两台1000MW燃煤发电机组,其烟气脱硫系统共设置四套石灰石——石膏湿法烟气脱硫装置,采用一炉一塔,每套脱硫装置的烟气处理能力为每台锅炉100%BMCR工况时的烟气量,其脱硫效率按不小于95%设计。
石灰石——石膏湿法烟气脱硫,脱硫剂为石灰石与水配置的悬浮浆液,在吸收塔内烟气中的SO2与石灰石反应后生成亚硫酸钙,并就地强制氧化为石膏,石膏经二级脱水处理作为副产品外售。
烟气系统流程:烟气从锅炉烟道引出,温度约126℃,由增压风机升压后,送至烟气换热器与吸收塔出口的净烟气换热,原烟气温度降至约90℃,随即进入吸收塔,与来自脱硫吸收塔上部喷淋层(三期3层、四期4层)的石灰石浆液逆流接触,进行脱硫吸收反应,在此,烟气被冷却、饱和,烟气中的SO2被吸收。
脱硫后的净烟气经吸收塔顶部的两级除雾器除去携带的液滴后至烟气换热器进行加热,温度由43℃上升至约80℃后,通过烟囱排放至大气。
二、脱硫吸收塔内SO2的吸收过程烟气中SO2在吸收塔内的吸收反应过程可分为三个区域,即吸收区、氧化区、中和区。
1、吸收区内的反应过程:烟气从吸收塔下侧进入与喷淋浆液逆流接触,由于吸收塔内充分的气/液接触,在气-液界面上发生了传质过程,烟气中气态的SO2、SO3等溶解并转变为相应的酸性化合物:SO2 + H2O H2SO3SO3 + H2O H2SO4烟气中的SO2溶入吸收浆液的过程几乎全部发生在吸收区内,在该区域内仅有部分HSO3-被烟气中的O2氧化成H2SO4。
湿法脱硫存在的主要问题与技术探讨摘要:经济的发展,城市化进程的加快,人们对电能的需求也逐渐增加。
在我国现代化建设阶段,燃煤电厂发挥着重要作用,也是国民经济的支柱性产业之一。
燃煤电厂的生产运作有效地满足了广大群体日常生活、生产中对电力的需求,对我国经济发展进步起到推动型作用。
燃煤发电阶段形成废水、废气等污染物,其中废水的类型较多,脱硫废水便是其中的典范。
化学沉淀是处理脱硫废水的常用方法,尽管其费用支出较少,但经该工艺处理后的污水,很难保证整体达标,污水内含盐量偏高,若未经处理直接排放很可能导致二次污染。
湿法脱硫废水零排放处理能解除如上问题,具有能耗低、环保等诸多优势。
本文就湿法脱硫存在的主要问题与技术展开探讨。
关键词:脱硫系统;问题;技术探讨;经验分享;经济运行;节能与减排引言随着环保形势的日益严格,以及《国务院关于印发水污染防治行动计划的通知》发布与执行,燃煤电厂脱硫废水零排放也成为关注重点。
脱硫废水零排放工艺是指将脱硫废水进行预处理后对废水进行采用蒸发、结晶等方法进行深度处理,达到废水零排放的目的。
1燃煤电厂脱硫废水的来源及特点在燃煤电厂,烟气污染物主要包括了二氧化硫、硫化物、氯化物、氟化物、重金属离子和烟尘等,为了防止硫化物的污染,要对含硫烟气进行脱硫处理。
按工艺特点目前主要可分湿法、半干法和干法3种烟气脱硫技术,中国烟气脱硫技术和其应用比例如图1所示,大部分燃煤电厂采用石灰石-石膏湿法脱硫工艺。
湿法脱硫工艺为避免系统内污染物富集,须排放一部分废水以维持系统内污染物浓度,这部分废水主要含有大量悬浮物、过饱和的亚硫酸盐、硫酸盐以及重金属等污染物。
脱硫废水水质特点及其可能危害影响见表1。
图1中国烟气脱硫技术与其应用占比表1脱硫废水水质特点及可能危害影响2湿法脱硫存在的主要问题某公司2×330MW机组采用石灰石-石膏湿法烟气脱硫装置,每台机组对应一座脱硫塔,烟气系统不设GGH和旁路烟道,增压风机与引风机合并设置,脱硫系统压降通过引风机克服,两台机组共用一座210m高内衬钛钢烟囱,每台机组脱硫设施原设计配置三台脱硫浆液循环泵,原脱硫设施设计脱硫出口二氧化硫排放浓度200mg/Nm3以下,为了进一步满足日益严格的污染物排放标准,2015年,通过对脱硫设施实施提效改造,目前,每座脱硫塔配置五台脱硫浆液循环泵,设计脱硫效率98.99%,在脱硫设施出口新增湿式除尘器,经过改造后,净烟气二氧化硫排放浓度达到35mg/Nm3以下,满足超低排放指标要求。
石灰石石膏湿法脱硫工艺脱硫效率影响因素【摘要】现阶段,我国大气治理市场不断扩大,脱硫脱硝工艺更新迭代,本文阐述石灰石/石膏湿法脱硫工艺的基本原理以及它的应用状况。
本文将以浆液PH值为基准,对影响脱硫效果的因素以及规律进行研究,并从工艺和设备方面简述如何保障湿法脱硫功效,以提升石灰石/石膏湿法脱硫工艺的脱硫效率。
一般地,影响脱硫效率因素包括有石灰石的活性、液气比、钙硫比等。
1 引言燃煤过程中会产生并排放二氧化硫(SO2)造成严重的空气污染,为实现全国SO2的消减目标,就须控制电力行业的SO2排放量。
当前我国燃煤机组广泛地运用了石灰石/石膏湿法脱硫(wet flue gas desulfurization,以下简称FGD)这种烟气脱硫工艺,FGD的流程、形式和原理在国际上都有着异曲同工之妙。
主要运用了包括有石灰石(主要成分是碳酸钙:CaCO3)、石灰(主要成分是氧化钙:CaO)或者碳酸钠(Na2CO3)等浆液作为洗涤剂,烟气通过吸收塔会发生化学反应,进而达到烟气洗涤的效果,从而使烟气中的二氧化硫(SO2)得以去除。
最早的石灰石脱硫工艺,是在1927年英国为保护高层建筑,在泰晤士河岸的电厂得以利用,至今已有87年历史。
经过不断地对技术、工艺革新完善,如今FGD具有以下优点:脱硫效率高,基本保证为90%,最高可达95%,更甚是98%;机组容量大;煤种适应性强;副产品容易回收;运营成本较低等。
本文将从影响脱硫效率的因素参数进行分析,概述其影响的原因,进而为完善FGD系统、提升脱硫效率作理论依据。
2 FGD脱硫原理这种工艺拥有极其丰富的资源作为吸收剂,能广泛地进行商业化开发,拥有成本低,可回收等优点。
当前,作为FGD工艺中应用最为广泛地方法,石灰石/石灰法对高硫煤的脱硫率能保证至少90%,而那些低硫煤则能保证95%的脱硫率。
3 脱硫效率的影响因素烟气换热器会使燃煤过程中产生的烟气降温冷却,进入吸收塔其中的HCl、HF以及灰尘等都会溶入浆液中,浆液中的水分会吸收SO2、SO3生成H2SO3,其能分解H+和HSO3-,与浆液中的CaCO3发生水反应生成二水石膏,使得浆液的PH 值发生变化。
石灰石粉取样器的制作与使用摘要:石灰石-石膏湿法烟气脱硫工艺因对机组适应强、脱硫效率高、脱硫剂易得且廉价,副产品可综合利用等优势在我国燃煤电厂广泛应用。
影响脱硫效率的主要因素有烟气成分、石灰石粉的品质、吸收塔内运行工况。
其中脱硫剂石灰石粉品质的好坏是关键因素。
因此如何快速、准确地检验石灰石粉的成分是否符合规范要求是一项很重要的工作,基于此问题同时结合现场实际情况制作出一个能快速、方便的对石灰石粉进行现场取样的取样器,及时检测出其主要指标是否符合要求,保证吸收塔内的反应正常进行。
关键词:取样器吸收塔石灰石品质0 引言近年来国家对燃煤电厂烟气的排放指标要求越来越高,在京津地区燃煤电厂出口烟气SO2浓度由最初的100mg/Nm3降至50mg/Nm3,到2014年要求达到超净排放的标准35mg/Nm3。
几乎每个电厂在年初把“不发生环境事件,污染物排放达标”都作为全年工作目标之一,对相关生产车间也作为年度工作的首要考核指标。
所以保证脱硫系统的安全、稳定运行是很重要的。
吸收塔中的主反应为烟气中的SO2和溶解于水中的CaCO3反应生成CaSO3,被氧化风机鼓入的空气强制氧化反应生成CaSO4浆液,经过脱水后生成CaSO4.2H2O,可用于建筑行业。
但在实际运行中,吸收塔内发生多个复杂的化学反应,烟气中携带的一些微量金属元素、石灰石粉中含有的一些其他物质,这些进入吸收塔中的物质其成分、含量都或多或少的影响塔内的化学反应。
其中主反应物CaCO3品质的好坏是一个非常关键的因素。
在脱硫运行装置运行导则、设计导则中都对石灰石粉的成分、含量及检测方法、检测周期有明确的规定。
结合本单位的实际情况,为了确保使用的石灰石粉的品质符合技术标准,在进入粉仓前测出其物质含量,制作出一个能在现场随机、随时取样的装置。
1 石灰石粉的要求在脱硫运行导则中,对脱硫系统运行时使用的石灰石粉有如下要求:为了增加反应速率,要求石灰石粉的粒径小于325目。
脱硫石灰石浆液浓度和粒度与旋流器压力关系的实验研究摘要:石灰石浆液的性能是影响湿法烟气脱硫效率的主要因素,而浆液的浓度与粒度又是衡量其性能的两个重要指标。
在湿式制浆过程中,旋流器的入口压力是决定浆液浓度与粒度的关键因素。
因此,合适的旋流器压力可以提高浆液的性能,进而提高烟气脱硫效率。
本文以某600mw火力发电厂湿式脱硫制浆系统作为研究对象,通过现场试验,研究了旋流器入口压力与浆液浓度及粒度的关系,找出了满足火力发电厂脱硫要求的浆液浓度及粒度对应的旋流器入口压力的调整规律,对取得最佳的旋流器入口压力,优化脱硫制浆具有重要的指导意义。
关键词:湿法烟气脱硫;旋流器压力;灰石浆液浓度;灰石浆液粒度中国分类号:tq文献标识符:a0 引言我国是以火电为主的燃煤大国,燃煤产生的二氧化硫是大气污染的主要来源。
湿式石灰石—石膏法烟气脱硫技术具有技术成熟、可靠性高、操作简单等优点,被广泛应用于火力发电厂脱硫工艺。
其中石灰石浆液的性能是影响其脱硫效率的主要因素之一[1,2]。
因此,制备性能优良的石灰石浆液对提高脱硫效率、降低火力发电厂的so2排放具有重要意义。
本文以某600mw火力发电厂湿式脱硫制浆系统作为研究对象,通过现场试验,研究了旋流器入口压力与顶流成品浆液浓度及粒度的关系,找出了满足火力发电厂脱硫要求的浆液浓度及粒度对应的旋流器入口压力之间的规律,对旋流器入口压力调整,优化脱硫制浆有着重要的指导意义[3-4]。
1 试验方案1.1 制浆工艺分析及测点布置火力发电厂湿式脱硫系统中的石灰石浆液是经石灰石破碎成一定粒径后,按照一定比例与水混合而制得的具有一定浓度的浆液。
以某600mw火力发电厂的脱硫制浆工艺为例,石灰石经运料车卸载,通过振动给料机进入破碎机,被破碎成20~30mm的小块后被储存在石灰石储仓中;后经称重皮带称重,输送至球磨机与水混合进行制浆,制出后的浆液储输送至循环浆液箱中,通过浆液循环泵打至旋流器进一步分离。
燃煤电厂各种干法、半干法、湿法脱硫技术及优缺点汇总目前,湿法烟气脱硫技术最为成熟,已得到大规模工业化应用,但由于投资成本高还需对工艺和设备开展优化;干法烟气脱硫技术不存在腐蚀和结露等问题,但脱硫率远低于湿法脱硫技术,一般单想电厂都不会选用,须进一步开发基于新脱硫原理的干法脱硫工艺;半干法脱硫技术脱硫率高,但不适合大容量燃烧设备。
不同的工况选择最符合的脱硫方法才会得到最大的经济效益,接下来根据电厂脱硫技术的选择原则来分析各种工艺的优缺点、适用条件。
电厂脱硫技术的选择原则:1、脱硫技术相对成熟,脱硫效率高,能到达环保控制要求,已经得到推广与应用。
2、脱硫成本比较经济合理,包括前期投资和后期运营。
3、脱硫所产生的副产品是否好处理,最好不造成二次污染,或者具有可回收利用价值。
4、对发电燃煤煤质不受影响,及对硫含量适用范围广。
5、脱硫剂的能够长期的供给,且价格要低廉一、干法脱硫干法脱硫工艺工艺用于电厂烟气脱硫始于20世纪80年代初。
传统的干法脱硫工艺主要有干法喷钙脱硫工艺、荷电干法吸收剂喷射脱硫法、电子束照射法、吸附法等。
传统的干法脱硫技术有工艺简单投资少,设备简占地面积小且不存在腐蚀和结露,副产品是固态无二次污染等优点,在缺水地区优势明显。
但是脱硫效率很低,一般脱硫效率只能到达70%左右,难以满足排放要求。
干法喷钙脱硫工艺工艺介绍磨细的石灰石粉通过气力方式喷人锅炉炉膛中温度为900~125(TC的区域在炉内发生的化学反应包括石灰石的分解和煨烧,S02和S03与生成的Cao之间的反应。
颗粒状的反应产物与飞灰的混合物被烟气流带人活化塔中;剩余的CaO与水反应,在活化塔内生成Ca(OH)2,而Ca(OH)2很快与S02反应生成CaSo3,其中部分CaSO3被氧化成CaSo4;脱硫产物呈干粉状,大部分与飞灰一起被电除尘器收集下来,其余的从活化塔底部分离出来从电除尘器和活化塔底部收集到的部分飞灰通过再循环返回活化塔中。
影响脱硫效率的因素知多少关键词:脱硫效率近年来,随着经济的发展,我国工业生产造成的二氧化硫排放量逐年递增,对环境的影响极大。
因此,控制二氧化硫的排放,已经成为电力工业环境治理的主要任务。
国家对于十二五期间的“节能减排”也作出了具体的规划。
然而,脱硫效率决定了节能减排计划的进程。
然而,分析得出,影响脱硫效率的因素很多,如吸收温度,进气S02浓度,脱硫剂品质、粒度和用量(钙硫比),浆液pH值,液气比,粉尘浓度等。
以下就其影响因素进行具体分析。
首先是浆液pH值,它可作为提高脱硫效率的调节手段。
据悉,当pH~在4~6之间变化时,CaC03的溶解速率呈线性增加,pH值为6时的速率是pH值为4时的5~10倍。
因此,为了提高S02的俘获率,浆液要尽可能地保持在较高的pH值。
但是高pH值又会增加石灰石的耗量,使得浆液中残余的石灰石增加,影响石膏的品质。
另一方面浆液的pH值又会影响HS03的氧化率,pH值在4~5之间时氧化率较高,pH值为4.5时,亚硫酸盐的氧化作用最强。
随着pH值的继续升高,HS03的氧化率逐渐下降,这将不利于吸收塔中石膏晶体的生成。
在石灰石一石膏法湿法脱硫中,pH值应控制在5.O~5.5之间较适宜。
因此在调节pH值时,必须根据每天的石膏化验结果、实际运行工况及燃煤硫分等进行合理调整,这样才能更好的调节脱硫效率。
其次是钙硫比,据悉,在诸多影响脱硫效率的因素中,钙硫比中90%比对脱硫效率的影响是最大。
但在其他影响因素一定时,钙硫比为1时的湿法烟气脱硫效率可达90%以上。
这是很重的影响因素。
再者是液气比,它是决定脱硫效率的主要参数,液化比越大气相和液相的传质系数提高利于SOz的吸收,但是停留时间减少,削减了传质速率提高对S02吸收有利的强度,因此存在最佳液气比。
这也是影响脱硫效率的因素之一。
当然,石灰石的影响也是存在的。
当出现pH值异常,可能是加入的石灰石成分变化较大引起的。
如果发现石灰石中Ca0质量分数小于50%,应对其纯度系数进行修正。
【关键字】分析湿法烟气脱硫技术脱硫效率影响因素分析王光凯(株洲华银火力发电有限公司,湖南,株洲412000)摘要对湿法烟气脱硫工艺中影响石灰石湿法烟气脱硫效率的关键参数进行了分析,对脱硫系统的设计和运行实践具有一定的指导意义。
Abstract: The influences of the premier parameters on the SO2 removal efficiency in the wet flue gas desulphurization (WFGD) are analyzed, which may be useful for the design and operation of FGD system.关键词:烟气脱硫脱硫效率关键参数Key Words: flue gas desulphurization, SO2 removal efficiency, key parameters.在各种烟气脱硫工艺中,湿法烟气脱硫(Flue Gas Desulphurization,简称FGD)工艺已有几十年的发展历史,技术上日臻完善。
石灰石-石膏湿法烟气脱硫是利用石灰石浆液来吸收烟气中的二氧化硫,反应后生成亚硫酸钙(硫酸钙),净化后的烟气可以达到排放标准。
该法具有脱硫效率高,吸收剂来源丰富,价格低廉,副产品可回收利用等特点,从而得到了广泛应用,是目前世界上燃煤电厂烟气脱硫应用最广泛的方法[1]。
对于湿法FGD工艺原理及设备的介绍见诸于多篇文献,在此不再鏖述。
本文重点分析电力生产中九种不同重要指标对湿法烟气脱硫的影响,探讨实际应用中关键参数的最佳取值。
1.湿法烟气脱硫的主要影响因素1.1 烟气温度在实际运行中,由于锅炉机组负荷变化比较频繁。
FGD系统的进口烟温也随之波动,对脱硫效率有一定的影响。
根据SO2吸收的气液平衡可知,进入吸收塔的烟气温度越低,越有好处SO2溶于浆液,形成HSO。
所以高温的原烟气先经过GGH(烟气再热器)降温后再进入吸收塔有好处SO2的吸收。
浅谈湿法脱硫技术问题及脱硫效率摘要:随着我国家国民经济的持续发展,对工业生产的需求和生活在电力上的人们日益增加。
但同时电厂所提供的生产力是会对环境产生影响的,为了尽可能的达到国家制定的安全标准,严格控制了过程中生成的二氧化硫。
基于此,讨论和分析湿脱硫技术和脱硫效率的问题。
关键词:湿法脱硫;技术问题;脱硫效率引言:脱硫是工业生产中防治大气污染的重要技术措施之一。
一般指燃料燃烧前从燃料中脱硫的过程和燃烧气体排放前脱硫的过程。
脱硫有很多选择。
总的来说,脱硫技术的选择原则主要有:脱硫技术比较成熟,脱硫效率高,能满足环保控制要求,并已得到推广应用;脱硫成本相对便宜且合理,包括初期投资和后续运行;无论副产品是否易于处理,最好不要造成二次污染或具有可回收价值;不影响发电用燃煤质量,硫含量应用范围广;脱硫剂可长期供货,价格低廉。
目前最常用的方法只有三种,即干法脱硫、湿法脱硫和半干半湿法脱硫。
其余的原因是成本高、技术要求高、使用频率低。
一般来说,三类硫排放控制工艺是:在燃烧前向其他化学原料中添加物质以改变其性质,减少污染;燃烧中选择封闭式鼓风炉,对这些污染气体进行均匀回收;燃烧后经过专业处理,达到国家统一脱硫标准。
工艺的种类很多,化学法有石膏法和磷铵肥法,用得比较多,化学法有喷雾干燥法。
湿法脱硫技术在我国燃煤发电项目中应用广泛。
下面就湿法脱硫和脱硫效率的技术问题进行分析探讨。
一、燃煤电厂脱硫废水的来源及特点在燃煤电厂中,烟气污染物主要包括二氧化硫、硫化物、氯化物、氟化物、重金属离子和烟尘等。
为防止硫污染,必须对含硫烟气进行脱硫处理。
根据工艺特点,目前烟气脱硫技术有湿法、半干法和干法三种,大部分燃煤电厂采用石灰石-石膏湿法脱硫工艺。
为避免污染物在厂内堆积,湿法脱硫工艺为避免系统内污染物富集,须排放一部分废水以维持系统内污染物浓度,这部分废水主要含有大量悬浮物、过饱和的亚硫酸盐、硫酸盐以及重金属等污染物。
二、湿法脱硫技术出现问题原因1结垢、堵塞等问题分析在湿法脱硫技术中,使用的主要材料是石灰石或石膏。
影响燃煤电厂湿法烟气脱硫效率的主要因素
发表时间:2019-07-15T15:56:45.450Z 来源:《当代电力文化》2019年第05期作者:候李军
[导读] 随着我国整体经济的快速发展,我国电力工程发展非常迅速。
神华神东电力有限责任公司郭家湾电厂陕西榆林 719408
摘要:随着我国整体经济的快速发展,我国电力工程发展非常迅速。
湿法脱硫技术具有技术成熟、运行稳定、脱硫效率高等优点,是燃煤烟气净化的必备装置。
关键词:燃煤电厂;湿法烟气脱硫
引言
随着我国经济的快速发展,人们生活水平的不断提高,对于电力需求与日俱增。
当前人们在环保等方面要求有明显提高,对燃煤电厂企业烟气脱硫技术要求也更为严格。
1湿法烟气脱硫技术
湿法烟气脱硫技术主要是液态吸收剂与SO2发生相应反应,其产物同样为液态,湿法烟气脱硫技术不仅有着非常高脱硫效率,同时整个系统运行相对较为稳定,但是具体应用中需要较高的运行费用和投资费用,同时脱硫后产物处理存在有较大难度,容易有二次污染等问题出现。
常见湿法烟气脱硫技术有石灰-石膏湿法、氧化镁法、双碱法、氨法、海水法等。
(1)石灰-石膏湿法,脱硫吸收剂选择石灰,价格低廉,破碎为粉末状与水混合,制成吸收浆,在吸收塔充分混合烟气,吸收浆中的碳酸钙成分能够与烟气中二氧化硫及氧气发生反应出去,生存石膏产物。
脱硫后烟气经过换热器处理后排出,石膏脱水后可回收,脱硫吸收剂利用率高。
这一烟气脱硫技术属于目前世界上应用最为广泛的脱硫工艺,技术成熟,我国燃煤电厂脱硫中石灰-石膏湿法同样有广泛应用,但是该工艺在实际应用中需要做好防腐工作,同时管道容易出现堵塞,会有大量SO2产生,导致其发展和应用受到限制。
(2)氧化镁法,氧化镁法与石灰-石膏湿法原理基本相同,使用氧化镁代替石灰,氧化镁与二氧化硫在反应塔发生化学反应,会生成亚硫酸镁和水,亚硫酸镁可与氧气反应生成硫酸镁,硫酸镁易溶于水,不会堵塞管路,同时能够重复性使用。
但是氧化镁的制备相对较为复杂,同时需要较高承担,导致其实际应用受到限制。
(3)双碱法,双碱法指的是利用钠碱将烟气中存在的二氧化硫吸收干净,反应后液体使用石灰处理,综合碱法和石灰法两种施工工艺,整个工艺可分为吸收、再生以及固体分离三个环节。
一般在吸收环节会使用氢氧化钠和碳酸钠等材料,再生环节多选择石灰,其中氢氧化钠能够重复性使用。
双碱法在实际应用中吸收剂与二氧化硫之间的反应在反应塔外进行,可以最大限度降低反应塔的损耗,避免出现堵塞等情况,操作费用低,有着非常高脱硫效果,但是因为增加工序,整个投资成本会有明显增大。
2影响脱硫效率的主要因素
2.1Ca/S比对脱硫效率的影响
Ca/S比反映了浆液内固体含量的高低,塔内反应影响着石膏的结晶。
提高Ca/S比值,有利于浆液对SO2的吸收。
但过高的Ca/S值将导致钙的利用率低且用石灰石浆液量增大会导致生成的副产品石膏中增加含有较高质量分数的碳酸钙,增加石灰石消耗及设备损耗,会对泵、搅拌器等设备产生较大磨损,不利于脱硫系统运行的经济性。
目前火电厂实践生产中,Ca/S控制在1.02~1.05值间比较合理的范围。
2.2脱硫剂浓度对传质速率的影响
在烟气流量为18m3∙h-1,烟气SO2浓度为3000mg∙m-3、脱硫剂循环流量为300mL∙min-1的条件下,分别采用去离子水(0%)、5%、10%、15%和20%的石灰浆液进行了实验研究。
将测得的系统出口烟气SO2浓度代入模型,并将计算得出的传质速率与实验所得的传质速率进行比较。
实验结果和模型计算结果同时表明,当脱硫剂浓度低于5%时,传质速率随着脱硫剂浓度的提高而不断提高;但当脱硫剂浓度大于5%时,传质速率对脱硫剂浓度的变化并不敏感,几乎趋于平稳。
这与溶液中的OH-浓度有关,由于Ca(OH)2在水中的溶解度较低,当氢氧化钙溶液达到饱和状态后,继续向溶液中添加Ca(OH)2仅能提高溶液中反应底物的更新速度,但并不能有效的提高溶液中OH-浓度,这也是影响传质速率变化的重要因素。
造成上述误差的主要原因有:1)脱硫剂参数的选取都考虑均相状态下的条件,忽略了Ca(OH)2的低溶解度造成的脱硫剂的分层;2)模型是建立在稳态条件下的,忽略了螺旋切割器内剧烈旋流湍流场造成的在垂直于流动方向横截面上SO2浓度的不均匀;3)实验测量与系统误差。
但从总体上来看,理论值与实验值基本吻合,模型对于实验具有较好的指导意义。
2.3石灰石品质对脱硫效率的影响
石灰石作为吸收剂,品质的优劣影响着脱硫FGD系统的性能、可靠性以及脱硫效率。
石灰石纯度低,供应量就大,影响了脱硫反应的速率,增加了吸收塔的负荷,使吸收塔的浆液密度不易控制,生成石膏的纯度下降。
石灰石的粒度越细,溶解性就越好,与SO2的反应速度就越快、越充分,石灰石的利用率就越高,脱硫效率就越好。
为了确保烟气脱硫效果,通常情况下要求石灰石中CaCO3的质量分数不小于90%,杂质要少,越纯越好,一般石灰石细度在325目,过筛率90%以上最佳,粒径在40-60μm。
在整个脱硫SO2吸收及氧化的反应过程中,除上述原因外,像入口烟气中SO2浓度、氧化空气量、氧含量以及吸收塔浆液中的Cl-等也对脱硫效率也有着较大影响,在此就不讨论。
2.4工艺水水质
根据电厂典型设计情况,石灰石-石膏湿法脱硫系统工艺水一般来源于电厂循环水排水,而循环水中为了防止凝汽器结垢,往往是连续添加阻垢剂,抑制CaCO3的生成。
根据循环水阻垢剂阻垢原理,阻垢剂能起到表面活性剂的作用,会对CaCO3进行包裹,防止晶格长大,并且阻垢剂中的特殊金属有机物会进入CaCO3晶格,使晶格发生畸变,阻止CaCO3晶体长大,而这些阻垢剂进入脱硫浆液系统后同样会抑制CaCO4晶格长大,影响石膏脱水。
2.5烟气流量对传质速率的影响
采用浓度为15%的脱硫剂,在烟气SO2浓度为3000mg∙m-3、脱硫剂循环流量为300mL∙min-1时,对流量为6~20m3∙h-1的烟气进行了实验探究。
将测得的系统出口烟气SO2浓度代入模型,并将计算得出的传质速率与实验所得的传质速率进行比较。
理论值与实验值具有较好的一致性。
模型和实验结果同时表明,传质速率随着烟气流量的提高而不断提高。
当烟气流量低于9m3∙h-1时,传质速率随烟气流量的提高变化大;而当烟气流量大于9m3∙h-1时,传质速率随烟气流量的上升速度有所降低。
这种现象可能与螺旋切割器的切割能力有关,由于螺
旋切割器的切割能力有限,在一定时间内只能将一定量的脱硫剂雾滴切割细化,从而提高脱硫效率;但是,当提供的烟气流量持续增大时,也一定程度上降低了脱硫剂雾滴在螺旋切割器内的停留时间,影响螺旋切割器切割效率的同时,缩短了脱硫剂与烟气反应的接触时间,对脱硫效果产生了不利的影响。
结语
不同烟气脱硫技术在实际应用中各自有优缺点,虽然湿法脱硫技术反应速度快,有着较高脱硫效率,但是存在有系统复杂、能耗高、设备大等问题,同时产物处理难度大,需要较高运行费用。
参考文献
[1]韩冰.火电厂大气污染物烟气脱硫脱硝技术[J].工程建设与设计,2018(23):170-171.
[2]孙国志,蔡景贺.烟气脱硫技术及脱硫脱硝除尘一体化技术研究[J].中国科技投资,2018(32):108.
[3]聂向欣,郑宗明,崔孝洋等.燃煤电厂湿法烟气脱硫废水处理技术研究进展[J].中国电力,2018,51(12):175-179.
[4]李波.火力发电厂中的石灰石-石膏湿法烟气脱硫方法分析[J].水利电力,2018(6):179.
[5]李江,彭宜藻,张爱民.影响脱硫效率的因素分析[J].华电技术,2010,32(10):68-71.。