高考数学文化题汇总
- 格式:ppt
- 大小:3.45 MB
- 文档页数:38
高中数学文化试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是函数y=2x^2的图像?A. 经过原点的抛物线B. 经过原点的直线C. 经过原点的双曲线D. 经过原点的椭圆答案:A2. 圆的一般方程是:A. (x-a)^2 + (y-b)^2 = r^2B. x^2 + y^2 = r^2C. x^2 + y^2 + r^2 = 0D. (x-a)^2 + (y-b)^2 = 0答案:A3. 已知集合A={1,2,3},B={2,3,4},则A∩B等于:A. {1,2}B. {2,3}C. {1,3}D. {3,4}答案:B4. 若f(x)=x^2-4x+3,则f(2)的值为:A. 1C. 3D. 5答案:A5. 等差数列{an}的前三项分别为1, 4, 7,则该数列的公差d为:A. 2B. 3C. 4D. 5答案:B6. 函数f(x)=x^3-3x^2+2在x=1处的导数为:A. 0B. 1C. 2D. -1答案:B7. 已知向量a=(2,3),b=(1,k),若a⊥b,则k的值为:A. 2B. -2C. 3D. -3答案:B8. 函数y=sinx在区间[0,π]上的最大值为:B. 1C. πD. -1答案:B9. 圆的半径为5,圆心在原点,该圆的方程为:A. x^2 + y^2 = 25B. (x-5)^2 + y^2 = 25C. x^2 + y^2 - 5^2 = 0D. x^2 + y^2 + 5^2 = 0答案:A10. 函数f(x)=x^2-6x+8的顶点坐标为:A. (3, -1)B. (-3, 1)C. (3, 1)D. (-3, -1)答案:A二、填空题(每题4分,共20分)1. 等比数列{an}的首项为2,公比为3,其第五项为______。
答案:1622. 抛物线y^2=4x的焦点坐标为______。
答案:(1,0)3. 直线l的斜率为-1,且经过点(2,3),则直线l的方程为______。
教育部考试中心要求“增加中华优秀传统文化的考核内容,积极培育和践行社会主义核心价值观,充分发挥高考命题的育人功能和积极导向作用.比如,在数学中增加数学文化的内容”.因此,我们特别编写了此课时,将数学文化与数学知识相结合.考点一立体几何中的数学传统文化题[典例1]“牟合方盖”是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体,它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如图1,图2中四边形是为体现其直观性所作的辅助线,当其主视图和左视图完全相同时,它的主视图和俯视图分别可能是()A.a,b B.a,cC.c,b D.b,d[解析]A[当主视图和左视图完全相同时,“牟合方盖”相对的两个曲面正对前方,主视图为一个圆,俯视图为一个正方形,且两条对角线为实线,故选A.]“牟合方盖”是我国古代利用立体几何模型和数学思想方法解决数学问题的代表之一.本题取材于“牟合方盖”,通过加工改造,添加解释和提供直观图的方式降低了理解题意的难度.解题从识“图”到想“图”再到构“图”,考生要经历分析、判断的逻辑过程.另外,我国古代数学中的其他著名几何体,如“阳马”“鳖臑”和“堑堵”等的三视图问题都有可能在高考中考查.[跟踪训练1]《九章算术》商功章有题:一圆柱形谷仓,高1丈3尺313寸,容纳米2 000斛(1丈=10尺,1尺=10寸,斛为容积单位,1斛≈1.62立方尺,π≈3),则圆柱底面圆周长约为( )A .1丈3尺B .5丈4尺C .9丈2尺D .48丈6尺解析:B [设圆柱底面圆半径为r 尺,高为h 尺,依题意,圆柱体积为V =πr 2h =2 000×1.62≈3×r 2×13.33,所以r 2≈81,即r ≈9,所以圆柱底面圆周长为2πr ≈54,54尺=5丈4尺,则圆柱底面圆周长约为5丈4尺,故选B.]考点二 数列中的数学传统文化题[典例2] 中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问第二天走了( )A .192里B .96里C .48里D .24里[解析] B [设等比数列{a n }的首项为a 1,公比为q =12,依题意有a 1⎝⎛⎭⎫1-1261-12= 378,解得a 1=192,则a 2=192×12= 96,即第二天走了96里,故选B.]与等差数列一样,我国古代数学涉及等比数列问题也有很多,因此,涉及等比数列的数学文化题也频繁出现在各级各类考试试卷中.解决这类问题的关键是将古代实际问题转化为现代数学问题,掌握等比数列的概念、通项公式和前n 项和公式.[跟踪训练2]《周髀算经》是中国古代的天文学和数学著作.其中一个问题大意为:一年有二十四个节气,每个节气晷长损益相同(即太阳照射物体影子的长度增加和减少大小相同).若冬至晷长一丈三尺五寸,夏至晷长一尺五寸(注:一丈等于十尺,一尺等于十寸),则夏至之后的那个节气(小暑)晷长为( )A .五寸B .二尺五寸C.三尺五寸D.一丈二尺五寸解析:B[设晷长为等差数列{a n},公差为d,a1=15,a13=135,则15+12d=135,解得d=10.∴a2=15+10=25,∴《易经》中所记录的惊蛰的晷影长是2尺5寸.故选B.]考点三算法中的数学传统文化题[典例3]如图所示算法框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该算法框图,若输入的a,b分别为8,12,则输出的a=()A.4B.2C.0 D.14[解析]A[由算法框图输入的a=8,b=12,按算法框图所示依次执行,可得b=12-8=4,a=8;a=8-4=4,b=4,a=b,所以输出a=4.故选A.]《九章算术》系统总结了我国古代人民的优秀数学思想,开创了构造算法以解决各类问题的东方数学发展的光辉道路,这与当今计算机科学的飞速发展对数学提出的要求不谋而合.本题算法框图的算法思路源于《九章算术》中计算两个正整数的最大公约数的“更相减损术”算法.[跟踪训练3](2019·益阳、湘潭调研)秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数学九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法,如图所示的算法框图给出了利用秦九韶算法求某多项式值的一个实例.若输入n,x的值分别为3,3.则输出v的值为()A. 15B. 16C. 47D. 48解析:D [执行算法框图:输入n =3,x =3,v =1,i =2,i ≥0,是 i ≥0,是, v =1×3+2=5,i =1; i ≥0,是, v =5×3+1=16,i =0; i ≥0,是, v =16×3+0=48,i =-1; i ≥0,否,输出v =48.]考点四 概率统计中的传统文化题[典例4] (2018·全国Ⅰ卷)下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .△ABC 的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p 1,p 2,p 3,则( )A .p 1=p 2B .p 1=p 3C .p 2=p 3D .p 1=p 2+p 3[解析] A [法一:设直角三角形ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,则区域Ⅰ的面积即△ABC 的面积为S 1=12bc ,区域Ⅱ的面积S 2=12π×⎝⎛⎭⎫c 22+12π×⎝⎛⎭⎫b 22-⎣⎢⎡⎦⎥⎤π×⎝⎛⎭⎫a 222-12bc =18π(c 2+b 2-a 2)+12bc =12bc ,所以S 1=S 2,由几何概型的知识知p 1=p 2,故选A.法二:不妨设△ABC 为等腰直角三角形,AB =AC =2,则BC =22,所以区域Ⅰ的面积即△ABC 的面积,为S 1=12×2×2=2,区域Ⅱ的面积S 2=π×12-⎣⎢⎡⎦⎥⎤π×(2)22-2=2,区域Ⅲ的面积S 3=π×(2)22-2=π-2.根据几何概型的概率计算公式,得p 1=p 2=2π+2,p 3=π-2π+2,所以p 1≠p 3,p 2≠p 3,p 1≠p 2+p 3,故选A.]从中国古代文学作品中选取素材考查数学问题,丰富了数学文化题的取材途径.试题插图的创新是本题的一个亮点,其一,增强了数学问题的生活化,使数学的应用更贴近考生的生活实际;其二,有利于考生分析问题和解决问题,这对稳定考生在考试中的情绪和心态起到了较好的效果;其三,探索了数学试题插图的新形式,给出了如何将抽象的数学问题直观化的范例.[跟踪训练4](理科)(2018·全国Ⅱ卷)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( )A.112B.114C.115D.118解析:C [不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,从中随机选取两个不同的数有C 210种不同的取法,这10个数中两个不同的数的和等于30的有3对,所以所求概率p =3C 210=115,故选C.](文科)2017年8月1日是中国人民解放军建军90周年纪念日,中国人民银行发行了以此为主题的金银纪念币.如图所示的是一枚8克圆形金质纪念币,直径22毫米, 面额100元.为了测算图中军旗部分的面积,现向硬币内随机投掷100粒芝麻,已知恰有30粒芝麻落在军旗内,据此可估计军旗的面积大约是( )A. 726π5mm 2 B. 363π10mm 2C.363π5mm 2 D.363π20mm 2 解析:B [利用古典概型近似几何概型可得,芝麻落在军旗内的概率为p =30100=310,设军旗的面积为S ,由题意可得:S π×112=310,∴S =310×π×112=36310π()mm 2,故选B.] 考点五 三角函数中的数学传统文化题[典例5] 第24届国际数学家大会会标是以我国古代数学家赵爽的弦图为基础进行设计的.如图,会标是由四个全等的直角三角形与一个小正方形拼成的一个大正方形.如果小正方形的面积为1,大正方形的面积为25,直角三角形中较大的锐角为θ,那么tan ⎝⎛⎭⎫θ+π4= ________ .[解析] 依题意得大、小正方形的边长分别是5,1,于是有5sin θ-5cos θ=1(0<θ<π2),即有sin θ-cos θ=15.从而(sin θ+cos θ)2=2-(sin θ-cos θ)2=4925,则sin θ+cos θ=75,因此sin θ=45,cos θ=35,tan θ=43,故tan ⎝⎛⎭⎫θ+π4=tan θ+11-tan θ=-7. [答案] -71700多年前,赵爽绘制了极富创意的弦图,采用“出入相补”原理使得勾股定理的证明不证自明.该题取材于第24届国际数学家大会会标,题干大气,设问自然,流露出丰富的文化内涵.既巧妙地考查了三角函数的相关知识,又丰富了弦图的内涵,如正方形四边相等寓言各国及来宾地位平等,小正方形和三角形紧紧簇拥在一起,表明各国数学家要密切合作交流,等等.[跟踪训练5](2019·沈阳监测)刘徽是一个伟大的数学家,他的杰作《九章算术注》和《海岛算经》是中国最宝贵的文化遗产,他所提出的割圆术可以估算圆周率π,理论上能把π的值计算到任意的精度.割圆术的第一步是求圆的内接正六边形的面积.若在圆内随机取一点,则此点取自该圆内接正六边形的概率是( )A. 334π B. 332π C.12πD. 14π解析:B [设圆的半径为R ,则圆的内接正六边形可以分解为6个全等的三角形,且每个三角形的边长为R ,据此可得,圆的面积为S 1=πR 2,其内接正六边形的面积为S 2=6×⎝⎛⎭⎫12×R 2×sin 60°=332R 2,利用几何概型计算公式可得:此点取自该圆内接正六边形的概率是p =S 2S 1=332π.故选B.]特色专题 数学文化[基础训练组]1.二十四节气(The 24 Solar Terms)是指中国农历中表示季节变迁的24个特定节令,是根据地球在黄道(即地球绕太阳公转的轨道)上的位置变化而制定的,每一个分别相应于地球在黄道上每运动15°所到达的一定位置。
历年高考真题(数学文化)1. (2009 湖北· 理)古希腊人常用小石子在沙滩上摆成各种形状研究数,如他们研究过图 1 中的 1, 3, 6, 10,,由于这些数能表示成三角形,将其称为三角形数;类似地,称图 2 中的 1, 4,9,16这样的数为正方形数,下列数中既是三角形数又是正方形数的是()2. ( 2011 湖北·文)《九章算术》“竹九节”问题:现有一根9 节的竹子,自上而下各节的容积成等差数列,上面 4 节的容积共 3 升,下面 3 节的容积共 4 升,则第 5 节的容积为A.1升B .67升C .47升D .37升66 44 333. ( 2011 湖北·理)《九章算术》“竹九节”问题:现有一根9 节的竹子,自上而下各节的容积成等差数列,上面 4 节的容积共 3 升,下面 3 节的容积共4 升,则第 5 节的容积为升.4.( 2012? 湖北)我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径,“开立圆术”相当于给出了已知球的体积V,求其直径 d 的一个近似公式 d 3 16 = .. 判断,V .人们还用过一些类似的近似公式.根据π9下列近似公式中最精确的一个是()A. d 3 16d 3 2V C. d 3300d 321 V B. V D. V 9 157 115. ( 2013? 湖北)在平面直角坐标系中,若点P(x, y)的坐标 x,y 均为整数,则称点P 为格点.若一个多边形的顶点全是格点,则称该多边形为格点多边形.格点多边形的面积记为 S,其内部的格点数记为 N,边界上的格点数记为 L.例如图中△ ABC是格点三角形,对应的S=1, N=0, L=4.(Ⅰ)图中格点四边形 DEFG对应的 S,N, L 分别是 ________;(Ⅱ)已知格点多边形的面积可表示为S aN bL c 其中a,b,c为常数.若某格点多边形对应的N=71, L=18,则 S=________(用数值作答).6.( 2014? 湖北)《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也,又以高乘之,三十六成一,该术相当于给出了由圆锥的底面周长L 与高 h,计算其体积 V 的近似公式 V1 L2h,它实际上是将圆锥体积公式中的圆周率π近似取为3,那么,近似公式236V L2h 相当于将圆锥体积公式中的π近似取为()75A. 22B. 25C. 157D. 3557 8 50 1137.(2015湖北)我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米 1534 石,验得米内夹谷,抽样取米一把,数得 254 粒内夹谷28 粒,则这批米内夹谷约为PA. 134 石B. 169 石C. 338石D. 1365 石F E8. ( 2015 湖北)《九章算术》中,将底面为长方形且有一D CA B第19题图条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,在阳马 P ABCD 中,侧棱 PD底面 ABCD ,且 PD CD ,过棱 PC 的中点 E ,作 EFPB 交 PB 于点 F ,连接 DE, DF, BD, BE.(Ⅰ)证明: PB平面 DEF .试判断四面体 DBEF 是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由;(Ⅱ)若面 DEF 与面 ABCD 所成二面角的大小为π,3求 DC的值. BC9. ( 2004 上海春季卷)如图,在由二项式系数所构成的杨辉三角形中,第_____行中从左至右第 14 与第 15 个数的比为2 : 3.10. ( 2013 上海)在 xOy 平面上,将两个半圆弧 ( x - 1) 2+ y 2= 1( x ≥ 1) 和( x - 3) 2+ y 2=1( x ≥ 3) 、两条直线 y = 1 和 y =- 1 围成的封闭图形记为,如图中阴影部分.记 D 绕 y 轴旋转一D周而成的几何体为 Ω. 过 (0 , y )(| y | ≤ 1) 作 Ω的水平截面,所得截面面积为 4 1 y 2 + 8π. 试利用祖暅原理、一个平放的圆柱和一个长方体,得出Ω的体积值为 ______.11. ( 2009 福建) . 五位同学围成一圈依序循环报数,规定:①第一位同学首次报出的数为1,第二位同学首次报出的数也为 1,之后每位同学所报出的数都是前两位同学所报出的数之和;②若报出的数为 3 的倍数,则报该数的同学需拍手一次已知甲同学第一个报数,当五位同学依序循环报到第100 个数时,甲同学拍手的总次数为________.12. ( 2003 全国卷·理)如图,一个地区分为 5 个行政区域,现给地图着色,要求相邻地区不得使用同一颜色,现有 4 种颜色可供选择,则不同的着色方法共有种(以数字作答)13. ( 2015 全国Ⅰ卷)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及为米几何“其意思为:在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8 尺,米堆的高为 5 尺,问米堆的体积和堆放的米各为多少已知 1 斛米的体积约为立方尺,圆周率约为3,估算出堆放斛的米约有()A.14 斛B. 22 斛C.36 斛D.66 斛14.(2015 全国Ⅱ卷)下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入a,b 分别为14,18,则输出的 a =()A. 0B.2C. 4D.1415.(2016 全国Ⅱ卷)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图. 执行该程序框图,若输入的x=2,n=2,依次输入的 a 为 2, 2, 5,则输出的s=(A)7(B)12(C)17(D)34。
高考数学文化内容预测三:阿波罗尼斯圆问题一、高考考试大纲数学大纲分析及意义:普通高考考试大纲数学修订,加强了对数学文化的考查。
针对这一修订提出以下建议:建议教师对数学文化这一概念认真学习,结合教材内容学习,特别是教材中渗透数学文化的内容要充分重视,重点研究;结合近年新课标试题中出现的与数学文化有关的试题进行学习,重点关注题源、考法命题形式。
其主要意义为:(1)增加中华优秀传统文化的考核内容,积极培育和践行社会主义核心价值观,充分发挥高考命题的育人功能和积极导向作用.(2)能力要求:经命题专家精细加工,再渗透现代数学思想和方法;在内涵方面,增加了基础性、综合性、应用性、创新性的要求.二、往年新课标高考实例解析及2017年高考数学文化试题预测:往年新课标高考实例分析:分析一:古代数学书籍《九章算术》、《数书九章》等为背景近年来在全国高考数学试题中,从《九章算术》中选取与当今高中数学教学相映的题材背景.(1)2015年高考全国卷Ⅰ,此题源于《九章算术》卷第五《商功》之[二五],将古代文化“依垣”和现代教育元素“圆锥”结合.(2)2015年高考全国卷Ⅱ,此题源于《九章算术》卷第一《方田》之[六]:“又有九十一分之四十九.问约之得几何?”“可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也.以等数约之”,后人称之为“更相减损术”.(3)2015年高考湖北卷,此题背景源于《九章算术》卷第五《商功》之[一五].今有阳马,广五尺,袤七尺,高八尺.问积几何;之[一六]今有鳖臑,下广五尺,无袤;上袤四尺,无广,高七尺.问积几何.考题将“阳马”,“鳖臑”相结合,以《选修2-1》P109例4为源进行有机整合.巧妙嫁接,精典设问,和谐优美的考题呼之即出.分析二:课后阅读或课后习题如阿波罗尼圆为背景从2005-2013年多次涉及考题,全国卷2011年16题以此为命题背景的其他省市:江苏:2008年13题、2013年17题.2009-2013年湖北高考连续出现等等.数学文化题型背景预测:预测1:古代数学书籍《九章算术》、《数书九章》等数为背景的数学文化类题目.预测2:高等数学衔接知识类题目.如微积分、初等数学和高等数学的桥梁,由高中向大学的知识过渡衔接.预测3:课本阅读和课后习题的数学文化类题目.如必修3中,辗转相除法、更相减损术、秦九韶算法、二进制、割圆术等。
高考中的数学文化一、单选题1.1750年,欧拉在给哥德巴赫的一封信中列举了多面体的一些性质,其中一条是:如果用V 、E 和F 表示闭的凸多面体的顶点数、棱数和面数,则有如下关系:2V E F -+=.已知正十二面体有20个顶点,则正十二面体有()条棱A .30B .14C .20D .26【答案】A 【分析】由已知条件得出20V =,12F =,代入欧拉公式2V E F -+=可求得E 的值,即为所求.【详解】由已知条件得出20V =,12F =,由欧拉公式2V E F -+=可得22012230E V F =+-=+-=.故选:A.2.龙马负图、神龟载书图像如图甲所示,数千年来被认为是中华传统文化的源头;其中洛书有云,神龟出于洛水,甲壳上的图像如图乙所示,其结构是戴九履一,左三右七,二四为肩,六八为足u ,以五居中,五方白圈皆阳数,四角黑点为阴数;若从阳数和阴数中分别随机抽出2个和1个,则被抽到的3个数的数字之和超过16的概率为()A .1340B .720C .14D .310【答案】A 【分析】由题可求出所有情况共40种,再求出满足条件的情况即可求出概率.【详解】依题意,阳数为1、3、5、7、9,阴数为2、4、6、8,故所有的情况有215440C C =种,其中满足条件的为()7,8,9,()7,6,9,()7,4,9,()7,2,9,()5,8,9,()5,6,9,()5,4,9,()3,8,9,()3,6,9,()1,8,9,()7,8,5,()7,6,5,,()7,8,3,共13种,故所求概率1340P =.故选:A .3.数学著作《孙子算经》中有这样一个问题:“今有物不知其数,三三数之剩二(除以3余2),五五数之剩三(除以5余3),问物几何?”现将1到2020共2020个整数中,同时满足“三三数之剩二,五五数之剩三”的数按从小到大的顺序排成一列,构成数列{},n a 则该数列共有()A .132项B .133项C .134项D .135项【答案】D 【分析】由题意抽象出数列是等差数列,再根据通项公式计算项数.【详解】被3除余2且被5除余3的数构成首项为8,公差为15的等差数列,记为{}n a ,则()8151157n a n n =+-=-,令1572020n a n =-≤,解得:213515n ≤,所以该数列的项数共有135项.故选:D 【点睛】关键点点睛:本题以数学文化为背景,考查等差数列,本题的关键是读懂题意,并能抽象出等差数列.4.攒尖是古代中国建筑中屋顶的一种结构形式.宋代称为撮尖,清代称攒尖.依其平面有圆形攒尖、三角攒尖、四角攒尖、六角攒尖等,也有单檐和重檐之分,多见于亭阁式建筑.如图所示,某园林建筑为六角攒尖,它的主要部分的轮廓可近似看作一个正六棱锥,若此正六棱锥的侧面等腰三角形的底角为α,则侧棱与底面外接圆半径的比为()A .12cos αB .12sin αC .sin 3πsin8αD .cos 3πcos8α【答案】A 【分析】根据正六棱锥的底面为正六边形计算可得结果.【详解】正六棱锥的底面为正六边形,设其外接圆半径为R ,则底面正边形的边长为R ,因为正六棱锥的侧面等腰三角形的底角为α,所以侧棱长为2cos 2cos RR αα=,所以侧棱与底面外接圆半径的比为12cos 2cos RR αα=.故选:A 【点睛】关键点点睛:掌握正六棱锥的结构特征是解题关键.5.《张丘建算经》卷上第22题为:“今有女善织,日益功疾(注:从第2天开始,每天比前一天多织相同量的布),第一天织5尺布,现一月(按30天计)共织390尺”,则从第2天起每天比前一天多织()A .12尺布B .518尺布C .1631尺布D .1629尺布【答案】D 【分析】设该女子第()Nn n *∈尺布,前()N n n *∈天工织布n S 尺,则数列{}n a 为等差数列,设其公差为d ,根据15a =,30390S =可求得d 的值.【详解】设该女子第()Nn n *∈尺布,前()N n n *∈天工织布n S 尺,则数列{}n a 为等差数列,设其公差为d ,由题意可得30130293015015293902S a d d ⨯=+=+⨯=,解得1629d =.故选:D.6.中国古代数学著作《九章算术》中有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤.问次一尺各重几何?”意思是:“现有一根金锤,长五尺,一头粗一头细.在粗的一端截下一尺,重四斤;在细的一端截下一尺,重二斤.问依次每一尺各重几斤?”根据已知条件,若金箠由粗到细是均匀变化的,中间三尺的重量为()A .3斤B .6斤C .9斤D .12斤【答案】C 【分析】根据题意转化成等差数列问题,再根据等差数列下标的性质求234a a a ++.【详解】由题意可知金锤每尺的重量成等差数列,设细的一端的重量为1a ,粗的一端的重量为5a ,可知12a =,54a =,根据等差数列的性质可知1533263a a a a +==⇒=,中间三尺为234339a a a a ++==.故选:C 【点睛】本题考查数列新文化,等差数列的性质,重点考查理解题意,属于基础题型.7.古希腊时期,人们把宽与长之比为512-的矩形称为黄金矩形,把这个比值512称为黄金分割比例.下图为希腊的一古建筑.其中部分廊、檐、顶的连接点为图中所示相关对应点,图中的矩形ABCD ,EBCF ,FGHC ,FGJI ,LGJK ,MNJK 均近似为黄金矩形.若A 与D 间的距离大于18.7m ,C 与F 间的距离小于12m .则该古建筑中A 与B 间的距离可能是()(参考数据:510.6182-≈,70.6180.38≈,30.6180.236≈)A .29mB .29.8mC .30.8mD .32.8m【答案】C 【分析】由矩形ABCD 和EBCF 是黄金矩形,由边长的比求出AB 范围即可得.【详解】由黄金矩形的定义可知0.618AD AB ≈,20.6180.38BC CF CFAB BC AB⋅=≈≈,所以18.730.260.6180.618AD AB m ≈>≈,1231.580.380.38CF AB m ≈<≈,即()30.26,31.58AB ∈,对照各选项,只有C 符合.故选:C .【点睛】本题考查数学文化,考查学生的阅读理解能力,转化与化归能力,创新意识.属于基础题.8.德国著名的天文学家开普勒说过:“几何学里有两件宝,一个是勾股定理,另一个是黄金分割.如果把勾股定理比作黄金矿的话,那么可以把黄金分割比作钻石矿.”黄金三角形有两种,其中底与腰之比为黄金分割比的黄金三角形被认为是最美的三角形,它是一个顶角为36o 的等腰三角形(另一种是顶角为108 的等腰三角形).例如,五角星由五个黄金三角形与一个正五边形组成,如图所示,在其中一个黄金ABC 中,512BC AC -=.根据这些信息,可得sin126= ()A .1254-B.38+C .154+D .458+【答案】C 【分析】计算出51cos 724-= ,然后利用二倍角公式以及诱导公式可计算得出sin126cos36= 的值,即可得出合适的选项.【详解】因为ABC 是顶角为36o 的等腰三角形,所以,72ACB ∠= ,则1512cos 72cos 4BCACB AC-=∠==,()sin126sin 9036cos36=+= ,而2cos722cos 361=-,所以,51cos364+====.故选:C.【点睛】本题考查利用二倍角公式以及诱导公式求值,考查计算能力,属于中等题.9.《九章算术》是我国古代内容极为丰富的数学名著.书中有如下问题:“今有委米依垣内角,下周四尺.高三尺.何积及为米几何?”其意思为:“在屋内墙角处堆放米,米堆底部的弧长为4尺.米堆的高为3尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有()A .7斛B .3斛C .9斛D .12斛【答案】B 【分析】根据圆锥的体积公式计算出对应的体积即可.【详解】解:设圆锥的底面半径为r ,则42r π=,解得8r π=,故米堆的体积为2118163433ππ⎛⎫⨯⨯⨯⨯≈ ⎪⎝⎭,∵1斛米的体积约为1.62立方,∴161.6233÷≈,故选:B .【点睛】本题主要考查椎体的体积的计算,比较基础.10.《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”.已知某“堑堵”的三视图如图所示,俯视图中间的实线平分矩形的面积,则该“堑堵”的侧面积为()A .2B .242+C .42+D .442+【答案】D 【分析】利用三视图还原原几何体,结合三视图中的数据可计算出该“堑堵”的侧面积.【详解】由三视图还原原几何体如下图所示:2的等腰直角三角形,且直三棱柱的高为2,因此,该“堑堵”的侧面积为()22224+⨯=.故选:D.【点睛】本题考查利用三视图计算几何体的侧面积,一般要求还原原几何体,考查空间想象能力与计算能力,属于基础题.11.干支是天干(甲、乙、…、癸)和地支(子、丑、…、亥)的合称,“干支纪年法”是我国传统的纪年法.如图是查找公历某年所对应干支的程序框图.例如公元2041年,即输入2041N =,执行该程序框图,运行相应的程序,输出58x =,从干支表中查出对应的干支为辛酉.我国古代杰出数学家秦九韶出生于公元1208年,则该年所对应的干支为()六十干支表(部分)56789戊辰己巳庚午辛未壬申5657585960己未庚申辛酉壬戌癸亥A .戊辰B .辛未C .已巳D .庚申【答案】A 【分析】输出1208N =,计算输出结果,查表可得结果.【详解】输入1208N =,1i =,第一次循环,120836011145x =--⨯=,2i =,60x ≤不成立;第二次循环,120836021085x =--⨯=,3i =,60x ≤不成立;第三次循环,120836031025x =--⨯=,4i =,60x ≤不成立;由上可知,每执行一次循环后,x 的值对应地在上一次循环后x 的值中减去60,则输出的x 的值为1205除60后的余数,120620605=⨯+ ,则输出的x 的值为5,因此,公元1208年对应的干支为戊辰.故选:A.【点睛】本题考查数学文化中的“干支纪年法”,考查程序框图的应用,考查计算能力,属于中等题.12.古代中国的太极八卦图是以同圆内的圆心为界,画出相等的两个阴阳鱼,阳鱼的头部有阴眼,阴鱼的头部有个阳眼,表示万物都在相互转化,互相渗透,阴中有阳,阳中有阴,阴阳相合,相生相克,蕴含现代哲学中的矛盾对立统一规律.图2(正八边形ABCDEFGH )是由图1(八卦模型图)抽象而得到,并建立如下平面直角坐标系,设1OA =.则下述四个结论:①以直线OH 为终边的角的集合可以表示为32,4k k Z πααπ⎧⎫=+∈⎨⎬⎩⎭;②以点O 为圆心、OA 为半径的圆的弦AB 所对的弧长为4π;③22OA OD ⋅= ;④(BF = 中,正确结论的个数是()A .1B .2C .3D .4【答案】B 【分析】根据终边相同的角的定义可判断命题①的正误;利用扇形的弧长公式可判断命题②的正误;利用平面向量数量积的定义可判断命题③的正误;利用平面向量的坐标运算可判断命题④的正误.【详解】对于命题①,以直线OH 为终边的角的集合可以表示为3,4k k Z πααπ⎧⎫=+∈⎨⎬⎩⎭,命题①错误;对于命题②,4AOB π∠=,以点O 为圆心、OA 为半径的圆的弦AB 所对的弧长为4π,命题②正确;对于命题③,由平面向量数量积的定义可得3cos 42OA OD OA OD π⋅=⋅=- ,命题③错误;对于命题④,易知点22,22B ⎛⎫ ⎪ ⎪⎝⎭,22,22F ⎛-- ⎝⎭,所以,(BF = ,命题④正确.故选:B.【点睛】本题以数学文化为背景,考查了终边相同的角的集合、扇形的弧长、平面向量数量积的定义以及平面向量的坐标运算,考查计算能力,属于基础题.二、填空题13.世界四大历史博物馆之首卢浮宫博物馆始建于1204年,原是法国的王宫,是法国文艺复兴时期最珍贵的建筑物之一,以收藏丰富的古典绘画和雕刻而闻名于世,卢浮宫玻璃金字塔为正四棱锥,且该正四棱锥的高为21米,底面边长为30米,是华人建筑大师贝聿铭设计的.若玻璃金字塔五个顶点恰好在一个球面上,则该球的半径为______米.【答案】29714【分析】作出图形,设球体的半径为R ,根据几何关系可得出关于R 的等式,进而可解得R 的值.【详解】如下图所示:在正四棱锥P ABCD -中,设M 为底面正方形ABCD 的对角线的交点,则PM ⊥底面ABCD ,由题意可得21PM =,30AB =,2302BD ==,则152BM =设该球的半径为R ,设球心为O ,则O PM ∈,由勾股定理可得222OB OM BM =+,即()(22221152R R =-+,解得29714R =.故答案为:29714.【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径;③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.14.明朝著名易学家来知德以其太极图解释一年、一日之象的图式,一年气象图将二十四节气配以太极图,说明一年之气象,来氏认为“万古之人事,一年之气象也,春作夏长秋收冬藏,一年不过如此”.上图是来氏太极图,其大圆半径为4,大圆内部的同心小圆半径为1,两圆之间的图案是对称的,若在大圆内随机取一点,则该点落在黑色区域的概率为______.【答案】1532【分析】设大圆面积为1S ,小圆面积2S ,求得116S π=,2S π=,进而求得黑色区域的面积,结合面积比,即可求解.【详解】设大圆面积为1S ,小圆面积2S ,则21416S ππ=⨯=,221S ππ=⨯=,可得黑色区域的面积为()1211522S S π⨯-=,所以落在黑色区域的概率为()121115232S S P S -==.故答案为:1532.【点睛】本题主要考查了几何概型的概率的计算问题,解决此类问题的步骤:求出满足条件A 的基本事件对应的“几何度量()N A ”,再求出总的基本事件对应的“几何度量N ”,然后根据()N A P N =求解,着重考查了分析问题和解答问题的能力,属于基础题.15.《九章算术》是我国古代著名数学经典,其中对勾股定理的论述,比西方早一千多年,其中有这样一个问题:“今有圆材埋在壁中,不知大小;以锯锯之,深一寸,锯道长一尺,问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯该材料,锯口深1寸,锯道长1尺,问这块圆柱形木料的直径是多少?长为0.5丈的圆柱形木材部分镶嵌在墙体中,截面图如图所示(阴影部分为镶嵌在墙体内的部分).已知弦1AB =尺,弓形高1CD =寸,估算该木材镶嵌墙内部分的体积约为______立方寸.(注:一丈=10尺=100寸,53.14,sin 22.513π≈≈ ,答案四舍五入,只取整数...........)【答案】317【分析】根据弓形的锯口深1寸,锯道长1尺,求出圆的半径,从而求出弓形(阴影部分)面积后,由柱体体积公式得木材体积【详解】如图,设圆半径为r 寸(下面长度单位都是寸),连接,OA OD ,已知152AD AB ==,1OD OC CD r =-=-,在Rt ADO 中,222AD OD OA +=,即2225(1)r r +-=,解得13r =,由5sin 13AD AOD AO ∠==得22.5AOD ∠=︒,所以45AOB ∠=︒,图中阴影部分面积为S S =扇形214131012 6.332522AOB S πππ-=⨯⨯-⨯⨯≈△(平方寸),镶嵌在墙体中木材是以阴影部分为底面,以锯刀长为高的柱体,所以其体积为 6.332550317V Sh =≈⨯≈(立方寸)故答案为:317.【点睛】本题考查柱体的体积,关键是求底面面积,方法是由扇形面积减去相应三角形面积得弓形面积,属基础题.16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体的棱长为______1-【分析】从图形中作一个最大的水平截面,它是一个正八边形,八个顶点都在边长为铁正方形边上,由此可计算出棱长.【详解】作出该图形的一个最大的水平截面正八边形ABCDEFGH ,如图,其八个顶点都在边长为1的正方形上,设“半正多面体”棱长为a ,则2212a a ⨯+=,解得1a =-,1-.【点睛】本题考查学生的空间想象能力,抽象概括能力,解题关键是从“半正多面体”中作出一个截面为正八边形且正八边形的八个顶点都在边长为1的正方形上,由此易得棱长.。
哈尔滨师范大学附属中学刘冰2017年,高考考试大纲修订内容中增加了对数学文化的要求,但是高考数学试题中早就出现过以数学文化为背景的新颖命题,经过持续发展,在2018年高考中呈现出了求新、求变的效果.把历史和文化内容引入高考数学,为高考数学题打上了文化的烙印.教师应在平时的教学中弘扬中国传统文化,吸收世界文化的精华,引导学生胸怀祖国,放眼世界.例1(2018年全国新课标I,理10)下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,A C.△ABC的三边所围成的区域记为I,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自I,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p3解析:设AB=a,A C=b,BC=a2+b2,√设整个图形的面积为S则p1=ab2S,p2=1S{π(a2)22+π(b2)22-[π(a2+b2√2)22-1 2ab]}=ab2S=p1故选A.【数学文化】古希腊数学家希波克拉底发现的一条平面几何里应用广泛的优美定理———月牙定理,指以直角三角形两条直角边为直径向外做两个半圆,以斜边为直径向内做半圆,则三个半圆所围成的两个月牙型面积之和等于该直角三角形的面积.本题依据这一定理考查几何概型问题.例2(2017年全国卷II,理3)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏B.3盏C.5盏D.9盏解析:设顶层灯数为a1,q=2,s7=a1(1-27)1-2=381,解得a1=3.故选B.【数学文化】《算法统宗》,又名《直指算法统宗》《新编直指算法统宗》,明代数学家程大位撰,共17卷.1592年编成《算法统宗》共列算题595道,以珠算为主要的计算工具,卷一介绍数学常识,卷二介绍珠算,卷三以后分别为方田、粟布、衰分、少广、分田截积、商功、均输、盈亏、方程、勾等,第十七卷附以难题杂法,又列有14个纵横图.本题以数学史中《算法统宗》的一个问题为包装,考查数列问题.例3(2016年全国新课标II,理8)中国古代有计算多项式值的秦九韶算法,实现该算法的程序框图见下页.执行该程序框图,若输入的x=2,n=2,依次输入的a 为2,2,5,则输出的s=.(A)7(B)12(C)17(D)34解析:第一次运算:s=0×2+2=2,第二次运算:s=2×2+2=6,第三次运算:s=6×2+5=17,故选C.【数学文化】秦九韶算法是中国南宋时期的数学家秦九韶提出的一种多项式简化算法.在著作《数书九章》中提出了这一先进的多项式简化算法.一般一元n次多项式的求值需要经过n(n+1)2次乘. All Rights Reserved.a ,ba ≠ba >ba =a -bb =b-aa法和n 次加法,而秦九韶算法只需要n 次乘法和n 次加法.在人工计算时,大大简化了运算过程.本题以数学史中《秦九韶算法》的问题为背景,考查程序框图问题.例4(2015年全国卷II,理8)下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入a ,b 分别为14,18,则输出的a =.(A )0(B )2(C )4(D )14解析:逐次运行程序,直至程序结束得出a .a=14,b =18.第一次循环:14≠18且14<18,b =18-14=4;第二次循环:14≠4且14>4,a=14-4=10;第三次循环:10≠4且10>4,a=10-4=6;第四次循环:6≠4且6>4,a=6-4=2;第五次循环:2≠4且2<4,b =4-2=2;第六次循环:a=b =2,跳出循环,输出a=2,故选B.【数学文化】更相减损术出自《九章算术》中的求最大公约数的算法,原本是为约分而设计的,但它适用于任何需要求最大公约数的场合.本题将更相减损术与程序框图相结合,加大了该问题的考查难度.考生若能看出此程序框图的功能,便很容易解决.例5(2015年湖北卷,理2)我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓有人送来米1534石,验得米内夹谷,254粒内夹谷28粒,则这批米内夹谷约为(A )134石(B)169石(C)338石解析:254粒和1534致相同的,设1534解得x =169,故这批米内夹谷约为169石.【数学文化】中的“米谷粒分”问题,体.本题以《数书九章》为载体,例6(2018年全国新课标II,理8)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是()A.112B.114C.115D.118解析:不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有n =C 210=45种不同的情况,其中和等于30的有7+23=30,11+19=30,13+17=30,共m =3种不同的情况,则所求的概率p =m n =345=115,故选C.【数学文化】在1742年给欧拉的信中,哥德巴赫提出了如下猜想:任一大于2的偶数都可写成两个素数之和.但是哥德巴赫自己无法证明它,于是就写信请教赫赫有名的大数学家欧拉帮忙证明,但是一直到死,欧拉也无法证明.1966年,陈景润证明了“1+2”成立,即“任一充分大的偶数都可以表示成二个素数的和,或是一个素数和一个半素数的和”.本题依据这一定理,考查古典概型问题.“数学文化”题是经典与创新的完美结合,也是近几年全国及各省份高考数学题中的一大亮点.我们在教学中应引导学生多多了解中国数学史及世界数学史,以便学生在高考中更好地发挥.编辑/王一鸣E-mail:***************考试KAOSHI. All Rights Reserved.。
高考数学文化题知识点总结一、直线与曲线1. 直线方程在平面直角坐标系中,直线的一般方程为Ax+By+C=0,其中A、B不同时为0。
当B=0时,直线方程为y=k;当A=0时,直线方程为x=h;当A、B均不为0时,直线方程为y=kx+b。
2. 曲线方程(1)一次曲线一次曲线的一般方程为y=f(x)=ax+b。
(2)二次曲线二次曲线的一般方程为y=f(x)=ax^2+bx+c。
(3)圆圆的标准方程为(x-a)^2+(y-b)^2=r^2。
(4)椭圆椭圆的标准方程为(x/a)^2+(y/b)^2=1。
(5)双曲线双曲线的标准方程为(x/a)^2-(y/b)^2=1。
(6)抛物线抛物线的一般方程为y=f(x)=ax^2+bx+c。
3. 曲线图像曲线的图像可以通过方程的变换、平移、伸缩、翻转等方法来进行分析,从而得到曲线的性质和图像。
二、平面向量1. 向量的定义和性质向量是一种有大小和方向的量,常用箭头表示。
向量的加法、减法和数量积满足交换律、结合律和分配率。
2. 向量的坐标表示平面向量a的坐标表示为a=(x,y),其中x为向量在x轴上的分量,y为向量在y轴上的分量。
3. 向量的数量积向量a、b的数量积为a·b=|a|·|b|·cosθ,其中|a|, |b|分别为向量a、b的模长,θ为向量a、b之间的夹角。
4. 向量的应用向量在平面几何、力学、电磁学、计算机图形学等领域有着广泛的应用,可以描述物体的移动、力的作用、坐标变换等现象。
三、立体几何1. 空间直线和平面直线的一般方程为Ax+By+Cz+D=0,平面的一般方程为Ax+By+Cz+D=0。
2. 空间直线的位置关系两条直线相交、平行、重合等位置关系可以通过直线的方向向量和过直线上一点的平面方程来进行判断。
3. 空间直线的倾斜角和方向余弦直线与坐标轴间的夹角为倾斜角,其余弦值分别称为方向余弦。
4. 空间曲线的参数方程空间曲线可以通过参数方程r(t)=xi+yj+zk描述,其中xi、yj、zk分别为曲线在x、y、z三个轴上的分量,t为参数。
数学文化题目及解答数学文化题目及解答(一)1、毕达哥拉斯学派发现第一个不能被整数比的数是根号二2、数学是研究现实世界中的数量关系和空间形式:恩格斯3、四色猜想的提出者:英国人古德里4、不属于数学起源的河谷地带:密西西比河5、平面图形对称中用到的三种运动:平移折叠旋转7、现代数学起源于:19世纪20年8、相容的体系一定是不完全的,得出这个结论的是:哥德尔第一定理9、高等数学的研究范围不包括:常量10、反证法是依据逻辑学中的:排中律11、被称为理发师悖论的悖论是:罗素悖论12:、上海路佳明发现的元朝玉桂:1986年13、1993年,经哥德尔证明,把“连续统假设”加紧急合论的zf 系统中是相容的,不会导致矛盾:康托集合论14、被积函数不连续,其定积分也可能存在的理论的提出者:黎曼15、根据两个事物之间的相同或相拟之处,推知她们在其他方面也有可能相同或相拟的推理方法:类比16、极限理论的创立者:柯西18、.下列不属于黄金分割点的是(C)A.印堂 B. 膝盖 C.鼻子D都不对19、5个平面分空间,最多可分为(C)A22 B25 C26 D2820、.S(N)中任意两个元素,相继作用的结果仍保持N整体不变,仍在S(N)中,称之为S(N)中的运算满足(B)A幺元律B封闭率C结合律D都不对21、南开大学每年出的杂志,收录数学文化课的学生优秀读书报告:数学之美22、下列公式中不对称的是(A)A.勾股定理B海伦定理C正玄定理D都不对23、为了庆祝毕达哥拉斯定理的发现,当时的毕达哥拉斯学派宰了什么:牛24、《几何学》的作者是:笛卡尔25、直角三角形的两直角边的平方和等于斜边的平方这一定理在西方叫做毕达哥拉斯定理26、1820-1870年是现代数学的(C)A.形成阶段 B.繁荣阶段 C.酝酿阶段 D.衰落阶段27、下列不属于形式的公理化方法在逻辑上所要满足的要求的是:客观性28、数学文化这个词最早出现于(C)A.1986 B. 1974 C.1990 D.199629、大多数植物的花瓣数都符合(C)A.黄金分割 B.素数分割C裴波那契数列 D.都不对1、保持平面上任意两点间距离不变的运动是保距变换:对2、父女关系与夫妻关系是一种对称关系:不是,错3、之有数学专业的人在需要数学素养:错4、不懂数学的人也可以搞社会学:错5、数学的研究对象和具体的自然科学的研究对象很不一样,具有、、、:对6、近代数学时期是公元17世纪到19世纪,和工业革命、天文、航天业的发展有关。
数学文化选题一、选择题1.我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,问次一尺各重几何?”意思是:“现在有一根金箠,一头粗,一头细,在粗的一端截下1尺,重4斤;在细的一端截下1尺,重2斤,问依次每一尺各重多少斤?”根据上题的已知条件,若金箠由粗到细是均匀变化的,中间3尺的重量为A. 6斤B. 9斤C. 10斤D. 12斤【答案】B【解析】试题分析:此问题是一个等差数列,设首项为,则,∴中间尺的重量为斤.故选:B.学科&网2.“珠算之父”程大位是我国明代伟大数学家,他的应用数学巨著《算法统综》的问世,标志着我国的算法由筹算到珠算转变的完成.程大位在《算法统综》中常以诗歌的形式呈现数学问题,其中有一首“竹筒容米”问题:“家有九节竹一茎,为因盛米不均平,下头三节三升九,上梢四节贮三升,唯有中间两节竹,要将米数次第盛,若有先生能算法,也教算得到天明.”([注释]三升九:3.9升.次第盛:盛米容积依次相差同一数量.)用你所学的数学知识求得中间两节的容积为A. 1.9升B. 2.1升C. 2.2升D. 2.3升【答案】B3.中国古代名词“刍童”原来是草堆的意思,古代用它作为长方棱台(上、下底面均为矩形额棱台)的专用术语.关于“刍童”体积计算的描述,《九章算术》注曰:“倍上表,下表从之.亦倍下表,上表从之,各以其广乘之,并,以高若深乘之,皆六面一.”其计算方法是:将上底面的长乘二,与下底面的长相加,再与上底面的宽相乘;将下底面的长乘二,与上底面的长相加,再与下底面的宽相乘;把这两个数值相加,与高相乘,再取其六分之一,以此算法,现有上下底面为相似矩形的棱台,相似比为,高为3,且上底面的周长为6,则该棱台的体积的最大值是A. 14B. 56C.D. 63【答案】C4.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有邹亮,下广三丈,茅四仗,无广;高一丈,问:积几何?”其意思为:“今有底面为矩形的屋脊状的锲体,下底面宽仗长仗;上棱长仗,高一丈,问它的体积是多少?”已知丈为尺,现将该锲体的三视图给出右图所示,齐总网格纸小正方形的边长1丈,则该锲体的体积为A. 立方尺B. 立方尺C. 立方尺D. 立方尺【答案】A5.我国古代名著《九章算术》用“更相减损术”求两个正整数的最大公约数是一个伟大创举.这个伟大创举与我国古老的算法—“辗转相除法”实质一样.如图的程序框图即源于“辗转相除法”,当输入时,输出的A. 6B. 9C. 12D. 18【答案】D【解析】试题分析:模拟程序框图的运行过程,如下;a=6102,b=2016,执行循环体,r=54,a=2016,b=54,不满足退出循环的条件,执行循环体,r=18,a=54,b=18,不满足退出循环的条件,执行循环体,r=0,a=18,b=0,满足退出循环的条件r=0,退出循环,输出a的值为18. 学科&网6.《九章算术》是我国古代的数字名著,书中《均属章》有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各德几何.”其意思为“已知五人分5钱,两人所得与三人所得相同,且每人所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).在这个问题中,所得为A. 钱B. 钱C. 钱D. 钱【答案】A7.我国古代著名的思想家庄子在《庄子·天下篇》中说:“一尺之棰,日取其半,万世不竭.”用现代语言叙述为:一尺长的木棒,每日取其一半,永远也取不完. 这样,每日剩下的部分都是前一日的一半. 如果把“一尺之棰”看成单位“”,那么剩下的部分所成的数列的通项公式为A. B. C. D.【答案】C【解析】由“一尺长的木棒,每日取其一半.”可知每天剩下的木棒构成一个首相为1,公比为的等比数列.所以该数列的通项公式为.故选C.8.《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章计算弧田面积所用的经验公式为:弧田面积=1/2(弦矢+矢2).弧田(如图),由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.按照上述经验公式计算所得弧田面积与其实际面积之间存在误差.现有圆心角为,半径等于4米的弧田.按照上述方法计算出弧田的面积约为A. 6平方米B. 9平方米C. 12平方米D. 15平方米[来源学科网ZXXK]【答案】B9.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地.”则该人最后一天走的路程为A. 24里B. 12里C. 6里D. 3里【答案】C【解析】试题分析:记每天走的路程里数为,易知是公比的等比数列,,,故选C. 学科&网10.《张丘建算经》卷上第22题为“今有女善织,日益功疾,初日织五尺,今一月日织九匹三丈.”其意思为:现有一善于织布的女子,从第2天开始,每天比前一天多织相同量的布,第1天织了5尺布,现在一月(按30天计算)共织390尺布,记该女子一月中的第n天所织布的尺数为a n,则a14+a15+a16+a17的值为A. 55B. 52C. 39D. 26【答案】B11.吴敬《九章算法比类大全》中描述:远望巍巍塔七层,红灯向下成培增,共灯三百八十一,请问塔顶几盏灯?A. B. C. D.【答案】C【解析】根据“红灯向下成培增”可得该塔每层的灯从上到下构成一个等比数列,公比为2,其中.由等比数列的前n项和公式可得.故选C.12.公元263年左右,我国数学家刘徽发现,当圆内接多边形的边数无限增加时,多边形面积可无限逼近圆的面积,由此创立了割圆术,利用割圆术刘徽得到了圆周率精确到小数点后面两位的近似值3.14,这就是著名的徽率.如图是利用刘徽的割圆术设计的程序框图,则输出的n值为(参考数据:,,)[来源:]A. B. C. D.【答案】B13.远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.下图所示的是一位母亲记录的孩子自出生后的天数,在从右向左依次排列的不同绳子上打结,满七进一,根据图示可知,孩子已经出生的天数A. 336B. 510C. 1326D. 3603【答案】B【解析】试题分析:由题意满七进一,可得该图示为七进制数, 化为十进制数为,故选B.14.欧拉公式(为虚数单位)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”,根据欧拉公式可知,表示的复数在复平面中位于A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B15. 《九章算术》是我国古代的数学巨著,其卷第五“商功”有如下的问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈.问积几何?”意思为:“今有底面为矩形的屋脊形状的多面体(如图)”,下底面宽丈,长丈,上棱丈,.与平面的距离为1丈,问它的体积是A. 4立方丈B. 5立方丈C. 6立方丈D. 8立方丈【答案】B【解析】延长EF、FE分别到H、G,且|FH|=|EG|=1,则该几何体为直三棱柱,三棱锥F-BCH的体积为,三棱柱的体积为,所以所求体积为.故选B.16.中国传统文化中很多内容体现了数学的“对称美”.如图所示的太极图是由黑白两个鱼形纹组成的圆形图案,充分体现了相互转化、对称统一的形式美、和谐美.给出定义:能够将圆O的周长和面积同时平分的函数称为这个圆的“优美函数”.给出下列命题:①对于任意一个圆O,其“优美函数”有无数个;②函数可以是某个圆的“优美函数”;③正弦函数可以同时是无数个圆的“优美函数”;④函数是“优美函数”的充要条件为函数的图象是中心对称图形.其中正确的有A. ①③B. ①③④C. ②③D. ①④【答案】A17.《数书九章》中对已知三角形三边长求三角形的面积的求法填补了我国传统数学的一个空白,与著名的海伦公式完全等价,由此可以看出我国古代已具有很高的数学水平,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减上,余四约之,为实.一为从隅,开平方得积.”若把以上这段文字写成公式,即.现有周长为的满足,试用以上给出的公式求得的面积为A. B. C. D.【答案】A二、填空题18.埃及数学中有一个独特现象:除用一个单独的符号表示以外,其它分数都要写成若干个单分数和的形式.例如可以这样理解:假定有两个面包,要平均分给5个人,如果每人,不够,每人,余,再将这分成5份,每人得,这样每人分得.形如的分数的分解:按此规律,____________;____________.【答案】(1). ;(2).19.鲁班锁是中国传统的智力玩具,起源于古代汉族建筑中首创的榫卯结构,这种三维的拼插器具内部的凹凸部分(即榫卯结构)啮合,十分巧妙,外观看是严丝合缝的十字立方体,其上下、左右、前后完全对称.从外表上看,六根等长的正四棱柱体分成三组,经榫卯起来,如图3,若正四棱柱体的高为,底面正方形的边长为,现将该鲁班锁放进一个球形容器内,则该球形容器的表面积的最小值为__________.(容器壁的厚度忽略不计)【答案】20.现介绍祖暅原理求球体体积公式的做法:可构造一个底面半径和高都与球半径相等的圆柱,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥,用这样一个几何体与半球应用祖暅原理(图1),即可求得球的体积公式.请研究和理解球的体积公式求法的基础上,解答以下问题:已知椭圆的标准方程为,将此椭圆绕y轴旋转一周后,得一橄榄状的几何体(图2),其体积等于______.[来源:]【答案】【解析】椭圆的长半轴为5,短半轴为2,现构造一个底面半径为2,高为5的圆柱,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥,根据祖暅原理得出椭球的体积V=2(V圆柱﹣V圆锥)=2(π×22×5﹣)=.[来源学科网Z.X.X.K]21.艾萨克·牛顿(1643年1月4日----1727年3月31日)英国皇家学会会长,英国著名物理学家,同时在数学上也有许多杰出贡献,牛顿用“作切线”的方法求函数零点时给出一个数列:满足,我们把该数列称为牛顿数列.如果函数有两个零点1,2,数列为牛顿数列,设,已知,则的通项公式__________.【答案】22.公元前3世纪,古希腊欧几里得在《几何原本》里提出:“球的体积(V )与它的直径(D )的立方成正比”,此即3V kD =,欧几里得未给出k 的值.17世纪日本数学家们对求球的体积的方法还不了解,他们将体积公式3V kD =中的常数k 称为“立圆率”或“玉积率”.类似地,对于等边圆柱(轴截面是正方形的圆柱)、正方体也可利用公式3V kD =求体积(在等边圆柱中, D 表示底面圆的直径;在正方体中, D 表示棱长).假设运用次体积公式求得球(直径为a )、等边圆柱(底面积的直径为a )、正方体(棱长为a )的“玉积率”分别为1k 、2k 、3k ,那么123::k k k =__________.【答案】::164ππ【解析】 由题意得,球的体积为333114433266a V R a k ππππ⎛⎫===⇒= ⎪⎝⎭; 、等边圆柱的体积为22322244a V R a a a k ππππ⎛⎫===⇒= ⎪⎝⎭;学科&网正方体的体积3321V a k =⇒=,所以123::::164k k k ππ=[来源学科网].。
高考数学数学文化题总结1. 某装饰公司制作一种扇形板状装饰品,其圆心角为120°,并在扇形弧上正面等距安装7个发彩色光的小灯泡且在背面用导线相连(弧的两端各一个,导线接头忽略不计),已知扇形的半径为30厘米,则连接导线最小大致需要的长度为( )A. 58厘米B. 63厘米C. 69厘米D. 76厘米2. “勾股定理”在西方被称为“毕达哥拉斯定理”.三国时期,吴国的数学家赵爽创制了一幅“勾股圆方图”,用数形结合的方法给出了勾股定理的详细证明.如图所示的“勾股圆方图”中,四个相同的直角三角形与中间的小正方形拼成一个大正方形,若直角三角形中较小的锐角12πα=,现在向该正方形区域内随机地投掷100枚飞镖,则估计飞镖落在区域1的枚数最有可能是( )A. 30B. 40C. 50D. 603. 我国南宋著名数学家秦九韶提出了由三角形三边求三角形面积的“三斜求积”,设ABC ∆的三个内角A ,B ,C 所对的边分别为a ,b ,c ,面积为S ,则“三斜求积”公式为S =,若2sin 5sin a C A =,22()16a c b +=+则用“三斜求积”公式求得ABC ∆的面积为________.4. 《易经》包含着很多哲理,在信息学、天文学中都有广泛的应用,《易经》的博大精深,对今天 的几何学和其它学科仍有深刻的影响.下图就是易经中记载的几何图形——八卦田,图中正八 边形代表八卦,中间的圆代表阴阳太极图,八块面积相等的曲边梯形代表八卦田.已知正八边 形的边长为10m ,阴阳太极图的半径为4m ,则每块八卦田的面积约为( )A. 247.79mB. 254.07mC. 257.21mD. 2114.43m5. 上世纪末河南出土的以鹤的尺骨(翅骨)制成的“骨笛”(图1),充分展示了我国古代高超的音律艺术及先进的数学水平,也印证了我国古代音律与历法的密切联系.图2为骨笛测量“春(秋)分”,“夏(冬)至”的示意图,图3是某骨笛的部分测量数据(骨笛的弯曲忽略不计),夏至(或冬至)日光(当日正午太阳光线)与春秋分日光(当日正午太阳光线)的夹角等于黄赤交角.由历法理论知,黄赤交角近1万年持续减小,其正切值及对应的年代如下表:根据以上信息,通过计算黄赤交角,可估计该骨笛的大致年代是( )A. 公元前2000年到公元元年B. 公元前4000年到公元前2000年C. 公元前6000年到公元前4000年D. 早于公元前6000年6. 1611年,约翰内斯·开普勒提出了“没有任何装球方式的密度比面心立方与六方最密堆积要高”的猜想.简单地说,开普勒猜想就是对空间中如何堆积最密圆球的解答.2017年,由匹兹堡大学数学系教授托马斯·黑尔斯(Thomas Hales )带领的团队发表了关于开普勒猜想证明的论文,给这个超过三百年的历史难题提交了一份正式的答案.现有大小形状都相同的若干排球,按照下面图片中的方式摆放(底层形状为等边三角形,每边4个球,共4层),这些排球共__________个,最上面球的球顶距离地面的高度约为__________cm (排球的直径约为21cm )7. 为了研究国民收入在国民之间的分配,避免贫富过分悬殊,美国统计学家劳伦茨提出了著名的劳伦茨曲线,如图所示:劳伦茨曲线为直线OL 时,表示收入完全平等,劳伦茨曲线为折线OKL 时,表示收入完全不平等记区域A 为不平等区域,a 表示其面积,S 为OKL △的面积.将a Gini S=,称为基尼系数.对于下列说法:①Gini 越小,则国民分配越公平;②设劳伦茨曲线对应的函数为()y f x =,则对(0,1)x ∀∈,均有()1f x x >; ③若某国家某年的劳伦茨曲线近似为2([0,1])y x x =∈,则14Gini =;④若某国家某年的劳伦茨曲线近似为3([0,1])y x x =∈,则12Gini =. 其中不正确的是:( )A. ①④B. ②③C. ①③④D. ①②④8. 《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍.其中记载有求“囷盖”的术:“置如其周,令相承也.又以高乘之,三十六成一”.该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积2136V L h ≈的近似公式.它实际上是将圆锥体积公式中的圆周率近似取为3.那么近似公式23112V L h ≈相当于将圆锥体积公式中的圆周率近似取为( ) A.227 B. 15750 C. 289 D. 3371159. “割圆术”是刘徽最突出的数学成就之一,他在《九章算术注》中提出割圆术,并作为计算圆的周长、面积以及圆周率的基础.刘徽把圆内接正多边形的面积一直算到了正3072边形,并由此而求得了圆周率为3.1415和3.1416这两个近似数值,这个结果是当时世界上圆周率计算的最精确数据.如图,当分割到圆内接正六边形时,某同学利用计算机随机模拟法向圆内随机投掷点,计算得出该点落在正六边形内的频率为0.8269,那么通过该实验计算出来的圆周率近似值为( )(参考数据: 2.09460.8269≈)A. 3.1419B. 3.1417C. 3.1415D. 3.141310. 《易·系辞上》有“河出图,洛出书”之说,河图、洛书是中华文化,阴阳术数之源,其中河图的排列结构是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中.如图,白圈为阳数,黑点为阴数.若从这10个数中任取3个数,则这3个数中至少有2个阳数且能构成等差数列的概率为( )A.15 B. 120 C. 112 D. 34011. 在我国古代著名的数学专著《九章算术》里有—段叙述:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,曰增十三里:驽马初日行九十七里,曰减半里,良马先至齐,复还迎驽马,二马相逢,问:几日相逢?( )A . 12日B .16日C . 8日D .9日12. 《孙子算经》是我国古代内容极其丰富的数学名著,书中有如下问题:“今有圆窖周五丈四尺,深一丈八尺,问受粟几何?”其意思为:“有圆柱形容器,底面圆周长五丈四尺,高一丈八尺,求此容器能放多少斛米”(古制1丈10=尺,1斛 1.62=立方尺,圆周率3π=),则该圆柱形容器能放米( )A. 900斛B. 2700斛C. 3600斛D. 10800斛13. 《张丘建算经》是我国北魏时期大数学家张丘建所著,约成书于公元466-485年间.其中记载着这么一道“女子织布”问题:某女子善于织布,一天比一天织得快,且每日增加的数量相同.已知第一日织布5尺,30日共织布390尺,则该女子织布每日增加() A. 47 B. 1629 C. 815 D. 163114.《周髀算经》是中国古代重要的数学著作,其记载的“日月历法”曰:“阴阳之数,日月之法,十九岁为一章,四章为一部,部七十六岁,二十部为一遂,遂千百五二十岁,….生数皆终,万物复苏,天以更元作纪历”,某老年公寓住有20位老人,他们的年龄(都为正整数)之和恰好为一遂,其中年长者已是奔百之龄(年龄介于90至100),其余19人的年龄依次相差一岁,则年长者的年龄为( )A. 94B. 95C. 96D. 9815.明代朱载堉创造了音乐学上极为重要的“等程律”.在创造律制的过程中,他不仅给出了求解三项等比数列的等比中项的方法,还给出了求解四项等比数列的中间两项的方法.比如,若已知黄钟、大吕、太簇、夹钟四个音律值成等比数列,则有大吕大吕太簇据此,可得正项等比数列{}n a中,k a= ( )A. n k-B. n-C.16.我国古人认为宇宙万物是由金,木,水,火,土这五种元素构成,历史文献《尚书·洪范》提出了五行的说法,到战国晚期,五行相生相克的思想被正式提出这五种物质属性的相生相克关系如图所示,若从这五种物质属性中随机选取三种,则取出的三种物质属性中,彼此间恰好有一个相生关系和两个相克关系的概率为( )A. 35B.12C.25D.1317.张衡(78年~139年)是中国东汉时期伟大的天文学家、文学家、数学家.他的数学著作有《算罔论》,他曾经得出结论:圆周率的平方除以十六等于八分之五.已知正方体的外接球与内切球上各有一个动点A,B,若线段AB1,利用张衡的结论可得该正方体的外接球的表面积为( )A. 30B.C.D. 3618.朱世杰是元代著名数学家,他所著的《算学启蒙》是一部在中国乃至世界最早的科学普及著作.《算学启蒙》中涉及一些“堆垛”问题,主要利用“堆垛”研究数列以及数列的求和问题.现有100根相同的圆形铅笔,小明模仿“堆垛”问题,将它们全部堆放成纵断面为等腰梯形的“垛”,要求层数不小于2,且从最下面一层开始,每一层比上一层多1根,则该“等腰梯形垛”应堆放的层数可以是( )(多选题)A. 4B. 5C. 7D. 819.中国有个名句“运筹帷幄之中,决胜千里之外”,其中的“筹”原意是指《孙子算经》中记载的算筹.古代用算筹(一根根同样长短和粗细的小棍子)来进行运算.算筹的摆放有纵式、横式两种(如图所示).当表示一个多位数时,个位、百位、万位数用纵式表示,十位、千位、十万位数用横式表示,以此类推,遇零则置空.例如3266用算筹表示就是,则8771用算筹应表示为( )A. B.C. D.。
历年高考数学文化题集锦一. 数学名著中的立几题,例如:2015年全国1卷文6理6题6、《九章算术》是我国古代内容极为丰富的数学名著,书屮有如下问题:“今有委米依垣内角,下周八尺,高五尺,问''积及为米几何?”其意思为广在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?"已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()(A) 14斛(B) 22 斛(C) 36斛(D) 66 斛答案:B2012年湖北理科数学第10题10.我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径.“开立圆术”相当于给出了已知球的体积〃,求其直径〃的一个近似公式d 珂尹.人们还用过一些类似的近似公式.根据71=3.14159…判断,下列近似公式中最精确的一个是A. B. d =何 C・d = J型7—vV 9 V157考点分析:考察球的体积公式以及估算.解析:由卩二彳龙上几削二:胚‘设选项中常数为纟,则好④;力中代入得好空=3.375,3 2 V 7C b a163中代入得K空=3, C中代入得好空卫=3.14,科代入得好空丄3.142857,2 300 21曲于I)中值最接近加勺真实值,故选择D。
二、数学名著中的数列题,例如:2011年湖北卷文9理13题;13.《九章算术》“竹九节”问题:现有1根9节的竹子,自上而下各节的容积成等差数列,上面四节的容积共3升,下面3节的容积共4升,则第5节的容积为【解析】设该数列的杵项为公筮为依题总应该疇(8)右边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术"。
执行该程序框图,若输入a,b分别为14,18,则输出的玄= ___________【答幻B晦】師atWTil®中,a, 6的值依次为a = 14. 6 = 18; 6 = 4; a = 10; a = 6; a=2 b = 2・d匕时a = b = 2程牌抹,输岀a的值为2・故选B・数学名著中的统计题,例如:2015年湖北卷文2理2题2. (5分)(2015-湖北)我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为(A. 134 石)B. 169 石C. 338 石D. 1365 石升。
数学文化试题及答案一、选择题(每题5分,共20分)1. 勾股定理最早由哪位数学家提出?A. 毕达哥拉斯B. 欧几里得C. 阿基米德D. 牛顿答案:A2. 圆周率π的近似值是多少?A. 2.7B. 3.1C. 3.14D. 3.2答案:C3. 以下哪位数学家被称为“几何之父”?A. 牛顿B. 高斯C. 阿基米德D. 笛卡尔答案:C4. 以下哪个公式是二次方程的求根公式?A. \(a^2 + b^2 = c^2\)B. \(x^2 - 4ax + 4a^2 = 0\)C. \(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)D. \(x = \frac{-b}{2a}\)答案:C二、填空题(每题5分,共20分)1. 黄金分割比的数值大约是______。
答案:1.6182. 一个直角三角形的两条直角边长分别为3和4,那么斜边的长度是______。
答案:53. 一个圆的半径是7,那么它的面积是______。
答案:153.86(保留两位小数)4. 一个数的平方根是2,那么这个数是______。
答案:4三、解答题(每题10分,共20分)1. 已知一个等差数列的首项是2,公差是3,求第10项的值。
答案:首项 \(a_1 = 2\),公差 \(d = 3\),第 \(n\) 项的公式为\(a_n = a_1 + (n-1)d\),代入 \(n = 10\) 得 \(a_{10} = 2 +(10-1) \times 3 = 29\)。
2. 计算 \(\sqrt{4 + \sqrt{4 + \sqrt{4}}}\) 的值。
答案:首先计算最内层的平方根 \(\sqrt{4} = 2\),然后计算\(\sqrt{4 + 2} = \sqrt{6}\),最后计算 \(\sqrt{4 + \sqrt{6}}\)。
由于 \(\sqrt{6}\) 不是一个整数,所以最终答案为 \(\sqrt{4 +\sqrt{6}}\)。
数学题----文化素养型1.《算数书》竹简于上世纪八十年代在省江陵县家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也.又以高乘之,三十六成一.该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近似公式V ≈136L 2h .它实际上是将圆锥体积公式中的圆周率π近似取为3.那么,近似公式V ≈275L 2h 相当于将圆锥体积公式中的π近似取为( ) A.227 B.258 C.15750 D. 355113解析:由题意可知:L =2πr ,即r =L2π,圆锥体积V =13Sh =13πr 2h =13π·⎝ ⎛⎭⎪⎫L 2π2h =112πL 2h ≈275L 2h ,故112π≈275,π≈258,故选B. 【答案】B2.如图,正方形ABCD 的图形来自中国古代的太极图.正方形切圆中的黑色部分和白色部分位于正方形的中心成中心对称,在正方形随机取一点,则此点取自黑色部分的概率是()A .14B .π8C .12D .π4【解析】设正方形边长为2,则圆半径为1 则正方形的面积为224⨯=,圆的面积为2π1π⨯=,图中黑色部分的概率为π2 则此点取自黑色部分的概率为ππ248=故选B【答案】B4.《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,在阳马P-ABCD中,侧棱PD⊥底面ABCD,且PD=CD,过棱PC的中点E,作EF⊥PB交PB于点F,连接DE、DF、BD、BE.(1)证明:PB⊥平面DEF.试判断四面体DBEF是否为鳖臑.若是,写出其每个面的直角(只需写出结论);若不是,说明理由;(2)若面DEF与面ABCD所成二面角的大小为π3,求DCBC的值.解析:法一(1)证明因为PD⊥底面ABCD,所以PD⊥BC,由底面ABCD为长方形,有BC⊥CD,而PD∩CD=D,所以BC⊥平面PCD.而DE⊂平面PCD,所以BC⊥DE.又因为PD=CD,点E是PC的中点,所以DE⊥PC.而PC∩BC=C,所以DE⊥平面PBC.而PB⊂平面PBC,所以PB⊥DE.又PB⊥EF,DE∩EF=E,所以PB⊥平面DEF.由DE⊥平面PBC,PB⊥平面DEF,可知四面体BDEF的四个面都是直角三角形,即四面体BDEF 是一个鳖臑,其四个面的直角分别为∠DEB ,∠DEF ,∠EFB ,∠DFB .(2)解 如图,在面PBC ,延长BC 与FE 交于点G ,则DG是平面DEF 与平面ABCD 的交线.由(1)知,PB ⊥平面DEF ,所以PB ⊥DG .又因为PD ⊥底面ABCD ,所以PD ⊥DG ,而PD ∩PB =P ,所以DG ⊥平面PBD . 故∠BDF 是面DEF 与面ABCD 所成二面角的平面角,设PD =DC =1,BC =λ,有BD =1+λ2, 在Rt △PDB 中,由DF ⊥PB ,得∠DPF =∠FDB =π3, 则tan π3=tan ∠DPF =BD PD=1+λ2=3,解得λ= 2. 所以DC BC =1λ=22. 故当面DEF 与面ABCD 所成二面角的大小为π3时,DC BC=22. 法二 (1)证明 如图,以D 为原点,射线DA ,DC ,DP分别为x ,y ,z 轴的正半轴,建立空间直角坐标系.设PD =DC =1,BC =λ,则D (0,0,0),P (0,0,1),B (λ,1,0),C (0,1,0),PB →=(λ,1,-1),点E 是PC 的中点,所以E ⎝ ⎛⎭⎪⎫0,12,12,DE →=⎝ ⎛⎭⎪⎫0,12,12, 于是PB→·DE →=0,即PB ⊥DE . 又已知EF ⊥PB ,而DE ∩EF =E ,所以PB ⊥平面DEF .因PC→=(0,1,-1),DE →·PC →=0,则DE ⊥PC , 所以DE ⊥平面PBC .由DE⊥平面PBC,PB⊥平面DEF,可知四面体BDEF的四个面都是直角三角形,即四面体BDEF是一个鳖臑,其四个面的直角分别为∠DEB,∠DEF,∠EFB,∠DFB.(2)解由PD⊥平面ABCD,所以DP→=(0,0,1)是平面ABCD的一个法向量;由(1)知,PB⊥平面DEF,所以BP→=(-λ,-1,1)是平面DEF的一个法向量.若面DEF与面ABCD所成二面角的大小为π3,则cos π3=⎪⎪⎪⎪⎪⎪BP→·DP→|BP→|·|DP→|=⎪⎪⎪⎪⎪⎪1λ2+2=12,解得λ= 2.所以DCBC=1λ=22.故当面DEF与面ABCD所成二面角的大小为π3时,DCBC=22.5.宋元时期杰出的数学家朱世杰在其数学巨著《四元玉鉴》卷中“菱草形段”第一个问题,“今有菱草六百八十束,欲令‘落一形’(同垛)之,问底子(每层三角形边菱草束数,等价于层数)几何?”中探讨了“垛积术”中的落一形垛(“落一形”即是指顶上一束,下一层三束,再下一层6束,…,成三角锥的堆垛,故也称三角垛,如图,表示第二层开始的每层菱草束数),则本问题中三角垛底层菱草总束数为________.解析:由题意,第n层菱草数为1+2+…+n=n(n+1)2,∴1+3+6+…+n(n+1)2=680,即为12⎣⎢⎡⎦⎥⎤16n (n +1)(2n +1)+12n (n +1)=16n (n +1)(n +2)=680, 即有n (n +1)(n +2)=15×16×17,∴n =15,∴n (n +1)2=120.【答案】1206.九韶是我国南宋时期的数学家,普州(现省安岳县)人,他在所著的《数书九章》中提出的多项式求值的九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用九韶算法求多项式值的一个实例,若输入n ,x 的值分别为3,2,则输出v 的值为( )A.35B.20C.18D.9i =2时,得v =4;当i =1时,得v =2×4+1=9;当i =0时,得v =2×9+0=18;当i =-1时,直接输出v =18,即输出的v 值为18,故选C.【答案】C7.《九章算术》是我国古代容极为丰富的数学名著,书中有如下问题:“今有委米依垣角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋墙角处堆放米(如图11,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )图11A .14斛B .22斛C .36斛D .66斛[解析] 由题意,题中图形为四分之一圆锥,设圆锥的底面半径为R ,则由πR 2=8得R =16π,所以V 米=14V 圆锥=14×13×π×⎝ ⎛⎭⎪⎫16π2×5=3203π≈3209(立方尺),所以3209÷1.62≈21.95≈22(斛).【答案】B8.如图13所示的程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a ,b 分别为14,18,则输出的a =( )图13A .0B .2C .4D .14[解析] 逐一写出循环:a =14,b =18→a =14,b =4→a =10,b =4→a =6,b =4→a =2,b =4→a =2,b =2,结束循环.故选B. 【答案】B9.鸡兔同笼是中国古代著名趣题之一。
数学文化背景的高考试题背景一:杨辉三角杨辉三角,又称贾宪三角形,帕斯卡三角形,是二项式系数在三角形中的一种几何排列。
下图的表在我国南宋数学家杨辉1261年所著的《详解九章算法》一书里就出现了。
1.如图,一个类似杨辉三角的数阵,则(1)第9行的第2个数是66;(2)若第n(n≥2)行的第2个数为291,则n=18.2.中国古代数学史曾经有自己光辉灿烂的篇章,其中“杨辉三角”的发现就是十分精彩的一页.而同杨辉三角齐名的世界著名的“莱布尼茨三角形”如图所示,从莱布尼茨三角形可以看出:排在第10行从左边数第3个位置上的数值是()A.B.C.D.3.[2006湖北L-15]将杨辉三角(如图(1))中的每一个数都换成分数,就得到一个如图(2)所示的分数三角形,称为莱布尼茨三角形.从莱布尼茨三角形可以看出:,其中x=r+1.背景二:古希腊多边形数教材背景:必修⑤数列引入1.[2009湖北L-W-10]古希腊人常用小石子在沙滩上摆成各种形状来研究数。
比如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似的,称图2中的1,4,9,16,…这样的数为正方形数。
下列数中既是三角形数又是正方形数的是A.289B.1024C.1225D.13782.[2012湖北W-17]传说古希腊毕达哥拉斯学派的数学家经常在沙滩上面画点或用小石子表示数。
他们研究过如图所示的三角形数:将三角形数1,3, 6,10,…记为数列{a n },将可被5整除的三角形数按从小到大的顺序组成一个新数列{b n },可以推测:(Ⅰ)b 2012是数列{an}中的第______项;(Ⅱ)b 2k-1=______。
(用k 表示)3.[2013湖北L-14]古希腊毕达哥拉斯学派的数学家研究过各种多边形数。
如三角形数1,3,6,10,…,第n 个三角形数为()2111222n n n n +=+。
记第n 个k 边形数为(),N n k ()3k ≥,以下列出了部分k 边形数中第n 个数的表达式:三角形数 ()211,322N n n n =+ 正方形数 ()2,4N n n =五边形数 ()231,522N n n n =-六边形数 ()2,62N n n n =- ……可以推测(),N n k 的表达式,由此计算()10,24N = 。
高考数学新题型:文化背景1.《掷铁饼者》取材于希腊的现实生活中的体育竞技活动,刻画的是一名强健的男子在掷铁饼过程中最具有表现力的瞬间.现在把掷铁饼者张开的双臂近似看成一张拉满弦的“弓”,掷铁饼者的手臂长约4π米,肩宽约为8π米,“弓”所在圆的半径约为1.25米,你估测一下掷铁饼者双手之间的距离约为(参考数据: 1.414≈,1.732≈)()A .1.012米B .2.043米C .1.768米D .2.945米2.我国天文学和数学著作《周髀算经》中记载:一年有二十四个节气,每个节气的晷长损益相同(晷是按照日影测定时刻的仪器,晷长即为所测量影子的长度).二十四节气及晷长变化如图所示,相邻两个节气晷长减少或增加的量相同,周而复始.则下列说法不正确的是()注:“相差”是指差的绝对值A .立春和立冬的晷长相同B .立夏和立秋的晷长相同C .与夏至的晷长相差最大的是冬至的晷长D .与春分的晷长相差最大的是秋分的晷长3.远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”,就是现在我们熟悉的“进位制”,下图所示的是一位母亲记录的孩子自出生后的天数,在从右向左依次排列的不同绳子上打结,满五进一,根据图示可知,孩子已经出生的天数是()A .27B .42C .55D .2104.自宋朝以来,折扇一直深受文人雅土的喜爱,在扇面(折扇由扇骨和扇面组成)上题字作画是生活高雅的象征.现有一位折扇爱好者准备在如图所示的扇面上题字,由于突然停电,不慎将一滴墨汁落入折扇所在区域,则墨汁恰好落入扇面部分的概率为()A .47B .34C .1649D .40495.“干支纪年法”是中国历法上自古以来使用的纪年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被称为“十天干”,子、丑、寅、卯、辰、已、午、未、申、酉、戌、亥叫做“十二地支”.“天干”以“甲”字开始,“地支”以“子”字开始,两者按干支顺序相配,组成了干支纪年法,其相配顺序为:甲子、乙丑、丙寅、.癸酉,甲戌、乙亥、丙子、.癸未,甲申、乙酉、丙戌、癸巳,共得到60个组合,周而复始,循环记录.2010年是“干支纪年法”中的庚寅年,那么2019年是“干支纪年法”中的()A .己亥年B .戊戌年C .庚子年D .辛丑年6.黄金分割点是指将一条线段分为两部分,使得较长部分与整体线段的长的比值为12的点.利用线段上的两个黄金分割点可以作出正五角星,如图所示,已知C ,D为AB 的两个黄金分割点,研究发现如下规律:AC BD CD AB AB BC ===若CDE △是顶角为36°的等腰三角形,则cos 216︒=()A .514-B .14-C .512-D .12-7.如图,洛书(古称龟书),是阴阳五行术数之源.在古代传说中有神龟出于洛水,其甲壳上有此图像,结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,五方白圈皆阳数,四角黑点为阴数.若从四个阴数和五个阳数中随机选取3个数,则选取的3个数之和为奇数的方法数为()A .30B .40C .44D .708.《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章给出计算弧田面积所用的经验公式为:弧田面积12=(弦+矢)⨯矢,弧田(如图)由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,现有圆心角为23π,半径等于20米的弧田,按照上述经验公式计算所得弧田面积约是(参考数据: 3.14π≈ 1.73≈)A .220平方米B .246平方米C .223平方米D .250平方米9.攒尖是古代中国建筑中屋顶的一种结构形式依其平面有圆形攒尖、三角攒尖、四角攒尖、六角攒尖等,多见于亭阁式建筑如图所示,某园林建筑为六角攒尖,它的主要部分的轮廓可近似看作一个正六棱锥,设正六棱锥的侧面等腰三角形的顶角为2θ,则侧棱与底面内切圆半径的比为()A .3sin θB .3cos θC .12sin θD .12cos θ10.“瓦当”是中国古建筑装饰檐头的附件,是中国特有的文化艺术遗产,为探究下面“瓦当”图案的面积,向半径为10的圆内投入1000粒芝麻,落入阴影部分的有400粒.则估计“瓦当”图案的面积是()A .40B .40πC .4D .4π11.明朝早期,郑和在七下西洋的过程中,将中国古代天体测量方面所取得的成就创造性应用于航海,形成了一套自成体系且行之有效的先进航海技术——“过洋牵星术”.简单地说,就是通过观测不同季节、时辰的日月星辰在天空运行的位置和测量星辰在海面以上的高度来判断方位,其采用的主要工具为牵星板,由12块正方形木板组成,最小的一块边长约为2厘米(称一指).观测时,将木板立起,一手拿着木板,手臂垂直,眼睛到木板的距离大约为72厘米,使牵星板与海平面垂直,让板的下边缘与海平面重合,上边缘对着所观测的星辰,与其相切,依高低不同替换、调整木板,木板上边缘与被观测星辰重合时所用的是几指板,观测的星辰离海平面的高度就是几指,然后就可以推算出船在海中的地理纬度.如图所示,若在一次观测中,所用的牵星板为九指板,则sin 2α=()A .1235B .17C .817D .81512.刘徽(约公元225年-295年),魏晋期间伟大的数学家,中国古典数学理论的奠基人之一.他在割圆术中提出的“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”,这可视为中国古代极限观念的佳作.割圆术的核心思想是将一个圆的内接正n 边形等分成n 个等腰三角形(如图所示),当n 变得很大时,这n 个等腰三角形的面积之和近似等于圆的面积,运用割圆术的思想得到6sin 的近似值为()A .30πB .60πC .90πD .180π13.中国的少数民族有不少具有鲜明特色的建筑,如图①所示的建筑为坐落于广西三江林溪河上的程阳永济桥,是典型的侗族建筑,该类建筑由桥、塔、亭组成,其中塔、亭建在石桥上,具有多层结构,被称为世界十大最不可思议桥梁之一,因为行人过往能够躲避风雨,故名“风雨桥”.已知程阳永济桥上的塔从上往下看,其边界构成的曲线可以看作正六边形结构,如图②所示,且各层的六边形的边长均为整数,从内往外依次成等差数列.若这四层六边形的周长之和为156,,则最外层六边形的周长为()A .54B .48C .42D .3014.如图是隋唐天坛,古叫圜丘,它位于唐长安城明德门遗址东约950米,即今西安市雁塔区陕西师范大学以南.天坛初建于隋而废弃于唐末,比北京明清天坛早1000多年,是隋唐王朝近三百年里的皇家祭天之处.某数学兴趣小组为了测得天坛的直径,在天坛外围测得60AB =米,60BC =米,40CD =米,60ABC ∠=︒,120BCD ∠=︒,据此可以估计天坛的最下面一层的直径AD 大约为().(结果精确到1米)1.414≈ 1.732≈2.236≈ 2.646≈)A .39米B .43米C .49米D .53米15.祖暅(公元5-6世纪,祖冲之之子,是我国齐梁时代的数学家.他提出了一条原理:“幂势既同,则积不容异.”这句话的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体的体积相等.该原理在西方直到十七世纪才由意大利数学家卡瓦列利发现,比祖暅晚一千一百多年.椭球体是椭圆绕其轴旋转所成的旋转体.如图将底面直径皆为2b ,高皆为a 的椭半球体及已被挖去了圆锥体的圆柱体放置于同一平面β上.以平行于平面β的平面于距平面β任意高d 处可横截得到S 圆及S 环两截面,可以证明S S =环圆总成立.据此,短轴长为6cm ,长轴为8cm 的椭球体的体积是()3cmA .24πB .48πC .192πD .384π16.龙马负图、神龟载书图像如图甲所示,数千年来被认为是中华传统文化的源头;其中洛书有云,神龟出于洛水,甲壳上的图像如图乙所示,其结构是戴九履一,左三右七,二四为肩,六八为足u ,以五居中,五方白圈皆阳数,四角黑点为阴数;若从阳数和阴数中分别随机抽出2个和1个,则被抽到的3个数的数字之和超过16的概率为()A .1340B .720C .14D .31017.“九天揽月”是中华民族的伟大梦想,我国探月工程的进展与实力举世瞩目.近期,“嫦娥四号”探测器实现历史上的首次月背着陆,月球上“嫦娥四号”的着陆点,被命名为天河基地,如图是“嫦娥四号”运行轨道示意图.圆形轨道距月球表面100千米,椭圆形轨道的一个焦点是月球球心,一个长轴顶点位于两轨道相切的变轨处,另一个长轴顶点距月球表面15千米,则椭圆形轨道的焦距为()A .85kmB .42.5kmC .50kmD .100km18.《九章算术》是我国古代内容极为丰富的数学名著.书中有如下问题:“今有委米依垣内角,下周四尺.高三尺.何积及为米几何?”其意思为:“在屋内墙角处堆放米,米堆底部的弧长为4尺.米堆的高为3尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有()A .7斛B .3斛C .9斛D .12斛19.我国明代著名乐律学家、明宗室王子朱载堉在《律学新说》中提出的十二平均律,即是现代在钢琴的键盘上,一个八度音程从一个c 键到下一个1c 键的8个白键与5个黑键(如图)的音频恰成一个公比为的等比数列的原理,也即高音1c 的频率正好是中音c 的2倍.已知标准音1a 的频率为440Hz ,那么频率为的音名是()A .dB .fC .eD .#d20.《几何原本》卷2的几何代数法(以几何方法研究代数问题)成了后世西方数学家处理问题的重要依据.通过这一原理,很多的代数的公理或定理都能够通过图形实现证明,也称之为无字证明.现有如图所示图形,点F 在半圆O 上,点C 在直径AB 上,且OF AB ⊥,设AC a =,BC b =,则该图形可以完成的无字证明为()A .)02a b a b +>>>B .()2220a b ab a b +>>>C .)20ab a b a b <>>+D .)02a b a b +<>>21.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”.下图是在“赵爽弦图”的基础上创作出的一个“数学风车”,其中正方形ABCD 内部为“赵爽弦图”,它是由四个全等的直角三角形和一个小正方形组成的.我们将图中阴影所在的四个三角形称为“风叶”,若从该“数学风车”的八个顶点中任取两点,则该两点取自同一片“风叶”的概率为()A .37B .47C .314D .111422.德国著名的天文学家开普勒说过:“几何学里有两件宝,一个是勾股定理,另一个是黄金分割.如果把勾股定理比作黄金矿的话,那么可以把黄金分割比作钻石矿.”黄金三角形有两种,其中底与腰之比为黄金分割比的黄金三角形被认为是最美的三角形,它是一个顶角为36o 的等腰三角形(另一种是顶角为108 的等腰三角形).例如,五角星由五个黄金三角形与一个正五边形组成,如图所示,在其中一个黄金ABC 中,512BC AC -=.根据这些信息,可得sin126= ()A .14-B .38+C .14+D .48+23.蹴鞠(如图所示),又名蹴球,蹴圆,筑球,踢圆等,蹴有用脚蹴、踢、蹋的含义,鞠最早系外包皮革、内实米糠的球.因而蹴鞠就是指古人以脚蹴,蹋、踢皮球的活动,类似今日的足球.2006年5月20日,蹴鞠已作为非物质文化遗产经国务院批准列入第一批国家非物质文化遗产名录,已知某鞠的表面上有四个点A 、B 、C 、D ,满足5AB CD ==,6BD AC ==,7AD BC ==,则该鞠的表面积为()A .55πB .60πC .63πD .68π24.玉琮是中国古代玉器中重要的礼器,神人纹玉琮王是新石器时代良渚文化的典型玉器,1986年出土于浙江省余杭市反山文化遗址.玉琮王通高8.8cm ,孔径4.9cm 、外径17.6cm .琮体四面各琢刻一完整的兽面神人图像.兽面的两侧各浅浮雕鸟纹.器形呈扁矮的方柱体,内圆外方,上下端为圆面的射,中心有一上下垂直相透的圆孔.试估计该神人纹玉琮王的体积约为(单位:3cm )()A .6250B .3050C .2850D .235025.我国魏晋时期的数学家刘徽创造了一个称为“牟合方盖”的立体图形来推算球的体积.如图1,在一个棱长为2a 的立方体内作两个互相垂直的内切圆柱,其相交的部分就是牟合方盖,如图2,设平行于水平面且与水平面距离为h 的平面为α,记平面α截牟合方盖所得截面的面积为S ,则函数()S f h =的图象是()A .B .C .D .26.筒车是我国古代发明的一种水利灌溉工具,既经济又环保,明代科学家徐光启在《农政全书》中用图1描绘了筒车的工作原理.假定在水流稳定的情况下,筒车上的每一个盛水筒都做匀速圆周运动.将筒车抽象为一个几何图形(圆),筒车的半径为2m ,筒车的轴心O 到水面的距离为1m ,筒车每分钟按逆时针转动2圈.规定:盛水筒M 对应的点P 从水中浮现(即0P 时的位置)时开始计算时间,设盛水筒M 从0P 运动到点P 时所用时间为t (单位:s ),且此时点P 距离水面的高度为h (单位:m ).若以筒车的轴心O 为坐标原点,过点O 的水平直线为x 轴建立平面直角坐标系xOy (如图2),则h 与t的函数关系式为()A .2sin 1156h t ππ⎛⎫=-+ ⎪⎝⎭,[)0,t ∈+∞B .2sin 1156h t ππ⎛⎫=++ ⎪⎝⎭,[)0,t ∈+∞C .2sin 16h t ππ⎛⎫=-+ ⎪⎝⎭,[)0,t ∈+∞D .2sin 16h t ππ⎛⎫=++ ⎪⎝⎭,[)0,t ∈+∞二、多选题27.如图所示,4个长为a ,宽为b 的长方形,拼成一个正方形ABCD ,中间围成一个小正方形1111D C B A ,则以下说法中正确的是()A .2()4a b ab+≥B .当a b =时,1A ,1B ,1C ,1D 四点重合C .2()4a b ab-≤D .22()()a b a b >+-三、填空题28.以等边三角形每个顶点为圆心,以边长为半径,在另两个顶点间作一段弧,三段弧围成的曲边三角形就是勒洛三角形.勒洛三角形是由德国机械工程专家、机构运动学家勒洛首先发现,所以以化的名字命名.一些地方的市政检修井盖、方孔转机等都有应用勒洛三角形.如图,已知某勒洛三角形的一段弧 AB 的长度为π,则该勒洛三角形的面积为___________.29.我国南北朝时代的祖暅提出“幂势既同,则积不容异”,即祖暅原理:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总是相等,那么这两个几何体的体积相等(如图1).在xOy 平面上,将双曲线的一支2214x y -=及其渐近线12y x =和直线y =0,y =2围成的封闭图形记为D ,如图2中阴影部分.记D 绕y 轴旋转一周所得的几何体为Ω,利用祖暅原理试求Ω的体积为________.30.北宋时期的科学家沈括在他的著作《梦溪笔谈》一书中提出一个有趣的问题,大意是:酒店把酒坛层层堆积,底层摆成长方形,以后每上一层,长和宽两边的坛子各少一个,堆成一个棱台的形状(如图1),那么总共堆放了多少个酒坛?沈括给出了一个计算酒坛数量的方法——隙积术,设底层长和宽两边分别摆放a ,b 个坛子,一共堆了n 层,则酒坛的总数(1)(1)(2)(2)(1)(1)S ab a b a b a n b n =+--+--+⋅⋅⋅+-+-+个.现在将长方形垛改为三角形垛,即底层摆成一个等边三角形,向上逐层等边三角形的每边少1个酒坛(如图2),若底层等边三角形的边上摆放10个酒坛,顶层摆放1个酒坛,那么酒坛的总数为______.31.“中国天眼”是我国具有自主知识产权、世界最大单口径、最灵敏的球面射电望远镜(如图,其反射面的形状为球冠(球冠是球面被平面所截后剩下的曲面,截得的圆为底,垂直于圆面的直径被截得的部分为高,设球冠底的半径为r ,球冠的高为h ,则球的半径R =______________.32.我国魏晋时期著名的数学家刘徽在《九章算术注》中提出了“割圆术——割之弥细,所失弥少,割之又割,以至不可割,则与圆周合体而无所失矣”.也就是利用圆的内接多边形逐步逼近圆的方法来近似计算圆的面积和周长.如图①,若用圆的内接正六边形的面积1S ,来近似估计半径为1的O 的面积,再用如图②的圆的内接正十二边形的面积2S 来近似估计半径为1的O 的面积,则21S S -=______.(结果保留根号)33.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体的棱长为______34.中国古代计时器的发明时间不晚于战国时代(公元前476年~前222年),其中沙漏就是古代利用机械原理设计的一种计时装置,它由两个形状完全相同的容器和一个狭窄的连接管道组成,开始时细沙全部在上部容器中,细沙通过连接管道流到下部容器,如图,某沙漏由上、下两个圆锥容器组成,圆锥的底面圆的直径和高均为8cm ,细沙全部在上部时,其高度为圆锥高度的23(细管长度忽略不计).若细沙全部漏入下部后,恰好堆成一个盖住沙漏底部的圆锥形沙堆,则此圆锥形沙堆的高为___________cm .35.中国传统扇文化有着极其深厚的底蕴.按如下方法剪裁(如图1),扇面形状较为美观.从半径为20cm 的圆面中剪下扇形OAB ,使扇形OAB 的面积与圆面中剩余部分的面积比值为12-(12≈0.618,称为黄金分割比例),再从扇形OAB 中剪下扇环形ABDC 制作扇面,使扇环形ABDC 的面积与扇形OAB 的面积比值为12-.则一个按上述方法制作的扇形装饰品(如图2)的面积为________cm 2.36.几何学史上有一个著名的米勒问题:“设点M 、N 是锐角AQB ∠的一边QA 上的两点,试在边QB 上找一点P ,使得MPN ∠最大”,如图,其结论是:点P 为过M 、N 两点且射线QB 相切的圆的切点,根据以上结论解决以下问题:在平面直角坐标系xOy 中,给定两点()1,2M -、()1,4N ,点P 在x 轴上移动,当MPN∠取最大值时,点P 的坐标为___________37.蜂巢是由工蜂分泌蜂蜡建成的从正面看,蜂巢口是由许多正六边形的中空柱状体连接而成,中空柱状体的底部是由三个全等的菱形面构成,菱形的一个角度是10928'︒,这样的设计含有深刻的数学原理、我国著名数学家华罗庚曾专门研究蜂巢的结构著有《谈谈与蜂房结构有关的数学问题》.用数学的眼光去看蜂巢的结构,如图,在正六棱柱ABCDEF A B C D E '''''﹣的三个顶点,,A C E 处分别用平面BFM ,平面BDO ,平面DFN 截掉三个相等的三棱锥M ABF -,O BCD -,N DEF -,平面BFM ,平面BDO ,平面DFN 交于点P ,就形成了蜂巢的结构.如图,设平面PBOD 与正六边形底面所成的二面角的大小为θ,则cos θ=________.(用含tan 5444'︒的代数式表示)38.世界四大历史博物馆之首卢浮宫博物馆始建于1204年,原是法国的王宫,是法国文艺复兴时期最珍贵的建筑物之一,以收藏丰富的古典绘画和雕刻而闻名于世,卢浮宫玻璃金字塔为正四棱锥,且该正四棱锥的高为21米,底面边长为30米,是华人建筑大师贝聿铭设计的.若玻璃金字塔五个顶点恰好在一个球面上,则该球的半径为______米.39.明朝著名易学家来知德以其太极图解释一年、一日之象的图式,一年气象图将二十四节气配以太极图,说明一年之气象,来氏认为“万古之人事,一年之气象也,春作夏长秋收冬藏,一年不过如此”.上图是来氏太极图,其大圆半径为4,大圆内部的同心小圆半径为1,两圆之间的图案是对称的,若在大圆内随机取一点,则该点落在黑色区域的概率为______.40.《九章算术》是我国古代著名数学经典,其中对勾股定理的论述,比西方早一千多年,其中有这样一个问题:“今有圆材埋在壁中,不知大小;以锯锯之,深一寸,锯道长一尺,问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯该材料,锯口深1寸,锯道长1尺,问这块圆柱形木料的直径是多少?长为0.5丈的圆柱形木材部分镶嵌在墙体中,截面图如图所示(阴影部分为镶嵌在墙体内的部分).已知弦1AB =尺,弓形高1CD =寸,估算该木材镶嵌墙内部分的体积约为______立方寸.(注:一丈=10尺=100寸,53.14,sin 22.513π≈≈ ,答案四舍五入,只取整数...........)41.若点M 在平面α外,过点M 作面α的垂线,则称垂足N 为点M 在平面α内的正投影,记为()N f M α=.如图,在棱长为1的正方体1111ABCD A B C D -中,记平面11AB C D 为β,平面ABCD 为γ,点P 是棱1CC 上一动点(与C ,1C 不重合)1()Q f f P γβ⎡⎤=⎣⎦,2()Q f f P βγ⎡⎤=⎣⎦.给出下列三个结论:①线段2PQ 长度的取值范围是12,22⎡⎫⎪⎢⎪⎣⎭;②存在点P 使得1//PQ 平面β;③存在点P 使得12PQ PQ ^;其中正确结论的序号是______.42.算筹是在珠算发明以前我国独创并且有效的计算工具,为我国古代数学的发展做出了很大贡献.在算筹记数法中,以“纵式”和“横式”两种方式来表示数字,如下表:数字形式123456789纵式横式表示多位数时,个位用纵式,十位用横式,百位用纵式,千位用横式,以此类推,遇零则置空,如图所示.如果把5根算筹以适当的方式全部放入下面的表格中,那么可以表示的三位数的个数为______.43.《九章算术》是我国古代数学名著,它在几何学中的研究比西方早一千多年,书中将底面为直角三角形,且侧棱垂直于底面的三棱柱称为堑堵;将底面为矩形,一侧棱垂直于底面的四棱锥称为阳马;将四个面均直角三角形的四面体称为鳖臑.如图,在堑堵111ABC A B C -中,AC BC ⊥,13AA =,11A BCC -外接球的表面积为25π,则阳马111A BCC B -体积的最大值为_________.44.《九章算术》是古代中国的第一部自成体系的数学专著,与古希腊欧几里得的《几何原本》并称现代数学的两大源泉.《九章算术》卷五记载:“今有刍甍,下广三丈,表四丈,上袤二丈,无广,高一丈.问积几何?”译文:今有如图所示的屋脊状楔体PQ ABCD -,下底面ABCD 是矩形,假设屋脊没有歪斜,即PQ 的中点R 在底面ABCD 上的投影为矩形ABCD 的中心点O ,//PQ AB ,4AB =,3AD =,2PQ =,1OR =(长度单位:丈).则楔体PQ ABCD -的体积为___________(体积单位:立方丈).四、双空题45.在中国古代数学著作《九章算术》的“方田”篇中,有一篇关于环形田的面积计算问题:今有环田,中周九十二步,外周一百二十二步,径五步,问为田几何?答:二亩五十五步,其大致意思为:现有一个环形田(如图),中周长92步,外周长122步,径长5步,问田的面积是多少?答:2亩55步2,则根据该问题中的相关数据可知该题所取的圆周率 的近似值是______;若已知某环形田的中周长1l步,外周长2l步,径长c步,则该环形田的面积为______.(单位:步2).参考答案1.C【分析】先计算弓所在的扇形的弧长,算出其圆心角后可得双手之间的距离.【详解】弓形所在的扇形如图所示,则 AB的长度为5 288πππ+=,故扇形的圆心角为58=524ππ,故55 1.414 1.7675 1.76844AB=≈⨯=≈.故选:C.2.D【分析】根据对称性判断出说法不正确的选项.【详解】根据对称性可知:立春和立冬的晷长相同、立夏和立秋的晷长相同、春分和秋分的晷长相同;与夏至的晷长相差最大的是冬至的晷长(冬至晷长最大,夏至晷长最小).所以说法错误的是D.故选:D【点睛】本小题主要考查中国古代数学文化,属于基础题.3.B【分析】根据题意可得孩子已经出生天数的五进制数为()5132,化为十进制数即可得出结果.【详解】由题意可知,孩子已经出生的天数的五进制数为()5132,化为十进制数为()251321535242=⨯+⨯+=.故选:B.【点睛】本题考查五进制数化为十进制数,考查计算能力,属于基础题.4.D 【分析】求出整个折扇和只有扇骨处的面积,相减即得扇面的面积,代入几何概型概率公式即可得解.【详解】S 大扇形212aR =,S 小扇形212r α=,22294014949R r P R -∴==-=.故选:D.【点睛】本题考查了扇形的面积公式和几何概型,考查了计算能力,属于简单题.5.A 【分析】根据“干支纪年法”依次写出2011-2019年的“干支纪年”,得到结果.【详解】2011年是辛卯年,2012年是玉辰年,2013年是癸已年,2014年是甲午年,2015年是乙未年,2016年是丙申年,2017年是丁酉年,2018年是戊戌年,2019年是己亥年.故选:A 【点睛】本题考查新定义,重点考查读懂题意,列举法,属于基础题型.6.A 【分析】由题可得BC CE =,可得12CD CE =,设2CE =,1CD =-,即可由余弦定理求出cos36︒,再由诱导公式即可求出.【详解】由题意得在正五角星中,C ,D 为AB 的两个黄金分割点,易知BC CE =.。
《新文化试题》专项练一、单选题1.刘徽(约公元225年295−年),魏晋时期伟大的数学家,中国古代数学理论的奠基人之一.他在割圆术中提出的“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”,这可视为中国古代极限观念的重要阐释.割圆术的核心思想是将一个圆的内接正n 边形等分成n 个等腰三角形,当n 变得很大时,这些等腰三角形的面积之和近似等于圆的面积.运用割圆术的思想,得到sin1°的近似值为( ) A .90πB .180π C .270π D .360π 2.二十四节气是中华民族上古农耕文明的产物,是中国农历中表示季节变迁的24个特定节令.如图,现行的二十四节气是根据地球在黄道(即地球绕太阳公转的轨道)上的位置变化而制定的每个节气对应地球在黄道上运动15 所到达的一个位置根据描述,从立冬到立春对应地球在黄道上运动所对圆心角的弧度数为( )A .3π−B .3πC .512π D .2π 3.“二进制”来源于我国古代的《易经》,二进制数由数字0和1组成,比如:二进制数()2011化为十进制的计算公式如下:210(2)(10)0110212123=×+×+×=.若从二进制数()211、()200、()210、()201中任选一个数字,则二进制数所对应的十进制数大于2的概率为( )A .12B .13C .23D .144.《九章算术》是中国古代张苍,耿寿昌所撰写的一部数学专著,全书总结了战国,秦,汉时期的数学成就.其中有如下问题:“今有五人分五钱,令上二人所得与下三人等,问各得几何?”其意思为:“今有5人分5钱,各人所得钱数依次为等差数列,其中前2人所得之和与后3人所得之和相等,问各得多少钱?”.则第4人所得钱数为( ) A .12钱B .23钱C .56钱D .1钱5.我国古代数学家僧一行应用“九服晷影算法”在《大衍历》中建立了晷影长l 与太阳天顶距()080θθ≤≤的对应数表,这是世界数学史上较早的一张正切函数表.根据三角学“表高”两次测量,“晷影长”分别是“表高”的2倍和3倍(所成角记1θ、2θ),则()12tan θθ−=( ) A .57B .57−C .17D .17−6.中国古典乐器一般按“八音”分类,这是我国最早按乐器的制造材料来对乐器进行分类的方法,最早见于《周礼·春官·大师》,八音分为“金、石、土、革、丝、木、匏、竹”,其中“金、石、木、革”为打击乐器,“土、匏、竹”为吹奏乐器,“丝”为弹拨乐器.某同学计划从“金、石、匏、竹、丝5种课程中选2种作兴趣班课程进行学习,则恰安排了1个课程为吹奏乐器、1个课程为打击乐器的概率为( ) A .34B .25C .35D .237.在地球公转过程中,太阳直射点的纬度随时间周而复始不断变化,太阳直射点回归运动的一个周期就是一个回归年.某科研小组以某年春分(太阳直射赤道且随后太阳直射点逐渐北移的时间)为初始时间,统计了连续400天太阳直射点的纬度值(太阳直射北半球时取正值,直射南半球时取负值).设第x 天时太阳直射点的纬度值为,y 该科研小组通过对数据的整理和分析.得到y 与x 近似满足23.43929110.01720279y sin x =.则每400年中,要使这400年与400个回归年所含的天数最为接近.应设定闰年的个数为(精确到1)( ) 参考数据182.62110.01720279π≈A .95B .96C .97D .988.我国南北朝数学家何承天发明的“调日法”是程序化寻求精确分数来表示数值的算法,其理论依据是:设实数x 的不足近似值和过剩近似值分别为b a和dc (,,,a b cd N +∈),则b da c++是x 的更为精确的不足近似值或过剩近似值.我们知道2.71828e =⋅⋅⋅,若令2714105e <<,则第一次用“调日法”后得4115是e 的更为精确的过剩近似值,即27411015e <<,若每次都取最简分数,那么第二次用“调日法”后可得e 的近似分数为( ) A .6825B .4115C .2710D .145二、多选题9.中国清朝数学家李善兰在1859年翻译《代数学》中首次将“function ”译做:“函数”,沿用至今,为什么这么翻译,书中解释说“凡此变数中函彼变数者,则此为彼之函数”.1930年美国人给出了我们课本中所学的集合论的函数定义,已知集合{}1,1,2,4M =−,函数的是( ) A .2y x =B .2y x =+C .2x y =D .2y x10.由倍角公式2cos 22cos 1x x =−,可知cos 2x 可以表示为cos x 的二次多项式.一般地,存在一个*()n n ∈N 次多项式2012012,),((),,=+++⋅⋅⋅+⋅⋅⋅∈n n n n P t a a t a t a t a a a a R ,使得cos cos ()=n nx P x ,这些多项式()n P t 称为切比雪夫(P .L .Tschebyscheff )多项式.则( ) A .3343()=−P t t t B .当3n ≥时,00a =C .1222+++⋅⋅⋅+≤n a a a aD .sin18°11.已知定义域为A 的函数()f x ,若对任意的12,x x A ∈,都有()()()1212f x x f x f x +≤+,则称函数()f x 为“定义域上的优美函数”以下函数是“定义域上的优美函数”的有( )A .2()1f x x =+,11,22x∈− B .()x f x e =,x ∈R C .()sin f x x =,[0,]x π∈D .3()log f x x =,[2,)x ∈+∞12.泰戈尔说过一句话:世界上最远的距离,不是树枝无法相依,而是相互了望的星星,却没有交汇的轨迹;世界上最远的距离,不是星星之间的轨迹,而是纵然轨迹交汇,却在转转瞬间无处寻觅,已知()0,2M ,直线:0l y =,若某直线上存在点P ,使得点P 到点M 的距离比到直线l 的距离大2.则称该直线为“最远距离直线”.则下列结论错误的是( )A .114y x =−+是“最远距离直线” B .26y x =−不是“最远距离直线” C .点P 的轨迹与直线:2l y =是没有交汇的轨迹(即两个轨迹没有交点) D .点P 的轨迹曲线是一条线段 三、填空题13.在《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑.已知在鳖臑A BCD −中,满足AB ⊥平面BCD ,且4BC CD ==,当该鳖臑的内切球的半径为)21时,则此时它外接球的体积为______.14.以等边三角形每个顶点为圆心,以边长为半径,在另两个顶点间作一段弧,三段弧围成的曲边三角形就是勒洛三角形.勒洛三角形是由德国机械工程专家、机构运动学家勒洛三角形.如图,已知某勒洛三角形的一段弧 AB 的长度为π,则该勒洛三角形的面积为___________.15.莱昂哈德·欧拉(LeonhardEuler )是18世纪数学界最杰出的人物之一,是数学史上最多产的数学家.在数学的许多分支中可以经常见到以欧拉命名的常数、公式和定理,平面几何里欧拉定理的内容是:设三角形的外接圆半径为R ,内切圆半径为r ,外心与内心的距离为d ,则222d R Rr =−.若某直角三角形的斜边长为10,其外心与内心的距离为d ,则d 的最小值为___________.16.数学家欧拉在1765年发现,任意三角形的外心、重心、垂心在同一条直线上,这条直线称为“欧拉线”.已知ABC 的顶点()2,0A 、()0,4B ,其“欧拉线”的直线方程为20x y −+=,则ABC 的顶点C 的坐标_______.四、解答题17.欧拉(1707﹣1783),他是数学史上最多产的数学家之一,他发现并证明了欧拉公式e i θ=cos θ+isin θ,从而建立了三角函数和指数函数的关系,若将其中的θ取作π就得到了欧拉恒等式e πi +1=0,它是令人着迷的一个公式,它将数学里最重要的几个量联系起来,两个超越数——自然对数的底数e ,圆周率π,两个单位——虚数单位i 和自然数单位1,以及被称为人类伟大发现之一的0,数学家评价它是“上帝创造的公式”,请你根据欧拉公式:e i θ=cos θ+isin θ,解决以下问题:(1)将复数i i 4e e ππ+写成a +b i (a ,b ∈R ,i 为虚数单位)的形式; (2)求i i ||e e πθ−(θ∈R )的最大值.18.数学家斐波那契在其所著《计算之书》中,记有“二鸟饮泉”间题,题意如下:“如图1,两塔相距**步,高分别为**步和**步.两塔间有喷泉,塔顶各有一鸟.两鸟同时自塔顶出发,沿直线飞往喷泉,同时抵达(假设两鸟速度相同).求两塔与喷泉中心之距.”如图2,现有两塔AC、BD,底部A、B相距12米,塔AC高3米,塔BD高9米.假设塔与地面垂直,小鸟飞行路线与两塔在同一竖直平面内.(1)若如《计算之书》所述,有飞行速度相同的两鸟,同时从塔顶出发,同时抵达喷泉所在点M,求喷泉距塔底A的距离;(2)若塔底A、B之间为喷泉形成的宽阔的水面,一只小鸟从塔顶C出发,飞抵水面A、B之间的某点P处饮水之后,飞到对面的塔顶D处.求当小鸟飞行距离最短时,饮水点P到塔底A的距离.19.公元1651年,法国一位著名的统计学家德梅赫()Demere 向另一位著名的数学家帕斯卡(.)B Pascal 提请了一个问题,帕斯卡和费马()Fermat 讨论了这个问题,后来惠更斯(.)C Huygens 也加入了讨论,这三位当时全欧洲乃至全世界最优秀的科学家都给出了正确的解答该问题如下:设两名赌徒约定谁先赢()*1,k k k N >∈局,谁便赢得全部赌注a 元.每局甲赢的概率为(01)p p <<,乙赢的概率为1p −,且每局赌博相互独立.在甲赢了()m m k <局,乙赢了()n n k <局时,赌博意外终止赌注该怎么分才合理?这三位数学家给出的答案是:如果出现无人先赢k 局则赌博意外终止的情况,甲、乙便按照赌博再继续进行下去各自赢得全部赌注的概率之比:P P 甲乙分配赌注. (1)甲、乙赌博意外终止,若2243,4,2,1,3a k m n p =====,则甲应分得多少赌注? (2)记事件A 为“赌博继续进行下去乙赢得全部赌注”,试求当4,2,1k m n ===时赌博继续进行下去甲赢得全部赌注的概率()f p ,并判断当45p ≥时,事件A 是否为小概率事件,并说明理由.规定:若随机事件发生的概率小于0.05,则称该随机事件为小概率事件.20.给定有限个正数满足条件T :每个数都不大于50且总和1275L =.现将这些数按下列要求进行分组,每组数之和不大于150且分组的步骤是:首先,从这些数中选择这样一些数构成第一组,使得150与这组数之和的差1r 与所有可能的其他选择相比是最小的,1r 称为第一组余差;然后,在去掉已选入第一组的数后,对余下的数按第一组的选择方式构成第二组,这时的余差为2r ;如此继续构成第三组(余差为3r )、第四组(余差为4r )、…,直至第N 组(余差为N r )把这些数全部分完为止.(1)判断,1r ,2r …N r 的大小关系,并指出除第N 组外的每组至少含有几个数; (2)当构成第()n n N <组后,指出余下的每个数与n r 的大小关系,并证11501n n Lr n −−>−; (3)对任何满足条件T 的有限个正数,证明:11N ≤.参考解析1.B【解析】将一个单位圆分成360个扇形,则每个扇形的圆心角度数均为1°, ∵这360个扇形对应的等腰三角形的面积之和近似于单位圆的面积,∴136011sin1180sin12π××××°=°≈,∴sin1180π°≈.故选:B.2.D【解析】根据题意,从立冬到立春对应地球在黄道上运动所对圆心角的弧度数为61590×= ,即2π.故选:D. 3.D【解析】由题意,()()210311=、()(10)2000=、()(10)2102=、()(10)2011=, ∴只有()211对应的十进制数大于2,∴任选的二进制数所对应的十进制数大于2的概率14.故选:D4.C【解析】设从前到后的5个人所得钱数构成首项为1a ,公差为d 的等差数列{}n a ,则有12345a a a a a +=++,123455a a a a a ++++=,故118021a d a d +=+= , 解得14316a d==−,则414153326a a d =+=−=.故选:C 5.D【解析】由题意知1tan 2θ=,2tan 3θ=,所以()121212tan tan 231tan 1tan tan 1237θθθθθθ−−−===−++×. 故选:D. 6.B【解析】“金、石”为打击乐器共2种,“匏、竹”为吹奏乐器共2种,“丝”为弹拨乐器,共1种,5选2的基本事件有(金、石)(金、匏)(金、竹)(金、丝)(石、匏)(石、竹)(石、丝)(匏、竹)(匏、丝)(竹、丝),共10种情况,其中恰安排了1个课程为吹奏乐器、1个课程为打击乐器的基本事件为(金、匏)(金、竹)(石、匏)(石、竹),共4种,故所求概率为42105=.故选:B. 7.C 【解析】()2182.62112365.2422,40036596.88970.01720279T T π=≈×=−=≈,所以应设定闰年的个数为97.故选:C 8.A【解析】第一次用“调日法”后得e 的更为精确的过剩近似值是4115,即27411015e <<, 第二次用“调日法”后得e 的更为精确的过剩近似值是274168101525+=+,故选:A.9.CD【解析】在A 中,当4x =时,8y N =∉,故A 错误; 在B 中,当1x =时,3y N =∉,故B 错误;在C 中,任取x M ∈,总有2xy N =∈,故C 正确;在D 中,任取x M ∈,总有2y x N =∈,故D 正确. 故选:CD . 10.ACD【解析】因为32cos3cos2cos sin 2sin 2cos cos 2sin cos =−=−−x x x x x x x x x ,所以()323cos32cos cos 21cos cos 4cos 3cos =−−−=−x x x x x x x ,即3343()=−P t t t ,故选项A 正确;令2x π=,则cos 02==t π,则0cos 2n a π=,则00,1=±a ,即选项B 错误;令0x =,则cos1t x ==,可得011++⋅⋅⋅+=n a a a ,所以10,1,2+⋅⋅⋅+=n a a ,则选项C 正确;设sin18°=x ,则()222cos722cos 3612121=°=°−=−−x x ,将x 代入,方程成立,即选项D 正确. 故选:ACD . 11.ACD【解析】由题意:定义域为A 的函数()f x ,若对任意的12,x x A ∈,都有()()()1212f x x f x f x +≤+,则称函数()f x 为“定义域上的优美函数”: 对于A :2()1f x x =+,11,22x∈−, ()222121212121()21,f x x x x x x x x +=++++=+()()2212212f x f x x x +++=.()()()1212121211,,,22212x x x x f x x f x f x∈−∴+≤+ ≤ +∴,故A 正确;对于A :()x f x e =,x ∈R ,当()()()221212121,,=2x x f x x e f x f x e ==+=+,此时()()()1212f x x f x f x +>+, 不符合()()()1212f x x f x f x +≤+,故B 错误; 对于C :()sin f x x =,[0,]x π∈12121221()sin()sin cos sin cos f x x x x x x x x +=+=+,而1212()()sin sin f x f x x x +=+,1221,[0,],cos 1,cos 1x x x x π∈∴≤≤ ,122112sin cos sin cos sin sin x x x x x x ∴+≤+,即()()()1212f x x f x f x +≤+,故C 正确;对于D :3()log f x x =,[2,)x ∈+∞,当[)12,2,x x ∈+∞时,1212x x x x +≤恒成立.()12()123log x x f x x ++= ,121212333()()log log log x x x x f x f x +=+=()()()1212f x x f x f x ∴+≤+,故D 正确.故选:ACD 12.BCD【解析】 点P 到点M 的距离比到直线l 的距离大2,∴点P 到点M 的距离等于到直线2y =−的距离,因此点P 的轨迹是以M 为焦点的抛物线,故D 错误;则可得点P 的轨迹方程为28x y =,联立方程28114x yy x ==−+可得2280x x +−=,则()448360∆=−×−=>,有解,故114y x =−+是“最远距离直线”,故A 正确;联立方程2826x yy x = =− 可得216480x x −+=,则216448640∆=−×=>,有解,故26y x =−是“最远距离直线”,故B 错误;联立方程282x yy = = ,可解得4x =±,故两个轨迹有交点,故C 错误.综上,选项BCD 错误. 13.【解析】由题意可知:鳖臑如图:设AB h =,利用等体积转换: )1111111444444213232222V h h h =××××=×××+××+×+×× ,解得:4h =或0h =(舍去),故外接球的半径为:R=故(343V π==,故答案为:.14【解析】设等边三角形ABC 的边长为a ,则3a ππ=,解得3a =,所以,由弧 AB 与AB 所围成的弓形的面积为222113sin 3232362a a ππππ×−×=×=,所以该勒洛三角形的面积332S π =×15.5【解析】设该直角三角形的一锐角为α,易知该直角三角形的外接圆半径5R =, 内切圆的半径10sin 10cos 105sin 5cos 52r αααα+−==+−,则2222525(5sin 5cos 5)7550(sin cos )d R Rr αααα−−×+−−+π75)4α−+,当π4α=时,2min75d =−d 的最小值为5. 16.()4,0−【解析】设(),C m n ,由重心坐标公式得ABC 的重心为24,33m n ++, 代入欧拉线方得242033m n++−+=,整理得40m n −+=①, 因为线段AB 的中点为()1,2,40202AB k −==−−,所以AB 的中垂线的斜率为12,所以线段AB 的中垂线方程为()1212y x −=−,即230x y −+=, 联立23020x y x y −+= −+= ,解得11x y =− =,所以,ABC 的外心坐标为()1,1−, 联立①②解得40m n =− = 或04m n = =.当0m =,4n =时,点B 、C 两点重合,舍去. 所以,4m =−,0n =,即ABC 的顶点C 的坐标为()4,0−.17.(1)1 ;(2)2.【解析】(1)i i 4cos isin (cos 1isin )44e e ππππππ ++=+++=;(2)i i |||cos isin (cos isin )||(1cos )isin |e e πθππθθθθ−=+−+=−−−=cos θ=1,即θ=2k π,k ∈Z 时,i i ||e e πθ−(θ∈R )的最大值为2.18.(1)9米;(2)3米.【解析】(1)设AM x =9x =; (2)设C ′是C 关于直线AB 的对称点,连接C D ′交AB 于P , Q 是线段AB 上任一点,如图,QC QD QC QD C D ′′+=+≥,当且仅当Q 与P 重合时,等号成立.P 点即为所求.∵,AC AB BD AB ′⊥⊥,∴//AC BD ′,∴AC AP BD BP′=,而AC AC ′=, ∴3912AP AP =−,解得3AP =.19.(1)216元;(2)3()1(13)(1)f p p p =−+−,是,理由见解析.【解析】(1)设赌博再继续进行X 局甲赢得全部赌注,则最后一局必然甲赢,由题意知,最多再进行4局,甲、乙必然有人赢得全部赌注,当2X =时,甲以4:1赢,所以224(2)39P X === , 当3X =时,甲以4:2赢,所以122228(3)133327P X C ==⋅×−×= , 当4X =时,甲以4:3赢,所以2132224(4)133327P X C ==⋅×−×= , 于是得甲赢得全部赌注的概率为48424892727279++==, 所以,甲应分得的赌注为82432169×=元. (2)设赌博继续进行Y 局乙赢得全部赌注,则最后一局必然乙赢,当3Y =时,乙以4:2赢,3(3)(1)P Y p ==−, 当4Y =时,乙以4:3赢,1333(4)(1)3(1)P Y C p p p p ==−=−, 从而得乙赢得全部赌注的概率为333()(1)3(1)(13)(1)P A p p p p p =−+−=+−, 于是甲赢得全部赌注的概率3()1()1(13)(1)f p P A p p =−=−+−,对()f p 求导得322()3(1)(13)3(1)(1)12(1)f p p p p p p ′=−−−+⋅−−=−, 因415p ≤<,即()0f p ′>,从而有()f p 在4,15上单调递增, 于是得min 4608()5625f p f == ,乙赢的概率()P A 最大值为6081710.02720.05625625−==<, 所以事件A 是小概率事件.20.【解析】(1)123...N r r r r ≤≤≤≤,由每个数都不大于50,每组数之和不大于150, ∴除第N 组外的每组至少含有150350=. (2)从第1、2、…、n 组数的和分别为12150,150,...,150n r r r −−−,而所有数总和为L , ∴构成第()n n N <组后,余下数的总和为12[(150)(150)...(150)]n L r r r −−+−++−, 余下数的每个数必大于n r ,即12[(150)(150)...(150)]n n L r r r r −−+−++−>, 整理得:121...150n r r r n L −+++>−,而1211...(1)n n r r r n r −−+++≤−, ∴1(1)150n n r n L −−>−,则11501n n L r n −−>−得证.(3)若11N >,即分完第11组后仍有余数,由(2)知余下的各数大于11r 且1110r r ≥, ∴余下各数>111015*********.510r r ×−≥>=,又由(1)结论知第11组至少有3个数, ∴第11组之和大于37.53112.5×=,而第11组余差11150112.537.5r <−=,与1137.5r >矛盾,所以11N ≤得证.。