高考中数学文化试题共18页
- 格式:ppt
- 大小:1.69 MB
- 文档页数:18
专题数学文化题一、单项选择题1.《孙子算经》是我国古代的数学名著,书中有以下问题:“今有五等诸侯,共分橘子六十颗,人别加三颗. 问:五人各得几何?”其意思为:“有 5 个人分 60 个橘子,他们分得的橘子个数成公差为 3 的等差数列,问 5 人各得多少橘子 . ”依据这个问题,有以下 3 个说法:①获得橘子最多的人所得的橘子个数是 15;②获得橘子最少的人所得的橘子个数是 6;③获得橘子第三多的人所得的橘子个数是 12. 此中说法正确的个数是()A.0 B . 1 C .2 D . 3【答案】 C【分析】由题可设这五人的橘子个数分别为:,其和为 60,故 a=6 ,由此可知②获得橘子最少的人所得的橘子个数是 6;③获得橘子第三多的人所得的橘子个数是 12 是正确的,应选 C2.《算法统宗》中有一图形称为“方五斜七图”,注曰:方五斜七者此乃言其大概矣,内方五尺外方七尺有奇.实质上,这是一种开平方的近似计算,即用 7 近似表示,当内方的边长为 5 时,外方的边长为,略大于 7.以下图,在外方内随机取一点,则此点取自内方的概率为()A. B. C. D.【答案】 A【分析】由题意可得,,则外方内随机取一点,则此点取自内方的概率为,应选 A.3.《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”已知某“堑堵”的三视图以下图,俯视图中间的实线均分矩形的面积,则该“堑堵”的表面积为A. B.2 C. D.【答案】 D【分析】依据题意和三视图知几何体是一个放倒的直三棱柱,底面是一个直角三角形,两条直角边分别是、斜边是 2,且侧棱与底面垂直,侧棱长是 2,几何体的表面积,应选:D.4.陕西省西安市周至县的旅行景点楼观台,号称“天下第一福地”,是我国有名的道教胜迹,古代圣哲老子曾在此著《道德经》五千言 . 景区内有一处景点建筑,是按古典著作《连山易》中记录的金、木、水、火、土之间相克相生的关系,以下图,现从五种不一样属性的物质中任取两种,则拿出的两种物质恰巧是相克关系的概率为()A. B. C. D.【答案】 B【分析】方法一:从五种不一样属性的物质中任取两种,基本领件数目为拿出两种物质恰巧相克的基本领件数目为则拿出两种物质恰巧是相克关系的概率为因此选 B.方法二:从五种不一样属性的物质中任取两种,基本领件有“火土,火金,火水,火木,土金,土水,土木,金水,金木,水木”,共 10 种,此中“拿出两种物质恰巧相克”的基本领件是“火土,土金,土木,金水,水木”,共 5 种,则拿出两种物质恰巧是相克关系的概率为5 110 2,选B.5.中国宋朝的数学家秦九韶曾提出“三斜求积术”,即假定在平面内有一个三角形,边长分别为,三角形的面积可由公式求得,此中为三角形周长的一半,这个公式也被称为海伦 - 秦九韶公式,现有一个三角形的边长知足,则此三角形面积的最大值为 ( )A. B. C. D.【答案】 C【分析】由题意,p= 10,S 8 ,∴此三角形面积的最大值为 8 .应选:C.6.《算法统宗》是中国古代数学名著,由明朝数学家程大位编著,它对我公民间普及珠算和数学知识起到了很大的作用,是东方古代数学的名著.在这部著作中,很多半学识题都是以歌诀形式体现的,“九儿问甲歌”就是此中一首:一个公公九个儿,若问生年总不知,自长排来差三岁,共年二百又零七,借问长儿多少岁,各儿年纪要详推.在这个问题中,记这位公公的第个儿子的年纪为,则 ( )。
高中数学文化试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是函数y=2x^2的图像?A. 经过原点的抛物线B. 经过原点的直线C. 经过原点的双曲线D. 经过原点的椭圆答案:A2. 圆的一般方程是:A. (x-a)^2 + (y-b)^2 = r^2B. x^2 + y^2 = r^2C. x^2 + y^2 + r^2 = 0D. (x-a)^2 + (y-b)^2 = 0答案:A3. 已知集合A={1,2,3},B={2,3,4},则A∩B等于:A. {1,2}B. {2,3}C. {1,3}D. {3,4}答案:B4. 若f(x)=x^2-4x+3,则f(2)的值为:A. 1C. 3D. 5答案:A5. 等差数列{an}的前三项分别为1, 4, 7,则该数列的公差d为:A. 2B. 3C. 4D. 5答案:B6. 函数f(x)=x^3-3x^2+2在x=1处的导数为:A. 0B. 1C. 2D. -1答案:B7. 已知向量a=(2,3),b=(1,k),若a⊥b,则k的值为:A. 2B. -2C. 3D. -3答案:B8. 函数y=sinx在区间[0,π]上的最大值为:B. 1C. πD. -1答案:B9. 圆的半径为5,圆心在原点,该圆的方程为:A. x^2 + y^2 = 25B. (x-5)^2 + y^2 = 25C. x^2 + y^2 - 5^2 = 0D. x^2 + y^2 + 5^2 = 0答案:A10. 函数f(x)=x^2-6x+8的顶点坐标为:A. (3, -1)B. (-3, 1)C. (3, 1)D. (-3, -1)答案:A二、填空题(每题4分,共20分)1. 等比数列{an}的首项为2,公比为3,其第五项为______。
答案:1622. 抛物线y^2=4x的焦点坐标为______。
答案:(1,0)3. 直线l的斜率为-1,且经过点(2,3),则直线l的方程为______。
2024年普通高等学校招生全国统一考试 全国甲卷数学(文) 试卷养成良好的答题习惯,是决定成败的决定性因素之一。
做题前,要认真阅读题目要求、题干和选项,并对答案内容作出合理预测;答题时,切忌跟着感觉走,最好按照题目序号来做,不会的或存在疑问的,要做好标记,要善于发现,找到题目的题眼所在,规范答题,书写工整;答题完毕时,要认真检查,查漏补缺,纠正错误。
1.集合{1,2,3,4,5,9}A =,{1}B x x A =+∈∣,则A B =( ) A.{1,2,3,4}B.{1,2,3,4}C.{1,2,3,4}D.{1,2,3,4}2.设z =,则z z ⋅=( ) A.2B.2C.2D.23.若实数x ,y 满足约束条件(略),则5z x y =-的最小值为( ) A.5B.12C.2-D.72-4.等差数列{}n a 的前n 项和为n S ,若91S =,37a a +=( ) A.2-B.73C.1D.295.甲、乙、丙、丁四人排成一列,丙不在排头,且甲或乙在排尾的概率是( ) A.14 B.13 C.12D.236.已知双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点分别为12(0,4)(0,4)F F -、,且经过点(6,4)P -,则双曲线C 的离心率是( )A.135B.137C.2D.37.曲线6()3f x x x =+在 (0,1)-处的切线与坐标轴围成的面积为( )A.16B.2 C.12D.28.函数()2()e e sin x x f x x x -=-+-的大致图像为( ) 9.已知cos cos sin ααα=-an 4πt α⎛⎫+= ⎪⎝⎭( )A.3B.1-C.3-D.1310.直线过圆心,直径11.已知m n 、是两条不同的直线,αβ、是两个不同的平面:①若m α⊥,n α⊥,则//m n ;②若m αβ=,//m n ,则//n β;③若//m α,//n α,m 与n 可能异面,也可能相交,也可能平行;④若m αβ=,n 与α和β所成的角相等,则m n ⊥,以上命题是真命题的是( )A.①③B.②③C.①②③D.①③④12.在ABC △中,内角A ,B ,C 所对边分别为a ,b ,c ,若π3B =,294b ac =,则sin sin A C +=( )A.13B.13C.2D.1313.略14.函数()sin f x x x =,在[0,π]上的最大值是_______. 15.已知1a >,8115log log 42a a -=-,则a =_______. 16.曲线33y x x =-与2(1)y x a =--+在(0,)+∞上有两个不同的交点,则a 的取值范围为_______.17.已知等比数列{}n a 的前n 项和为n S ,且1233n n S a +=-.(1)求{}n a 的通项公式; (2)求数列{} n S 的通项公式. 18.题干略.19.如图,己知//AB CD ,//CD EF ,2AB DE EF CF ====,4CD =,10AD BC ==,23AE =,M 为CD 的中点.(1)证明://EM 平面BCF ; (2)求点M 到AD E 的距离. 20.已知函数()(1)ln 1f x a x x =--+. (1)求()f x 的单调区间;(2)若2a ≤时,证明:当1x >时,1()e x f x -<恒成立.21.已知椭圆2222:1(0)x y C a b a b +=>>的右焦点为F ,点3(1,)2M 在椭圆C 上,且MF x ⊥轴.(1)求椭圆C 的方程;(2)(4,0)P ,过P 的直线与椭圆C 交于A ,B 两点,N 为FP 的中点,直线NB 与MF 交于Q ,证明:AQ y ⊥轴.22.[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1ρρθ=+. (1)写出C 的直角坐标方程;(2)直线x ty t a =⎧⎨=+⎩(t 为参数)与曲线C 交于A 、B 两点,若||2AB =,求a 的值.23.[选修4-5:不等式选讲] 实数a ,b 满足3a b +≥. (1)证明:2222a b a b +>+; (2)证明:22226a b b a -+-≥.2024年普通高等学校招生全国统一考试 全国甲卷数学(文)答案1.答案:A解析:因为{}1,2,3,4,5,9A =,{1}{0,1,2,3,4,8}B x x A =+∈=∣,所以{1,2,}3,4A B =,故选A. 2.答案:D解析:因为z =,所以2z z ⋅=,故选D. 3.答案:D解析:将约束条件两两联立可得3个交点:(0,1)-、3,12⎛⎫ ⎪⎝⎭和1 3,2⎛⎫⎪⎝⎭,经检验都符合约束条件.代入目标函数可得:min 72z =-,故选D.4.答案:D解析:令0d =,则9371291,,99n n S a a a a ===+=,故选D.5.答案:B解析:甲、乙、丙、丁四人排成一列共有24种可能.丙不在排头,且甲或乙在排尾的共有8种可能,81243P ==,故选B. 6.答案:C解析:12212F F ce a PF PF ===-,故选C.7. 答案:A解析:因为563y x '=+,所以3k =,31y x =-,1111236S =⨯⨯=,故选A.8.答案:B解析:选B.9. 答案:B解析:因为cos cos sin ααα=-tan 1α=,tan 1tan 141tan πααα+⎛⎫+== ⎪-⎝⎭,故选B.10.答案:直径解析:直线过圆心,直径. 11. 答案:A解析:选A. 12.答案:C 解析:因为π3B =,294b ac =,所以241sin sin sin 93A C B ==.由余弦定理可得:22294b ac ac ac =+-=,即:22134a c ac +=,221313sin sin sin sin 412A C A C +==,所以2227(sin sin )sin sin 2sin sin 4A C A C A C +=++=,sin sin 2A C +=,故选C.13. 答案:略解析: 14.答案:2解析:π()sin 2sin 23f x x x x ⎛⎫==-≤ ⎪⎝⎭,当且仅当5π6x =时取等号.15. 答案:64解析:因为28211315log log log 4log 22a a a a -=-=-,所以()()22log 1log 60a a +-=,而1a >,故2log 6a =,64a =.16. 答案:(2,1)-解析:令323(1)x x x a -=--+,则323(1)a x x x =-+-,设32()3(1)x x x x ϕ=-+-,()(35)(1)x x x ϕ+'=-,()x ϕ在(1,)+∞上递增,在(0,1)上递减.因为曲线33y x x =-与2(1)y x a =--+在(0,)+∞上有两个不同的交点,(0)1ϕ=,(1)2ϕ=-,所以a 的取值范围为(2,1)-. 17.答案:见解析解析:(1)因为1233n n S a +=-,所以12233n n S a ++=-,两式相减可得:121233n n n a a a +++=-,即:2135n n a a ++=,所以等比数列{}n a 的公比53q =,又因为12123353S a a =-=-,所以11a =,153n n a -⎛⎫= ⎪⎝⎭.(2)因为1233n n S a +=-,所以()133511223nn n S a +⎡⎤⎛⎫=-=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.18.答案:见解析解析:(1)22150(70242630) 6.635965450100χ⨯-⨯=<⨯⨯⨯,没有99%的把握;(2)p p >+. 19.答案:见解析解析:(1)由题意://EF CM ,EF CM =,而CF 平面ADO ,EM 平面ADO ,所以//EM 平面BCF ;(2)取DM 的中点O ,连结OA ,OE ,则OA DM ⊥,OE DM ⊥,3OA =,OE =而AE =,故OA OE ⊥,AOE S =△因为2DE =,AD =AD DE ⊥,AOE S △DM 设点M 到平面ADE 的距离为h ,所以1133M ADE ADE AOE V S h S DM -=⋅=⋅△△,h ==,故点M到ADE 的距离为5. 20.答案:见解析解析:(1)()(1)ln 1f x a x x =--+,1()ax f x x-=,0x >. 若0a ≤,()0f x <,()f x 的减区间为(0,)+∞,无增区间; 若0a >时,当10x a <<时,()0f x '<,当1x >时,()0f x '>,所以()f x 的减区间为10,a ⎛⎫ ⎪⎝⎭,增区间为1,a ⎛⎫+∞ ⎪⎝⎭;(2)因为2a ≤,所以当1x >时,111e ()e (1)ln 1e 2ln 1x x x f x a x x x x ----=--+-≥-++.令1()e 2ln 1x g x x x -=-++,则11()e 2x g x x -'=-+.令()()h x g x '=.则121()e x h x x-'=-在(1,)+∞上递增,()(1)0h x h ''>=,所以()()h x g x '=在(1,)+∞上递增,()(1)0g x g ''>=,故()g x 在(1,)+∞上递增,()(1)0g x g >=,即:当1x >时,1()e x f x -<恒成立.21.答案:见解析解析:(1)设椭圆C 的左焦点为1F ,则12F F =,3||2MF =.因为MF x ⊥轴,所以152MF =,12||4a MF MF =+=,解得:24a =,2213b a =-=,故椭圆C 的方程为:22143x y +=; (2)解法1:设()11,A x y ,()22,B x y ,AP PB λ=,则12124101x x y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩,即212144x x y y λλλ=+-⎧⎨=-⎩.又由()()22112222234123412x y x y λλλ⎧+=⎪⎨+=⎪⎩可得:1212121234121111x x x x y y y y λλλλλλλλ+-+-⋅⋅+⋅=+-+-,结合上式可得:25230x λλ-+=.(4,0)P ,(1,0)F ,5,02N ⎛⎫⎪⎝⎭,则222122335252Q y y y y y x x λλλλ===-=--,故AQ y ⊥轴.解法2:设()11,A x y ,()22,B x y ,则121244y y x x =--,即:()1221214x y x y y y -=-,所以()()()2222222211*********21213444433y x y x y x y x y x y x y y y ⎛⎫-+=-=+-+ ⎪⎝⎭()()()()212121122144y y y y y y x y x y =-+=-+,即:122121x y x y y y +=+,2112253x y y y =-.(4,0)P ,(1,0)F ,5,02N ⎛⎫⎪⎝⎭,则21212112335252Q y y y y y x y y x ===--,故AQ y ⊥轴.22.答案:(1)221y x =+ (2)34解析:(1)因为cos 1ρρθ=+,所以22(cos 1)ρρθ=+,故C 的直角坐标方程为:222(1)x y x +=+,即221y x =+;(2)将x ty t a =⎧⎨=+⎩代入221y x =+可得:222(1)10t a t a +-+-=,12||2AB t =-==,解得:34a =. 23.答案:见解析解析:(1)因为3a b +≥,所以22222()a b a b a b +≥+>+. (3)222222222222()a b b a a b b a a b a b -+-≥-+-=+-+=22222()()()()(1)6a b a b a b a b a b a b +-+≥+-+=++-≥.高考质量提升是一项系统工程,涉及到多个方面、各个维度,关键是要抓住重点、以点带面、全面突破,收到事半功倍的效果。
历年高考真题(数学文化)1. (2009 湖北· 理)古希腊人常用小石子在沙滩上摆成各种形状研究数,如他们研究过图 1 中的 1, 3, 6, 10,,由于这些数能表示成三角形,将其称为三角形数;类似地,称图 2 中的 1, 4,9,16这样的数为正方形数,下列数中既是三角形数又是正方形数的是()2. ( 2011 湖北·文)《九章算术》“竹九节”问题:现有一根9 节的竹子,自上而下各节的容积成等差数列,上面 4 节的容积共 3 升,下面 3 节的容积共 4 升,则第 5 节的容积为A.1升B .67升C .47升D .37升66 44 333. ( 2011 湖北·理)《九章算术》“竹九节”问题:现有一根9 节的竹子,自上而下各节的容积成等差数列,上面 4 节的容积共 3 升,下面 3 节的容积共4 升,则第 5 节的容积为升.4.( 2012? 湖北)我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径,“开立圆术”相当于给出了已知球的体积V,求其直径 d 的一个近似公式 d 3 16 = .. 判断,V .人们还用过一些类似的近似公式.根据π9下列近似公式中最精确的一个是()A. d 3 16d 3 2V C. d 3300d 321 V B. V D. V 9 157 115. ( 2013? 湖北)在平面直角坐标系中,若点P(x, y)的坐标 x,y 均为整数,则称点P 为格点.若一个多边形的顶点全是格点,则称该多边形为格点多边形.格点多边形的面积记为 S,其内部的格点数记为 N,边界上的格点数记为 L.例如图中△ ABC是格点三角形,对应的S=1, N=0, L=4.(Ⅰ)图中格点四边形 DEFG对应的 S,N, L 分别是 ________;(Ⅱ)已知格点多边形的面积可表示为S aN bL c 其中a,b,c为常数.若某格点多边形对应的N=71, L=18,则 S=________(用数值作答).6.( 2014? 湖北)《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也,又以高乘之,三十六成一,该术相当于给出了由圆锥的底面周长L 与高 h,计算其体积 V 的近似公式 V1 L2h,它实际上是将圆锥体积公式中的圆周率π近似取为3,那么,近似公式236V L2h 相当于将圆锥体积公式中的π近似取为()75A. 22B. 25C. 157D. 3557 8 50 1137.(2015湖北)我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米 1534 石,验得米内夹谷,抽样取米一把,数得 254 粒内夹谷28 粒,则这批米内夹谷约为PA. 134 石B. 169 石C. 338石D. 1365 石F E8. ( 2015 湖北)《九章算术》中,将底面为长方形且有一D CA B第19题图条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,在阳马 P ABCD 中,侧棱 PD底面 ABCD ,且 PD CD ,过棱 PC 的中点 E ,作 EFPB 交 PB 于点 F ,连接 DE, DF, BD, BE.(Ⅰ)证明: PB平面 DEF .试判断四面体 DBEF 是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由;(Ⅱ)若面 DEF 与面 ABCD 所成二面角的大小为π,3求 DC的值. BC9. ( 2004 上海春季卷)如图,在由二项式系数所构成的杨辉三角形中,第_____行中从左至右第 14 与第 15 个数的比为2 : 3.10. ( 2013 上海)在 xOy 平面上,将两个半圆弧 ( x - 1) 2+ y 2= 1( x ≥ 1) 和( x - 3) 2+ y 2=1( x ≥ 3) 、两条直线 y = 1 和 y =- 1 围成的封闭图形记为,如图中阴影部分.记 D 绕 y 轴旋转一D周而成的几何体为 Ω. 过 (0 , y )(| y | ≤ 1) 作 Ω的水平截面,所得截面面积为 4 1 y 2 + 8π. 试利用祖暅原理、一个平放的圆柱和一个长方体,得出Ω的体积值为 ______.11. ( 2009 福建) . 五位同学围成一圈依序循环报数,规定:①第一位同学首次报出的数为1,第二位同学首次报出的数也为 1,之后每位同学所报出的数都是前两位同学所报出的数之和;②若报出的数为 3 的倍数,则报该数的同学需拍手一次已知甲同学第一个报数,当五位同学依序循环报到第100 个数时,甲同学拍手的总次数为________.12. ( 2003 全国卷·理)如图,一个地区分为 5 个行政区域,现给地图着色,要求相邻地区不得使用同一颜色,现有 4 种颜色可供选择,则不同的着色方法共有种(以数字作答)13. ( 2015 全国Ⅰ卷)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及为米几何“其意思为:在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8 尺,米堆的高为 5 尺,问米堆的体积和堆放的米各为多少已知 1 斛米的体积约为立方尺,圆周率约为3,估算出堆放斛的米约有()A.14 斛B. 22 斛C.36 斛D.66 斛14.(2015 全国Ⅱ卷)下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入a,b 分别为14,18,则输出的 a =()A. 0B.2C. 4D.1415.(2016 全国Ⅱ卷)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图. 执行该程序框图,若输入的x=2,n=2,依次输入的 a 为 2, 2, 5,则输出的s=(A)7(B)12(C)17(D)34。
专题03 数列与数学文化纵观近几年高考,数列以数学文化为背景的问题,层出不穷,让人耳目一新。
同时它也使考生们受困于背景陌生,阅读受阻,使思路无法打开。
本专题通过对典型高考问题的剖析、数学文化的介绍、及精选模拟题的求解,让考生提升审题能力,增加对数学文化的认识,进而加深对数学文理解,发展数学核心素养。
【例1】 (2018北京) “十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这 个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122.若第一个单音的频率为f ,则第八个单音的频率为( ) A 32B 322C .1252D .1272【答案】D【解析】从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122 率为f ,由等比数列的概念可知,这十三个单音的频率构成一个首项为f ,公比为122的等比数列,记为{}n a ,则第八个单音频率为128171282)2a f -=⋅=,故选D .【试题赏析】本题以《律学新说》中的“十二平均律”为背景,考查等比数列的应用,既考查了等比数列的相关知识,又展示了我国古代在音乐、数学、天文等方面的成就.【例2】(2017新课标Ⅱ)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍 加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一 层灯数是上一层灯数的2倍,则塔的顶层共有灯( ) A .1盏 B .3盏 C .5盏 D .9盏 【答案】B【解析】设塔顶共有灯1a 盏,根据题意各层等数构成以1a 为首项,2为公比的等比数列,∴77171(12)(21)38112a S a -==-=-,解得13a =.选B . 【试题赏析】《算法统宗》是由明代数学家程大位写的数学巨著,它是一部应用数学书, 反映了中华文明源远流长,中国古代为世界数学做出了杰出的贡献。
2024年高考全国甲卷数学(文)试题及答案使用范围:陕西、宁夏、青海、内蒙古、四川注意事项:1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦擦干净后,再选涂其它答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡上作答,在试题卷上答题无效.5.考试结束后,只将答题卡交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 集合{}1,2,3,4,5,9A =,{}1B x x A =+∈,则A B = ( )A. {}1,2,3,4B. {}1,2,3 C. {}3,4 D. {}1,2,9【答案】A 【解析】【分析】根据集合B 的定义先算出具体含有的元素,然后根据交集的定义计算.【详解】依题意得,对于集合B 中的元素x ,满足11,2,3,4,5,9x +=,则x 可能的取值为0,1,2,3,4,8,即{0,1,2,3,4,8}B =,于是{1,2,3,4}A B ⋂=.故选:A2. 设z =,则z z ⋅=( )A. -iB. 1C. -1D. 2【答案】D 【解析】【分析】先根据共轭复数的定义写出z ,然后根据复数的乘法计算.【详解】依题意得,z =,故22i 2zz =-=.故选:D3. 若实数,x y 满足约束条件43302202690x y x y x y --≥⎧⎪--≤⎨⎪+-≤⎩,则5z x y =-的最小值为( )A. 5B. 12C. 2- D. 72-【答案】D 【解析】【分析】画出可行域后,利用z 的几何意义计算即可得.【详解】实数,x y 满足43302202690x y x y x y --≥⎧⎪--≤⎨⎪+-≤⎩,作出可行域如图:由5z x y =-可得1155y x z =-,即z 的几何意义为1155y x z =-的截距的15-,则该直线截距取最大值时,z 有最小值,此时直线1155y x z =-过点A ,联立43302690x y x y --=⎧⎨+-=⎩,解得321x y ⎧=⎪⎨⎪=⎩,即3,12A ⎛⎫⎪⎝⎭,则min 375122z =-⨯=-.故选:D4. 等差数列{}n a 的前n 项和为n S ,若91S =,37a a +=( )A. 2- B.73C. 1D.29【答案】D 【解析】【分析】可以根据等差数列的基本量,即将题目条件全转化成1a 和d 来处理,亦可用等差数列的性质进行处理,或者特殊值法处理..【详解】方法一:利用等差数列的基本量由91S =,根据等差数列的求和公式,911989193612S a d a d ⨯=+=⇔+=,又371111222628(936)99a a a d a d a d a d +=+++=+=+=.故选:D方法二:利用等差数列性质根据等差数列的性质,1937a a a a +=+,由91S =,根据等差数列的求和公式,193799()9()122a a a a S ++===,故3729a a +=.故选:D方法三:特殊值法不妨取等差数列公差0d =,则9111199S a a ==⇒=,则371229a a a +==.故选:D5. 甲、乙、丙、丁四人排成一列,丙不在排头,且甲或乙在排尾的概率是( )A.14B.13C. 12D.23【答案】B 【解析】【分析】分类讨论甲乙的位置,得到符合条件的情况,然后根据古典概型计算公式进行求解.【详解】当甲排排尾,乙排第一位,丙有2种排法,丁就1种,共2种;当甲排在排尾,乙排第二位或第三位,丙有1种排法,丁就1种,共2种;于是甲排在排尾共4种方法,同理乙排在排尾共4种方法,于是共8种排法符合题意;基本事件总数显然是44A 24=,根据古典概型的计算公式,丙不在排头,甲或乙在排尾的概率为81243=.故选:B6. 已知双曲线的两个焦点分别为(0,4),(0,4)-,点(6,4)-在该双曲线上,则该双曲线的离心率为( )A. 4 B. 3C. 2【答案】C 【解析】【分析】由焦点坐标可得焦距2c ,结合双曲线定义计算可得2a ,即可得离心率.的在【详解】设()10,4F -、()20,4F 、()6,4-P ,则1228F F c ==,110PF ==,26PF ==,则1221064a PF PF =-=-=,则28224c e a ===.故选:C.7. 曲线()631f x x x =+-在()0,1-处的切线与坐标轴围成的面积为( )A.16C. 12D. 【答案】A 【解析】【分析】先求出切线方程,再求出切线的截距,从而可求面积.【详解】()563f x x ='+,所以()03f '=,故切线方程为3(0)131y x x =--=-,故切线的横截距为13,纵截距为1-,故切线与坐标轴围成的面积为1111236⨯⨯=故选:A.8. 函数()()2e esin xxf x x x -=-+-在区间[ 2.8,2.8]-的大致图像为( )A. B.C. D.【答案】B 【解析】【分析】利用函数的奇偶性可排除A 、C ,代入1x =可得()10f >,可排除D.【详解】()()()()()22ee sin e e sin xx x x f x x x x x f x ---=-+--=-+-=,又函数定义域为[]2.8,2.8-,故该函数为偶函数,可排除A 、C ,又()11πe 11111e sin11e sin 10e e 622e 42ef ⎛⎫⎛⎫=-+->-+-=-->-> ⎪ ⎪⎝⎭⎝⎭,故可排除D.故选:B.9. 已知cos cos sin ααα=-πtan 4α⎛⎫+= ⎪⎝⎭( )A. 1+B. 1D. 1【答案】B 【解析】【分析】先将cos cos sin αα-α弦化切求得tan α,再根据两角和的正切公式即可求解.【详解】因为cos cos sin ααα=-,所以11tan =-α,tan 1⇒α=,所以tan 1tan 11tan 4α+π⎛⎫==α+ ⎪-α⎝⎭,故选:B.原10题略10. 设αβ、是两个平面,m n 、是两条直线,且m αβ= .下列四个命题:①若//m n ,则//n α或//n β ②若m n ⊥,则,n n αβ⊥⊥③若//n α,且//n β,则//m n ④若n 与α和β所成的角相等,则m n ⊥其中所有真命题的编号是( )A. ①③ B. ②④C. ①②③D. ①③④【答案】A 【解析】【分析】根据线面平行的判定定理即可判断①;举反例即可判断②④;根据线面平行的性质即可判断③.【详解】对①,当n ⊂α,因为//m n ,m β⊂,则//n β,当n β⊂,因为//m n ,m α⊂,则//n α,当n 既不在α也不在β内,因为//m n ,,m m αβ⊂⊂,则//n α且//n β,故①正确;对②,若m n ⊥,则n 与,αβ不一定垂直,故②错误;对③,过直线n 分别作两平面与,αβ分别相交于直线s 和直线t ,因为//n α,过直线n 的平面与平面α的交线为直线s ,则根据线面平行的性质定理知//n s ,同理可得//n t ,则//s t ,因为s ⊄平面β,t ⊂平面β,则//s 平面β,因为s ⊂平面α,m αβ= ,则//s m ,又因为//n s ,则//m n ,故③正确;对④,若,m n αβ⋂=与α和β所成的角相等,如果//,//αβn n ,则//m n ,故④错误;综上只有①③正确,故选:A.11. 在ABC 中内角,,A B C 所对边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=( )A.32【答案】C 【解析】【分析】利用正弦定理得1sin sin 3A C =,再利用余弦定理有22134a c ac +=,再利用正弦定理得到22sin sin A C +的值,最后代入计算即可.【详解】因为29,34B b ac π==,则由正弦定理得241sin sin sin 93A CB ==.由余弦定理可得:22294b ac ac ac =+-=,即:22134a c ac +=,根据正弦定理得221313sin sin sin sin 412A C A C +==,所以2227(sin sin )sin sin 2sin sin 4A C A C A C +=++=,因为,A C 为三角形内角,则sin sin 0A C +>,则sin sin A C +=.故选:C.二、填空题:本题共4小题,每小题5分,共20分.原13题略12. 函数()sin f x x x =在[]0,π上的最大值是______.【答案】2【解析】【分析】结合辅助角公式化简成正弦型函数,再求给定区间最值即可.【详解】()πsin 2sin 3f x x x x ⎛⎫==-⎪⎝⎭,当[]0,πx ∈时,ππ2π,333x ⎡⎤-∈-⎢⎥⎣⎦,当ππ32x -=时,即5π6x =时,()max 2f x =.故答案为:213 已知1a >,8115log log 42a a -=-,则=a ______.【答案】64【解析】【分析】将8log ,log 4a a 利用换底公式转化成2log a 来表示即可求解.【详解】由题28211315log log log 4log 22a a a a -=-=-,整理得()2225log 60log a a --=,2log 1a ⇒=-或2log 6a =,又1a >,所以622log 6log 2a ==,故6264a ==故答案为:64.14. 曲线33y x x =-与()21y x a =--+在()0,∞+上有两个不同的交点,则a 的取值范围为______.【答案】()2,1-【解析】.【分析】将函数转化为方程,令()2331x x x a -=--+,分离参数a ,构造新函数()3251,g x x x x =+-+结合导数求得()g x 单调区间,画出大致图形数形结合即可求解.【详解】令()2331x x x a -=--+,即3251a x x x =+-+,令()()32510,g x x x x x =+-+>则()()()2325351g x x x x x =+-=+-',令()()00g x x '=>得1x =,当()0,1x ∈时,()0g x '<,()g x 单调递减,当()1,x ∞∈+时,()0g x '>,()g x 单调递增,()()01,12g g ==-,因为曲线33y x x =-与()21y x a =--+在()0,∞+上有两个不同的交点,所以等价于y a =与()g x 有两个交点,所以()2,1a ∈-.故答案为:()2,1-三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题第21题为必考题,每个考题考生必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.15. 已知等比数列{}n a 的前n 项和为n S ,且1233n n S a +=-.(1)求{}n a 的通项公式;(2)求数列{}n S 的通项公式.【答案】(1)153n n a -⎛⎫= ⎪⎝⎭(2)353232n⎛⎫-⎪⎝⎭【解析】【分析】(1)利用退位法可求公比,再求出首项后可求通项;(2)利用等比数列的求和公式可求n S .【小问1详解】因为1233n n S a +=-,故1233n n S a -=-,所以()12332n n n a a a n +=-≥即153n n a a +=故等比数列的公比为53q =,故1211523333533a a a a =-=⨯-=-,故11a =,故153n n a -⎛⎫= ⎪⎝⎭.【小问2详解】由等比数列求和公式得5113353523213n nn S ⎡⎤⎛⎫⨯-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦==- ⎪⎝⎭-.16. 如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,四边形ABCD 与四边形ADEF 均为等腰梯形,//,//BC AD EF AD ,4,2AD AB BC EF ====,ED FB ==M 为AD 的中点.(1)证明://BM 平面CDE ;(2)求点M 到ABF 的距离.【答案】(1)证明见详解; (2【解析】【分析】(1)结合已知易证四边形BCDM 为平行四边形,可证//BM CD ,进而得证;(2)作FO AD ⊥,连接OB ,易证,,OB OD OF 三垂直,结合等体积法M ABF F ABM V V --=即可求解.【小问1详解】因为//,2,4,BC AD BC AD M ==为AD 的中点,所以//,BC MD BC MD =,四边形BCDM 为平行四边形,所以//BM CD,又因为BM ⊄平面CDE ,CD ⊂平面CDE ,所以//BM 平面CDE ;【小问2详解】如图所示,作BO AD ⊥交AD 于O ,连接OF ,因为四边形ABCD 为等腰梯形,//,4,BC AD AD =2AB BC ==,所以2CD =,结合(1)BCDM 为平行四边形,可得2BM CD ==,又2AM =,所以ABM 为等边三角形,O 为AM中点,所以OB =,又因为四边形ADEF 为等腰梯形,M 为AD 中点,所以,//EF MD EF MD =,四边形EFMD 为平行四边形,FM ED AF ==,所以AFM △为等腰三角形,ABM 与AFM △底边上中点O 重合,OF AM ⊥,3OF ==,因为222OB OF BF +=,所以OB OF ⊥,所以,,OB OD OF 互相垂直,由等体积法可得M ABF F ABM V V --=,21111233232F ABM ABM V S FO -=⋅⋅=⋅⋅=△,222cos 2FA AB FBFAB FAB FA AB+-∠===∠=⋅11sin 222FAB S FA AB FAB =⋅⋅∠==△,设点M 到FAB 的距离为d,则1133M FAB F ABM FAB V V S d d --==⋅⋅==△,解得d =M 到ABF 17. 已知函数()()1ln 1f x a x x =--+.(1)求()f x 的单调区间;(2)若2a ≤时,证明:当1x >时,()1ex f x -<恒成立.【答案】(1)见解析 (2)见解析【解析】【分析】(1)求导,含参分类讨论得出导函数的符号,从而得出原函数的单调性;(2)先根据题设条件将问题可转化成证明当1x >时,1e 21ln 0x x x --++>即可.【小问1详解】()f x 定义域为(0,)+∞,11()ax f x a x x'-=-=当0a ≤时,1()0ax f x x -'=<,故()f x 在(0,)+∞上单调递减;当0a >时,1,x a ∞⎛⎫∈+ ⎪⎝⎭时,()0f x '>,()f x 单调递增,当10,x a ⎛⎫∈ ⎪⎝⎭时,()0f x '<,()f x 单调递减.综上所述,当0a ≤时,()f x 在(0,)+∞上单调递减;0a >时,()f x 在1,a ∞⎛⎫+ ⎪⎝⎭上单调递增,在10,a ⎛⎫ ⎪⎝⎭上单调递减.【小问2详解】2a ≤,且1x >时,111e ()e (1)ln 1e 21ln x x x f x a x x x x ----=--+-≥-++,令1()e 21ln (1)x g x x x x -=-++>,下证()0g x >即可.11()e 2x g x x -'=-+,再令()()h x g x '=,则121()e x h x x-'=-,显然()h x '在(1,)+∞上递增,则0()(1)e 10h x h ''>=-=,即()()g x h x ='在(1,)+∞上递增,故0()(1)e 210g x g ''>=-+=,即()g x 在(1,)+∞上单调递增,故0()(1)e 21ln10g x g >=-++=,问题得证18. 设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M ⎛⎫ ⎪⎝⎭在C 上,且MF x ⊥轴.(1)求C 的方程;(2)过点()4,0P 的直线与C 交于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴.【答案】(1)22143x y += (2)证明见解析【解析】【分析】(1)设(),0F c ,根据M 的坐标及MF ⊥x 轴可求基本量,故可求椭圆方程.(2)设:(4)AB y k x =-,()11,A x y ,()22,B x y ,联立直线方程和椭圆方程,用,A B 的坐标表示1Q y y -,结合韦达定理化简前者可得10Q y y -=,故可证AQ y ⊥轴.【小问1详解】设(),0F c ,由题设有1c =且232b a =,故2132a a -=,故2a =,故b =,故椭圆方程22143x y +=.【小问2详解】直线AB 的斜率必定存在,设:(4)AB y k x =-,()11,A x y ,()22,B x y ,由223412(4)x y y k x ⎧+=⎨=-⎩可得()2222343264120k x k x k +-+-=,故()()422Δ102443464120k k k =-+->,故1122k -<<,又22121222326412,3434k k x x x x k k -+==++,而5,02N ⎛⎫ ⎪⎝⎭,故直线225:522y BN y x x ⎛⎫=- ⎪⎝⎭-,故22223325252Q y y y x x --==--,所以()1222112225332525Q y x y y y y y x x ⨯-+-=+=--为()()()12224253425k x x k x x -⨯-+-=-()222212122264123225825834342525k k x x x x k k k k x x -⨯-⨯+-++++==--2222212824160243234025k k k k k x --+++==-,故1Q y y =,即AQ y ⊥轴.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()()1122,,,x y x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,注意∆的判断;(3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x (或12y y +、12y y )的形式;(5)代入韦达定理求解.(二)选考题:共10分.请考生在第22、23题中任选一题作答,并用2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分,如果多做,则按所做的第一题计分.19. 在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1ρρθ=+.(1)写出C 的直角坐标方程;(2)设直线l :x t y t a=⎧⎨=+⎩(t 为参数),若C 与l 相交于A B 、两点,若2AB =,求a 的值.【答案】(1)221y x =+(2)34a =【解析】【分析】(1)根据cos x ρρθ⎧⎪=⎨=⎪⎩可得C 的直角方程.(2)将直线的新的参数方程代入C 的直角方程,法1:结合参数s 的几何意义可得关于a 的方程,从而可求参数a 的值;法2:将直线的直角方程与曲线的直角方程联立,结合弦长公式可求a 的值.【小问1详解】由cos 1ρρθ=+,将cos xρρθ⎧⎪=⎨=⎪⎩cos 1ρρθ=+,1x =+,两边平方后可得曲线的直角坐标方程为221y x =+.【小问2详解】对于直线l 的参数方程消去参数t ,得直线的普通方程为y x a =+.法1:直线l 的斜率为1,故倾斜角为π4,故直线的参数方程可设为x y a s ⎧=⎪⎪⎨⎪=+⎪⎩,s ∈R .将其代入221y x =+中得()221)210s a s a +-+-=设,A B 两点对应的参数分别为12,s s,则)()212121,21s s a s s a +=--=-,且()()22Δ818116160a a a =---=->,故1a <,12AB s s ∴=-=2==,解得34a =.法2:联立221y x a y x =+⎧⎨=+⎩,得22(22)10x a x a +-+-=,()22Δ(22)41880a a a =---=-+>,解得1a <,设()()1122,,,A x y B x y ,2121222,1x x a x x a ∴+=-=-,则AB ==2=,解得34a =20. 实数,ab 满足3a b +≥.(1)证明:2222a b a b +>+;(2)证明:22226a b b a -+-≥.【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)直接利用22222()a b a b +≥+即可证明.(2)根据绝对值不等式并结合(1)中结论即可证明.【小问1详解】因为()()2222222022a b a ab b a b b a -+=--++=≥,当a b =时等号成立,则22222()a b a b +≥+,因为3a b +≥,所以22222()a b a b a b +≥+>+;【小问2详解】222222222222()a b b a a b b a a b a b -+-≥-+-=+-+22222()()()()(1)326a b a b a b a b a b a b =+-+≥+-+=++-≥⨯=。
第 1 页 共 75 页高考数学必考点《数学文化》精选100题1.密位制是度量角的一种方法.把一周角等分为6000份,每一份叫做1密位的角.以密位作为角的度量单位,这种度量角的单位制,叫做角的密位制.在角的密位制中,采用四个数码表示角的大小,单位名称密位二字可以省去不写.密位的写法是在百位数与十位数字之间画一条短线,如密位7写成“007-”,478密位写成“478-”,1周角等于6000密位,记作1周角6000=-,1直角1500=-.如果一个半径为2的扇形,它的面积为76π,则其圆心角用密位制表示为( ) A .1250-B .1750-C .2100-D .3500-2.天干地支纪年法源于中国,中国自古便有十天干与十二地支,十天干即甲、乙、丙、丁、戊、己、庚、辛、壬、癸;十二地支即子、丑、寅、卯、辰、已、午、未、申、酉、戌、亥.天干地支纪年法是按顺序以一个天干和一个地支相配,排列起来,天干在前,地支在后,天干由“甲”起,地支由“子”起,例如,第一年为“甲子”,第二年为“乙丑”,第三年为“丙寅”,以此类推,排列到“癸酉”后,天干回到“甲”重新开始,即“甲戌”,“乙亥”,然后地支回到“子”重新开始,即“丙子”,以此类推.今年是辛丑年,也是伟大、光荣、正确的中国共产党成立100周年,则中国共产党成立的那一年是( )A .辛酉年B .辛戊年C .壬酉年D .壬戊年3.九连环是我国从古至今广泛流传的一种益智游戏,它用九个圆环相连成串,以解开为胜.据明代杨慎《丹铅总录》记载:“两环互相贯为一,得其关捩,解之为二,又合面为一”.在某种玩法中,用n a 表示解下()9,n n n *≤∈N个圆环所需的移动最少次数,若11a =,且1121,22,n n n a n a a n ---⎧=⎨+⎩为偶数为奇数,则解下5个环所需的最少移动次数为( ) A .7B .13C .16D .224.《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章给出计算弧田面积所用的经验公式为:弧田面积12=(弦+矢)⨯矢,弧田(如图)由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,现有圆心高中数学资料共享群(734924357) 第 2 页 共 75 页角为 23π,半径等于20米的弧田,按照上述经验公式计算所得弧田面积约是( )(参考数据: 3.14π≈1.73≈)A .220平方米B .246平方米C .223平方米D .250平方米5.我国南北朝数学家何承天发明的“调日法”是程序化寻求精确分数来表示数值的算法,其理论依据是:设实数x 的不足近似值和过剩近似值分别为b a 和dc (,,,a b cd N +∈),则b d a c++是x 的更为精确的不足近似值或过剩近似值.我们知道 2.71828e =⋅⋅⋅,若令2714105e <<,则第一次用“调日法”后得4115是e 的更为精确的过剩近似值,即27411015e <<,若每次都取最简分数,那么第二次用“调日法”后可得e 的近似分数为( )A .6825 B .4115 C .2710 D .1456.如图,洛书(古称龟书),是阴阳五行术数之源.在古代传说中有神龟出于洛水,其甲壳上有此图像,结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,五方白圈皆阳数,四角黑点为阴数.若从四个阴数和五个阳数中随机选取3个数,则选取的3个数之和为奇数的方法数为( )A .30B .40C .44D .707.《掷铁饼者》取材于希腊的现实生活中的体育竞技活动,刻画的是一名强健的男子在掷铁饼过程中最具有表现力的瞬间.现在把掷铁饼者张开的双臂近似看成一张拉满弦的第 3 页 共 75 页 “弓”,掷铁饼者的手臂长约4π米,肩宽约为8π米,“弓”所在圆的半径约为1.25米,你估测一下掷铁饼者双手之间的距离约为(参考数据1.414≈,1.732≈)( )A .1.012米B .2.043米C .1.768米D .2.945米8.在地球公转过程中,太阳直射点的纬度随时间周而复始不断变化,太阳直射点回归运动的一个周期就是一个回归年.某科研小组以某年春分(太阳直射赤道且随后太阳直射点逐渐北移的时间)为初始时间,统计了连续400天太阳直射点的纬度值(太阳直射北半球时取正值,直射南半球时取负值).设第x 天时太阳直射点的纬度值为,y 该科研小组通过对数据的整理和分析.得到y 与x 近似满足23.43929110.01720279y sin x =.则每400年中,要使这400年与400个回归年所含的天数最为接近.应设定闰年的个数为(精确到1)( ) 参考数据182.62110.01720279π≈ A .95B .96C .97D .989.“中国剩余定理”又称“孙子定理”,讲的是关于整除的问题.现有这样一个整除问题:将1到2021这2021个正整数中能被3除余1且被5除余1的数按从小到大的顺序排成一列,构成数列{}n a ,则数列{}n a 各项的和为( )A .137835B .137836C .135809D .13581010.我国古代以天为主,以地为从,天和干相连叫天干,地和支相连叫地支,合起来叫天干地支.天干有十个,就是甲、乙、丙、丁、戊、己、庚、辛、壬、癸,地支有十二个,依次是子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.古人把它们按照甲子、乙丑、丙寅……的顺序而不重复地搭配起来,从甲子到癸亥共六十对,叫做一甲子.我国古人用这六十对干支来表示年、月、日、时的序号,周而复始,不断循环,这就是干支纪年法(即农历).干支纪年历法,是屹立于世界民族之林的科学历法之一.今年(2020高中数学资料共享群(734924357) 第 4 页 共 75 页年)是庚子年,小华的爸爸今年6月6日是56周岁生日,小华爸爸出生那年的农历是( )A .庚子B .甲辰C .癸卯D .丙申11.《周髀算经》是中国最古老的天文学和数学著作,书中提到:冬至、小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气的日影子长依次成等差数列.若冬至、大寒、雨水的日影子长的和是40.5尺,芒种的日影子长为4.5尺,则冬至的日影子长为( )A .6.5尺B .13.5尺C .14.5尺D .15.5尺12.英国数学家泰勒(B . Taylor ,1685-1731)以发现泰勒公式和泰勒级数闻名于世。由泰勒公式,我们能得到111111!2!3!!(1)!e e n n θ=+++++++(其中e 为自然对数的底数,()()01,!12...21n n n n θ<<=⨯-⨯-⨯⨯⨯),其拉格朗日余项是.(1)!n e R n θ=+可以看出,右边的项用得越多,计算得到的e 的近似值也就越精确。若3(1)!n +近似地表示e 的泰勒公式的拉格朗日余项,n R n R 不超过11000时,正整数n 的最小值是( ) A .5B .6C .7D .813.攒尖是古代中国建筑中屋顶的一种结构形式依其平面有圆形攒尖、三角攒尖、四角攒尖、六角攒尖等,多见于亭阁式建筑如图所示,某园林建筑为六角攒尖,它的主要部分的轮廓可近似看作一个正六棱锥,设正六棱锥的侧面等腰三角形的顶角为2θ,则侧棱与底面内切圆半径的比为( )第 5 页 共 75 页A.3sin θ B.3cos θ C .12sin θ D .12cos θ14.“瓦当”是中国古建筑装饰檐头的附件,是中国特有的文化艺术遗产,为探究下面“瓦当”图案的面积,向半径为10的圆内投入1000粒芝麻,落入阴影部分的有400粒.则估计“瓦当”图案的面积是( )A .40B .40πC .4D .4π15.明朝早期,郑和在七下西洋的过程中,将中国古代天体测量方面所取得的成就创造性应用于航海,形成了一套自成体系且行之有效的先进航海技术——“过洋牵星术”.简单地说,就是通过观测不同季节、时辰的日月星辰在天空运行的位置和测量星辰在海面以上的高度来判断方位,其采用的主要工具为牵星板,由12块正方形木板组成,最小的一块边长约为2厘米(称一指).观测时,将木板立起,一手拿着木板,手臂垂直,眼睛到木板的距离大约为72厘米,使牵星板与海平面垂直,让板的下边缘与海平面重合,上边缘对着所观测的星辰,与其相切,依高低不同替换、调整木板,木板上边缘与被观测星辰重合时所用的是几指板,观测的星辰离海平面的高度就是几指,然后就可以推算出船在海中的地理纬度.如图所示,若在一次观测中,所用的牵星板为九指板,则sin 2α=( )A .1235 B.17 C .817 D .81516.古代数学著作《九章算术》有如下问题:“今有女子善织,日自倍,五日织五尺,高中数学资料共享群(734924357) 第 6 页 共 75 页问日织几何?”意思是:“一女子善于织布,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这女子每天分别织布多少?”根据上题的已知条件,可求得该女子第2天所织布的尺数为( )A .2031 B .531 C .1031 D .403117.筒车是我国古代发明的一种水利灌溉工具,既经济又环保,明代科学家徐光启在《农政全书》中用图1描绘了筒车的工作原理.假定在水流稳定的情况下,筒车上的每一个盛水筒都做匀速圆周运动.将筒车抽象为一个几何图形(圆),筒车的半径为2m ,筒车的轴心O 到水面的距离为1m ,筒车每分钟按逆时针转动2圈.规定:盛水筒M 对应的点P 从水中浮现(即0P 时的位置)时开始计算时间,设盛水筒M 从0P 运动到点P 时所用时间为t (单位:s ),且此时点P 距离水面的高度为h (单位:m ).若以筒车的轴心O 为坐标原点,过点O 的水平直线为x 轴建立平面直角坐标系xOy (如图2),则h 与t 的函数关系式为( )A .2sin 1156h t ππ⎛⎫=-+ ⎪⎝⎭,[)0,t ∈+∞B .2sin 1156h t ππ⎛⎫=++ ⎪⎝⎭,[)0,t ∈+∞ C .2sin 16h t ππ⎛⎫=-+ ⎪⎝⎭,[)0,t ∈+∞ D .2sin 16h t ππ⎛⎫=++ ⎪⎝⎭,[)0,t ∈+∞ 18.我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,则ABC的面积S =根据此公式,若cos (2)cos 0a B b c A +-=,且2224b c a ,则ABC的面积为()AB.CD.19.我国古代数学论著中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯二百五十四,请问底层几盏灯?意思是:一座7层塔共挂了254盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的底层共有灯()A.32盏B.64盏C.128盏D.196盏20.我国古代数学名著《九章算术》中有如下“两鼠穿墙”问题:有两只老鼠同时从墙的两面相对着打洞穿墙.大老鼠第一天打进11尺,以后每天进度是前一天的2倍.小老鼠第一天也打进1尺,以后每天进度是前一天的一半.如果墙的厚度为10尺,则两鼠穿透此墙至少在第()A.3天B.4天C.5天D.6天21.中国古代重要的数学著作《孙子算经》下卷有题:今有物,不知其数.三三数之,剩二;五五数之,剩三;七七数之,剩二.问:物几何?现有如下表示:已知{}32,A x x n n N*==+∈,{}53,B x x n n N*==+∈,{}72,C x x n n N*==+∈,若x A B C∈⋂⋂,则下列选项中符合题意的整数x为()A.8B.127C.37D.2322.刘徽(约公元225年-295年),魏晋期间伟大的数学家,中国古典数学理论的奠基人之一.他在割圆术中提出的“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”,这可视为中国古代极限观念的佳作.割圆术的核心思想是将一个圆的内接正n边形等分成n个等腰三角形(如图所示),当n变得很大时,这n个等腰三角形的面积之和近似等于圆的面积,运用割圆术的思想得到6sin的近似值为()第7页共75页高中数学资料共享群(734924357) 第 8 页 共 75 页A .30πB .60πC .90π D .180π 23.电影《刘三姐》中有一个“舟妹分狗”的片段.其中,罗秀才唱道:三百条狗交给你,一少三多四下分,不要双数要单数,看你怎样分得匀舟妹唱道;九十九条圩上卖,九十九条腊起来,九十九条赶羊走,剩下三条,财主请来当奴才(讽刺财主请来对歌的三个奴才).事实上,电影中罗秀才提出了一个数学问题:把300条狗分成4群,每群都是单数,1群少,3群多,数量多的三群必须都是一样的,否则就不是一少三多,问你怎样分?舟妹已唱出其中一种分法,即{}3,99,99,99,那么,所有分法的种数为( ) A .6B .9C .10D .1224.我国古代数学家著作《九章算术》有如下问题:“今有人持金出五关,前关二而税一,次关三而税一,次关四而税一,次关五而税一,次关六而税一,并五关所税,适重一斤.问本持金几何.”,其意思是“今有人持金出五关,第一关收税金为持金的12,第2关收税金为剩余的13,第3关收税金为剩余税金的14,第4关收税金为剩余税金的15,第5关收税金为剩余税金的16”5关所税金之和,恰好重1斤.则在此问题中,第3关收税金为( )斤A .110 B .310 C .13 D .91025.朱世杰是历史上最伟大的数学家之一,他所著的《四元玉鉴》卷中“如像招数”五问第 9 页 共 75 页 中有如下问题:“今有官司差夫一千八百六十四人筑堤,只云初日差六十四人,次日转多七人,每人日支米三升.”其大意为“官府陆续派遣1864人前往修筑堤坝,第一天派出64人,从第二天开始每天派出的人数比前一天多7人,修筑堤坝的每人每天分发大米3升.”在该问题中前5天共分发多少升大米?( )A .1170B .1440C .1512D .177226.中国的少数民族有不少具有鲜明特色的建筑,如图①所示的建筑为坐落于广西三江林溪河上的程阳永济桥,是典型的侗族建筑,该类建筑由桥、塔、亭组成,其中塔、亭建在石桥上,具有多层结构,被称为世界十大最不可思议桥梁之一,因为行人过往能够躲避风雨,故名“风雨桥”.已知程阳永济桥上的塔从上往下看,其边界构成的曲线可以看作正六边形结构,如图①所示,且各层的六边形的边长均为整数,从内往外依次成等差数列.若这四层六边形的周长之和为156,且图①,则最外层六边形的周长为( )A .54B .48C .42D .3027.如图是隋唐天坛,古叫圜丘,它位于唐长安城明德门遗址东约950米,即今西安市雁塔区陕西师范大学以南.天坛初建于隋而废弃于唐末,比北京明清天坛早1000多年,是隋唐王朝近三百年里的皇家祭天之处.某数学兴趣小组为了测得天坛的直径,在天坛外围测得60AB =米,60BC =米,40CD =米,60ABC ∠=︒,120BCD ∠=︒,据此可以估计天坛的最下面一层的直径AD 大约为( ).(结果精确到1米)1.414≈1.732≈2.236≈2.646≈)A .39米B .43米C .49米D .53米高中数学资料共享群(734924357) 第 10 页 共 75 页28.《孙子算经》记载,中国古代诸侯的等级从低到高分为:男、子、伯、侯、公,一共五级.现每个级别的诸侯分别有1,2,3,4,5人,按照如下规则给他们分发一批苹果:同一等级的诸侯所得苹果数依次为1a ,2a ,3a ,…,且满足()*1k k a a k k N +=+∈;任一等级诸侯所得苹果数量最多的比高一级的诸侯所得苹果数最少的少一个.现已知等级为男的诸侯所得苹果数为1,则这批苹果共有( )个.A .158B .159C .160D .16129.祖暅(公元5-6世纪,祖冲之之子,是我国齐梁时代的数学家.他提出了一条原理:“幂势既同,则积不容异.”这句话的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体的体积相等.该原理在西方直到十七世纪才由意大利数学家卡瓦列利发现,比祖暅晚一千一百多年.椭球体是椭圆绕其轴旋转所成的旋转体.如图将底面直径皆为2b ,高皆为a 的椭半球体及已被挖去了圆锥体的圆柱体放置于同一平面β上.以平行于平面β的平面于距平面β任意高d 处可横截得到S 圆及S 环两截面,可以证明S S =环圆总成立.据此,短轴长为6cm ,长轴为8cm 的椭球体的体积是( )3cmA .24πB .48πC .192πD .384π30.蹴鞠,又名蹴球,蹴圆,筑球,踢圆等,蹴有用脚蹴、踢、蹋的含义,鞠最早系外包皮革、内实米糠的球.因而蹴鞠就是指古人以脚蹴,蹋、踢皮球的活动,类似今日的足球.2006年5月20日,蹴鞠已作为非物质文化遗产经国务院批准列入第一批国家非物质文化遗产名录.3D打印属于快速成形技术的一种,它是一种以数字模型文件为基础,运用粉末状金属或塑料等可粘合材料,通过逐层堆叠累积的方式来构造物体的技术(即“积层造型法”).过去常在模具制造、工业设计等领域被用于制造模型,现正用于一些产品的直接制造,特别是一些高价值应用(比如髋关节、牙齿或一些飞机零部件等).已知某鞠的表面上有四个点A 、B 、C 、D ,满足任意两点间的直线距离为,现在利用3D 打印技术制作模型,该模型是由鞠的内部挖去由ABCD 组成的几何体后剩余的部分,打印所用原料密度为31g/cm ,不考虑打印损耗,制作该模型所需原料的质量约为( )(参考数据:取 3.14π= 1.41= 1.73=,精确到0.1) A .113.0gB .267.9gC .99.2gD .13.8g31.我国古代著名的数学专著《九章算术》里有一段叙述:今有良马和驽马发长安至齐,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,九日后二马相逢.问:齐去长安多少里?( )A .1125B .1250C .2250D .250032.数学著作《孙子算经》中有这样一个问题:“今有物不知其数,三三数之剩二(除以3余2),五五数之剩三(除以5余3),问物几何?”现将1到2020共2020个整数中,同时满足“三三数之剩二,五五数之剩三”的数按从小到大的顺序排成一列,构成数列{},n a 则该数列共有( )A .132项B .133项C .134项D .135项33.1750年,欧拉在给哥德巴赫的一封信中列举了多面体的一些性质,其中一条是:如果用V 、E 和F 表示闭的凸多面体的顶点数、棱数和面数,则有如下关系:2V E F -+=.已知正十二面体有20个顶点,则正十二面体有( )条棱 A .30B .14C .20D .2634.龙马负图、神龟载书图像如图甲所示,数千年来被认为是中华传统文化的源头;其中洛书有云,神龟出于洛水,甲壳上的图像如图乙所示,其结构是戴九履一,左三右七,二四为肩,六八为足u ,以五居中,五方白圈皆阳数,四角黑点为阴数;若从阳数和阴数中分别随机抽出2个和1个,则被抽到的3个数的数字之和超过16的概率为( )A.1340B.720C.14D.31035.降雨量是气象部门观测的重要数据,日降雨量是指一天内降落在地面单位面积雨水层的深度(单位:毫米)。我国古代就有关于降雨量测量方法的记载,古代数学名著《数书九章》中有“天池盆测雨”题:天池盆(圆台形状)盆口直径二尺八寸,盆底直径为一尺二寸,盆深一尺八寸。若盆中积水深九寸,则平地降雨量是几寸(注:一尺等于十寸,一寸等于10厘米)?已知某隧道的积水程度与日降水量的关系如下表所示:如果某天该隧道的日降水量按照“天池盆测雨”题中数据计算,则该隧道的积水程度为()A.一级B.二级C.三级D.四级36.攒尖是古代中国建筑中屋顶的一种结构形式.宋代称为撮尖,清代称攒尖.依其平面有圆形攒尖、三角攒尖、四角攒尖、六角攒尖等,也有单檐和重檐之分,多见于亭阁式建筑.如图所示,某园林建筑为六角攒尖,它的主要部分的轮廓可近似看作一个正六棱锥,若此正六棱锥的侧面等腰三角形的底角为 ,则侧棱与底面外接圆半径的比为()A .12cos αB .12sin αC .sin 3πsin 8αD .cos 3πcos 8α37.描金又称泥金画漆,是一种传统工艺美术技艺.起源于战国时期,在漆器表面,用金色描绘花纹的装饰方法,常以黑漆作底,也有少数以朱漆为底.描金工作分为两道工序,第一道工序是上漆,第二道工序是描绘花纹.现甲,乙两位工匠要完成A ,B ,C 三件原料的描金工作,每件原料先由甲上漆,再由乙描绘花纹.每道工序所需的时间(单位:h )如下:则完成这三件原料的描金工作最少需要( )A .43hB.46h C .47h D .49h38.德国著名的天文学家开普勒说过:“几何学里有两件宝,一个是勾股定理,另一个是黄金分割.如果把勾股定理比作黄金矿的话,那么可以把黄金分割比作钻石矿.”黄金三角形有两种,其中底与腰之比为黄金分割比的黄金三角形被认为是最美的三角形,它是一个顶角为36的等腰三角形(另一种是顶角为108的等腰三角形).例如,五角星由五个黄金三角形与一个正五边形组成,如图所示,在其中一个黄金ABC 中,12BC AC =.根据这些信息,可得sin126=( )A B C D39.“九天揽月”是中华民族的伟大梦想,我国探月工程的进展与实力举世瞩目.近期,“嫦娥四号”探测器实现历史上的首次月背着陆,月球上“嫦娥四号”的着陆点,被命名为天河基地,如图是“嫦娥四号”运行轨道示意图.圆形轨道距月球表面100千米,椭圆形轨道的一个焦点是月球球心,一个长轴顶点位于两轨道相切的变轨处,另一个长轴顶点距月球表面15千米,则椭圆形轨道的焦距为()A.85km B.42.5km C.50km D.100km40.《九章算术》是我国古代内容极为丰富的数学名著.书中有如下问题:“今有委米依垣内角,下周四尺. 高三尺.何积及为米几何?”其意思为:“ 在屋内墙角处堆放米,米堆底部的弧长为4尺.米堆的高为3尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有()A.7斛B.3斛C.9斛D.12斛41.我国南宋数学家杨辉1261年所著的《详解九章算法》就给出了著名的杨辉三角,由此可见我国古代数学的成就是非常值得中华民族自豪的.以下关于杨辉三角的猜想中错误的是()A .由“与首末两端‘等距离’的两个二项式系数相等”猜想:C n m =C n n -mB .由“在相邻的两行中,除1以外的每一个数都等于它‘肩上’两个数的和”猜想:11r r r n nn C C C -+=+ C .由“第n 行所有数之和为2n ”猜想:C n 0+C n 1+C n 2+…+C n n =2nD .由“111=11,112=121,113=1331”猜想:115=1510105142.阿波罗尼斯(约公元前262-190年)证明过这样一个命题:平面内到两定点距离之比为常数(0,1)k k k >≠的点的轨迹是圆,后人将这个圆称为阿氏圆.若平面内两定点A B 、间的距离为4,动点P 满足PA PB=P A B 、、不共线时,PAB △面积的最大值是( )A .3 B C .D .343.古希腊时期,的矩形称为黄金矩形,称为黄金分割比例.下图为希腊的一古建筑.其中部分廊、檐、顶的连接点为图中所示相关对应点,图中的矩形ABCD ,EBCF ,FGHC ,FGJI ,LGJK ,MNJK 均近似为黄金矩形.若A 与D 间的距离大于18.7m ,C 与F 间的距离小于12m .则该古建筑中A 与B 间的距离可能是( )(参考数据:10.6182≈,70.6180.38≈,30.6180.236≈)A .29mB .29.8mC .30.8mD .32.8m44.《几何原本》第二卷中的几何代数法(以几何方法研究代数问题)成了后世西方数学家处理问题的重要依据,通过这一原理,很多代数的定理都能够通过图形实现证明,并称之为无字证明.现有如图所示的图形,点F 在半圆O 上,且OF AB ⊥,点C 在直径AB 上运动.设AC a =,BC b =,则由FC OF ≥可以直接证明的不等式为( )A .)0,02a b a b +≥>>B .()2220,0a b ab a b +≥>>C .)20,0ab a b a b≤>>+ D .)0,02a b a b +≤>> 45.我国明代著名乐律学家、明宗室王子朱载堉在《律学新说》中提出的十二平均律,即是现代在钢琴的键盘上,一个八度音程从一个c 键到下一个1c 键的8个白键与5个黑键(如图)的音频恰成一个公比为1c 的频率正好是中音c 的2倍.已知标准音1a 的频率为440Hz ,那么频率为的音名是( )A .dB .fC .eD .#d46.刘徽是中国魏晋时期杰出的数学家,他提出“割圆求周”方法:当n很大时,用圆内接正n边形的周长近似等于圆周长,并计算出精确度很高的圆周率π31416≈..在《九章算术注》中总结出“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”的极限思想.运用此思想,当π取3.1416时可得sin1︒的近似值为()A.0.00873B.0.01745C.0.02618D.0.03491 47.3D打印属于快速成形技术的一种,它是一种以数字模型文件为基础,运用粉末状金属或塑料等可粘合材料,通过逐层堆叠累积的方式来构造物体的技术(即“积层造型法”).过去常在模具制造、工业设计等领域被用于制造模型,现正用于一些产品的直接制造,特别是一些高价值应用(比如髋关节、牙齿或一些飞机零部件等).已知利用3D 打印技术制作如图所示的模型.该模型为在圆锥底内挖去一个正方体后的剩余部分(正方体四个顶点在圆锥母线上,四个顶点在圆锥底面上),圆锥底面直径为,母.打印所用原料密度为31 g/cm,不考虑打印损耗,制作该模型所需原料的质量约为()(取π 3.14=,精确到0.1)A.609.4g B.447.3g C.398.3g D.357.3g 48.《九章算术》中《方田》章有弧田面积计算问题,术日:以弦乘矢,矢又自乘,并之,二而一.其大意是弧田面积计算公式为:弧田面积=12(弦×矢+矢×矢),弧田是由圆弧(弧田弧)和以圆弧的端点为端点的线段(弧田弦)围成的平面图形,公式中的“弦”指的是弧田弦的长,“矢”指的是弧田所在圆的半径与圆心到弧田弧的距离之差,现有一弧田,其弧田弦AB等于6米,其弧田弧所在圆为圆O,若用上述弧田面积计算公式算得该弧田的面积为72平方米,则cos①AOB=()A.125B.325C.15D.72549.我国天文学和数学著作《周髀算经》中记载:一年有二十四个节气,每个节气的晷。
高考中的数学文化一、单选题1.1750年,欧拉在给哥德巴赫的一封信中列举了多面体的一些性质,其中一条是:如果用V 、E 和F 表示闭的凸多面体的顶点数、棱数和面数,则有如下关系:2V E F -+=.已知正十二面体有20个顶点,则正十二面体有()条棱A .30B .14C .20D .26【答案】A 【分析】由已知条件得出20V =,12F =,代入欧拉公式2V E F -+=可求得E 的值,即为所求.【详解】由已知条件得出20V =,12F =,由欧拉公式2V E F -+=可得22012230E V F =+-=+-=.故选:A.2.龙马负图、神龟载书图像如图甲所示,数千年来被认为是中华传统文化的源头;其中洛书有云,神龟出于洛水,甲壳上的图像如图乙所示,其结构是戴九履一,左三右七,二四为肩,六八为足u ,以五居中,五方白圈皆阳数,四角黑点为阴数;若从阳数和阴数中分别随机抽出2个和1个,则被抽到的3个数的数字之和超过16的概率为()A .1340B .720C .14D .310【答案】A 【分析】由题可求出所有情况共40种,再求出满足条件的情况即可求出概率.【详解】依题意,阳数为1、3、5、7、9,阴数为2、4、6、8,故所有的情况有215440C C =种,其中满足条件的为()7,8,9,()7,6,9,()7,4,9,()7,2,9,()5,8,9,()5,6,9,()5,4,9,()3,8,9,()3,6,9,()1,8,9,()7,8,5,()7,6,5,,()7,8,3,共13种,故所求概率1340P =.故选:A .3.数学著作《孙子算经》中有这样一个问题:“今有物不知其数,三三数之剩二(除以3余2),五五数之剩三(除以5余3),问物几何?”现将1到2020共2020个整数中,同时满足“三三数之剩二,五五数之剩三”的数按从小到大的顺序排成一列,构成数列{},n a 则该数列共有()A .132项B .133项C .134项D .135项【答案】D 【分析】由题意抽象出数列是等差数列,再根据通项公式计算项数.【详解】被3除余2且被5除余3的数构成首项为8,公差为15的等差数列,记为{}n a ,则()8151157n a n n =+-=-,令1572020n a n =-≤,解得:213515n ≤,所以该数列的项数共有135项.故选:D 【点睛】关键点点睛:本题以数学文化为背景,考查等差数列,本题的关键是读懂题意,并能抽象出等差数列.4.攒尖是古代中国建筑中屋顶的一种结构形式.宋代称为撮尖,清代称攒尖.依其平面有圆形攒尖、三角攒尖、四角攒尖、六角攒尖等,也有单檐和重檐之分,多见于亭阁式建筑.如图所示,某园林建筑为六角攒尖,它的主要部分的轮廓可近似看作一个正六棱锥,若此正六棱锥的侧面等腰三角形的底角为α,则侧棱与底面外接圆半径的比为()A .12cos αB .12sin αC .sin 3πsin8αD .cos 3πcos8α【答案】A 【分析】根据正六棱锥的底面为正六边形计算可得结果.【详解】正六棱锥的底面为正六边形,设其外接圆半径为R ,则底面正边形的边长为R ,因为正六棱锥的侧面等腰三角形的底角为α,所以侧棱长为2cos 2cos RR αα=,所以侧棱与底面外接圆半径的比为12cos 2cos RR αα=.故选:A 【点睛】关键点点睛:掌握正六棱锥的结构特征是解题关键.5.《张丘建算经》卷上第22题为:“今有女善织,日益功疾(注:从第2天开始,每天比前一天多织相同量的布),第一天织5尺布,现一月(按30天计)共织390尺”,则从第2天起每天比前一天多织()A .12尺布B .518尺布C .1631尺布D .1629尺布【答案】D 【分析】设该女子第()Nn n *∈尺布,前()N n n *∈天工织布n S 尺,则数列{}n a 为等差数列,设其公差为d ,根据15a =,30390S =可求得d 的值.【详解】设该女子第()Nn n *∈尺布,前()N n n *∈天工织布n S 尺,则数列{}n a 为等差数列,设其公差为d ,由题意可得30130293015015293902S a d d ⨯=+=+⨯=,解得1629d =.故选:D.6.中国古代数学著作《九章算术》中有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤.问次一尺各重几何?”意思是:“现有一根金锤,长五尺,一头粗一头细.在粗的一端截下一尺,重四斤;在细的一端截下一尺,重二斤.问依次每一尺各重几斤?”根据已知条件,若金箠由粗到细是均匀变化的,中间三尺的重量为()A .3斤B .6斤C .9斤D .12斤【答案】C 【分析】根据题意转化成等差数列问题,再根据等差数列下标的性质求234a a a ++.【详解】由题意可知金锤每尺的重量成等差数列,设细的一端的重量为1a ,粗的一端的重量为5a ,可知12a =,54a =,根据等差数列的性质可知1533263a a a a +==⇒=,中间三尺为234339a a a a ++==.故选:C 【点睛】本题考查数列新文化,等差数列的性质,重点考查理解题意,属于基础题型.7.古希腊时期,人们把宽与长之比为512-的矩形称为黄金矩形,把这个比值512称为黄金分割比例.下图为希腊的一古建筑.其中部分廊、檐、顶的连接点为图中所示相关对应点,图中的矩形ABCD ,EBCF ,FGHC ,FGJI ,LGJK ,MNJK 均近似为黄金矩形.若A 与D 间的距离大于18.7m ,C 与F 间的距离小于12m .则该古建筑中A 与B 间的距离可能是()(参考数据:510.6182-≈,70.6180.38≈,30.6180.236≈)A .29mB .29.8mC .30.8mD .32.8m【答案】C 【分析】由矩形ABCD 和EBCF 是黄金矩形,由边长的比求出AB 范围即可得.【详解】由黄金矩形的定义可知0.618AD AB ≈,20.6180.38BC CF CFAB BC AB⋅=≈≈,所以18.730.260.6180.618AD AB m ≈>≈,1231.580.380.38CF AB m ≈<≈,即()30.26,31.58AB ∈,对照各选项,只有C 符合.故选:C .【点睛】本题考查数学文化,考查学生的阅读理解能力,转化与化归能力,创新意识.属于基础题.8.德国著名的天文学家开普勒说过:“几何学里有两件宝,一个是勾股定理,另一个是黄金分割.如果把勾股定理比作黄金矿的话,那么可以把黄金分割比作钻石矿.”黄金三角形有两种,其中底与腰之比为黄金分割比的黄金三角形被认为是最美的三角形,它是一个顶角为36o 的等腰三角形(另一种是顶角为108 的等腰三角形).例如,五角星由五个黄金三角形与一个正五边形组成,如图所示,在其中一个黄金ABC 中,512BC AC -=.根据这些信息,可得sin126= ()A .1254-B.38+C .154+D .458+【答案】C 【分析】计算出51cos 724-= ,然后利用二倍角公式以及诱导公式可计算得出sin126cos36= 的值,即可得出合适的选项.【详解】因为ABC 是顶角为36o 的等腰三角形,所以,72ACB ∠= ,则1512cos 72cos 4BCACB AC-=∠==,()sin126sin 9036cos36=+= ,而2cos722cos 361=-,所以,51cos364+====.故选:C.【点睛】本题考查利用二倍角公式以及诱导公式求值,考查计算能力,属于中等题.9.《九章算术》是我国古代内容极为丰富的数学名著.书中有如下问题:“今有委米依垣内角,下周四尺.高三尺.何积及为米几何?”其意思为:“在屋内墙角处堆放米,米堆底部的弧长为4尺.米堆的高为3尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有()A .7斛B .3斛C .9斛D .12斛【答案】B 【分析】根据圆锥的体积公式计算出对应的体积即可.【详解】解:设圆锥的底面半径为r ,则42r π=,解得8r π=,故米堆的体积为2118163433ππ⎛⎫⨯⨯⨯⨯≈ ⎪⎝⎭,∵1斛米的体积约为1.62立方,∴161.6233÷≈,故选:B .【点睛】本题主要考查椎体的体积的计算,比较基础.10.《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”.已知某“堑堵”的三视图如图所示,俯视图中间的实线平分矩形的面积,则该“堑堵”的侧面积为()A .2B .242+C .42+D .442+【答案】D 【分析】利用三视图还原原几何体,结合三视图中的数据可计算出该“堑堵”的侧面积.【详解】由三视图还原原几何体如下图所示:2的等腰直角三角形,且直三棱柱的高为2,因此,该“堑堵”的侧面积为()22224+⨯=.故选:D.【点睛】本题考查利用三视图计算几何体的侧面积,一般要求还原原几何体,考查空间想象能力与计算能力,属于基础题.11.干支是天干(甲、乙、…、癸)和地支(子、丑、…、亥)的合称,“干支纪年法”是我国传统的纪年法.如图是查找公历某年所对应干支的程序框图.例如公元2041年,即输入2041N =,执行该程序框图,运行相应的程序,输出58x =,从干支表中查出对应的干支为辛酉.我国古代杰出数学家秦九韶出生于公元1208年,则该年所对应的干支为()六十干支表(部分)56789戊辰己巳庚午辛未壬申5657585960己未庚申辛酉壬戌癸亥A .戊辰B .辛未C .已巳D .庚申【答案】A 【分析】输出1208N =,计算输出结果,查表可得结果.【详解】输入1208N =,1i =,第一次循环,120836011145x =--⨯=,2i =,60x ≤不成立;第二次循环,120836021085x =--⨯=,3i =,60x ≤不成立;第三次循环,120836031025x =--⨯=,4i =,60x ≤不成立;由上可知,每执行一次循环后,x 的值对应地在上一次循环后x 的值中减去60,则输出的x 的值为1205除60后的余数,120620605=⨯+ ,则输出的x 的值为5,因此,公元1208年对应的干支为戊辰.故选:A.【点睛】本题考查数学文化中的“干支纪年法”,考查程序框图的应用,考查计算能力,属于中等题.12.古代中国的太极八卦图是以同圆内的圆心为界,画出相等的两个阴阳鱼,阳鱼的头部有阴眼,阴鱼的头部有个阳眼,表示万物都在相互转化,互相渗透,阴中有阳,阳中有阴,阴阳相合,相生相克,蕴含现代哲学中的矛盾对立统一规律.图2(正八边形ABCDEFGH )是由图1(八卦模型图)抽象而得到,并建立如下平面直角坐标系,设1OA =.则下述四个结论:①以直线OH 为终边的角的集合可以表示为32,4k k Z πααπ⎧⎫=+∈⎨⎬⎩⎭;②以点O 为圆心、OA 为半径的圆的弦AB 所对的弧长为4π;③22OA OD ⋅= ;④(BF = 中,正确结论的个数是()A .1B .2C .3D .4【答案】B 【分析】根据终边相同的角的定义可判断命题①的正误;利用扇形的弧长公式可判断命题②的正误;利用平面向量数量积的定义可判断命题③的正误;利用平面向量的坐标运算可判断命题④的正误.【详解】对于命题①,以直线OH 为终边的角的集合可以表示为3,4k k Z πααπ⎧⎫=+∈⎨⎬⎩⎭,命题①错误;对于命题②,4AOB π∠=,以点O 为圆心、OA 为半径的圆的弦AB 所对的弧长为4π,命题②正确;对于命题③,由平面向量数量积的定义可得3cos 42OA OD OA OD π⋅=⋅=- ,命题③错误;对于命题④,易知点22,22B ⎛⎫ ⎪ ⎪⎝⎭,22,22F ⎛-- ⎝⎭,所以,(BF = ,命题④正确.故选:B.【点睛】本题以数学文化为背景,考查了终边相同的角的集合、扇形的弧长、平面向量数量积的定义以及平面向量的坐标运算,考查计算能力,属于基础题.二、填空题13.世界四大历史博物馆之首卢浮宫博物馆始建于1204年,原是法国的王宫,是法国文艺复兴时期最珍贵的建筑物之一,以收藏丰富的古典绘画和雕刻而闻名于世,卢浮宫玻璃金字塔为正四棱锥,且该正四棱锥的高为21米,底面边长为30米,是华人建筑大师贝聿铭设计的.若玻璃金字塔五个顶点恰好在一个球面上,则该球的半径为______米.【答案】29714【分析】作出图形,设球体的半径为R ,根据几何关系可得出关于R 的等式,进而可解得R 的值.【详解】如下图所示:在正四棱锥P ABCD -中,设M 为底面正方形ABCD 的对角线的交点,则PM ⊥底面ABCD ,由题意可得21PM =,30AB =,2302BD ==,则152BM =设该球的半径为R ,设球心为O ,则O PM ∈,由勾股定理可得222OB OM BM =+,即()(22221152R R =-+,解得29714R =.故答案为:29714.【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径;③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.14.明朝著名易学家来知德以其太极图解释一年、一日之象的图式,一年气象图将二十四节气配以太极图,说明一年之气象,来氏认为“万古之人事,一年之气象也,春作夏长秋收冬藏,一年不过如此”.上图是来氏太极图,其大圆半径为4,大圆内部的同心小圆半径为1,两圆之间的图案是对称的,若在大圆内随机取一点,则该点落在黑色区域的概率为______.【答案】1532【分析】设大圆面积为1S ,小圆面积2S ,求得116S π=,2S π=,进而求得黑色区域的面积,结合面积比,即可求解.【详解】设大圆面积为1S ,小圆面积2S ,则21416S ππ=⨯=,221S ππ=⨯=,可得黑色区域的面积为()1211522S S π⨯-=,所以落在黑色区域的概率为()121115232S S P S -==.故答案为:1532.【点睛】本题主要考查了几何概型的概率的计算问题,解决此类问题的步骤:求出满足条件A 的基本事件对应的“几何度量()N A ”,再求出总的基本事件对应的“几何度量N ”,然后根据()N A P N =求解,着重考查了分析问题和解答问题的能力,属于基础题.15.《九章算术》是我国古代著名数学经典,其中对勾股定理的论述,比西方早一千多年,其中有这样一个问题:“今有圆材埋在壁中,不知大小;以锯锯之,深一寸,锯道长一尺,问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯该材料,锯口深1寸,锯道长1尺,问这块圆柱形木料的直径是多少?长为0.5丈的圆柱形木材部分镶嵌在墙体中,截面图如图所示(阴影部分为镶嵌在墙体内的部分).已知弦1AB =尺,弓形高1CD =寸,估算该木材镶嵌墙内部分的体积约为______立方寸.(注:一丈=10尺=100寸,53.14,sin 22.513π≈≈ ,答案四舍五入,只取整数...........)【答案】317【分析】根据弓形的锯口深1寸,锯道长1尺,求出圆的半径,从而求出弓形(阴影部分)面积后,由柱体体积公式得木材体积【详解】如图,设圆半径为r 寸(下面长度单位都是寸),连接,OA OD ,已知152AD AB ==,1OD OC CD r =-=-,在Rt ADO 中,222AD OD OA +=,即2225(1)r r +-=,解得13r =,由5sin 13AD AOD AO ∠==得22.5AOD ∠=︒,所以45AOB ∠=︒,图中阴影部分面积为S S =扇形214131012 6.332522AOB S πππ-=⨯⨯-⨯⨯≈△(平方寸),镶嵌在墙体中木材是以阴影部分为底面,以锯刀长为高的柱体,所以其体积为 6.332550317V Sh =≈⨯≈(立方寸)故答案为:317.【点睛】本题考查柱体的体积,关键是求底面面积,方法是由扇形面积减去相应三角形面积得弓形面积,属基础题.16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体的棱长为______1-【分析】从图形中作一个最大的水平截面,它是一个正八边形,八个顶点都在边长为铁正方形边上,由此可计算出棱长.【详解】作出该图形的一个最大的水平截面正八边形ABCDEFGH ,如图,其八个顶点都在边长为1的正方形上,设“半正多面体”棱长为a ,则2212a a ⨯+=,解得1a =-,1-.【点睛】本题考查学生的空间想象能力,抽象概括能力,解题关键是从“半正多面体”中作出一个截面为正八边形且正八边形的八个顶点都在边长为1的正方形上,由此易得棱长.。
专题05 立体几何与数学文化纵观近几年高考,立体几何以数学文化为背景的问题,层出不穷,让人耳目一新。
同时它也使考生们受困于背景陌生,阅读受阻,使思路无法打开。
本专题通过对典型高考问题的剖析、数学文化的介绍、及精选模拟题的求解,让考生提升审题能力,增加对数学文化的认识,进而加深对数学文理解,发展数学核心素养。
【例1】(2019课标2)中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有个面,其棱长为.【答案】26,21.【解析】中间层是一个正八棱柱,有8个侧面,上层是有81+,个面,下层也有81+个面,故共有26个面;半正多面体的棱长为中间层正八棱柱的棱长加上两个棱长的2cos452=倍.该半正多面体共有888226+++=个面,设其棱长为x,则221x x=,解得21x.【试题赏析】本题以金石文化为背景,考查了球内接多面体,体现了对直观想象和数学运算素养的考查。
【例2】(2018课标Ⅲ)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是A .B .C .D .【答案】A【解析】由题意可知,如图摆放的木构件与某一带卯眼的木构件咬合成长方体,小的长方体,是榫头,从图形看出,轮廓是长方形,内含一个长方形,并且一条边重合,另外3边是虚线,所以木构件的俯视图是A .【试题赏析】本题以中国古建筑借助榫卯将木构件为背景,考查了简单几何体的三视图的画法。
【例2】 (2019浙江高考) 祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V sh 柱体,其中s 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示,则该柱体的体积是A .158B .162C .182D .324【答案】B【解析】由三视图还原原几何体如图,该几何体为直五棱柱,底面五边形的面积可用两个直角梯形的面积求解, 即()()114632632722ABCDE S =+⨯++⨯=五边形,高为6,则该柱体的体积是276162V =⨯=.故选:B . 【试题赏析】本题以祖暅原理为背景,考查由三视图求面积、体积,关键是由三视图还原原几何体。
哈尔滨师范大学附属中学刘冰2017年,高考考试大纲修订内容中增加了对数学文化的要求,但是高考数学试题中早就出现过以数学文化为背景的新颖命题,经过持续发展,在2018年高考中呈现出了求新、求变的效果.把历史和文化内容引入高考数学,为高考数学题打上了文化的烙印.教师应在平时的教学中弘扬中国传统文化,吸收世界文化的精华,引导学生胸怀祖国,放眼世界.例1(2018年全国新课标I,理10)下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,A C.△ABC的三边所围成的区域记为I,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自I,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p3解析:设AB=a,A C=b,BC=a2+b2,√设整个图形的面积为S则p1=ab2S,p2=1S{π(a2)22+π(b2)22-[π(a2+b2√2)22-1 2ab]}=ab2S=p1故选A.【数学文化】古希腊数学家希波克拉底发现的一条平面几何里应用广泛的优美定理———月牙定理,指以直角三角形两条直角边为直径向外做两个半圆,以斜边为直径向内做半圆,则三个半圆所围成的两个月牙型面积之和等于该直角三角形的面积.本题依据这一定理考查几何概型问题.例2(2017年全国卷II,理3)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏B.3盏C.5盏D.9盏解析:设顶层灯数为a1,q=2,s7=a1(1-27)1-2=381,解得a1=3.故选B.【数学文化】《算法统宗》,又名《直指算法统宗》《新编直指算法统宗》,明代数学家程大位撰,共17卷.1592年编成《算法统宗》共列算题595道,以珠算为主要的计算工具,卷一介绍数学常识,卷二介绍珠算,卷三以后分别为方田、粟布、衰分、少广、分田截积、商功、均输、盈亏、方程、勾等,第十七卷附以难题杂法,又列有14个纵横图.本题以数学史中《算法统宗》的一个问题为包装,考查数列问题.例3(2016年全国新课标II,理8)中国古代有计算多项式值的秦九韶算法,实现该算法的程序框图见下页.执行该程序框图,若输入的x=2,n=2,依次输入的a 为2,2,5,则输出的s=.(A)7(B)12(C)17(D)34解析:第一次运算:s=0×2+2=2,第二次运算:s=2×2+2=6,第三次运算:s=6×2+5=17,故选C.【数学文化】秦九韶算法是中国南宋时期的数学家秦九韶提出的一种多项式简化算法.在著作《数书九章》中提出了这一先进的多项式简化算法.一般一元n次多项式的求值需要经过n(n+1)2次乘. All Rights Reserved.a ,ba ≠ba >ba =a -bb =b-aa法和n 次加法,而秦九韶算法只需要n 次乘法和n 次加法.在人工计算时,大大简化了运算过程.本题以数学史中《秦九韶算法》的问题为背景,考查程序框图问题.例4(2015年全国卷II,理8)下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入a ,b 分别为14,18,则输出的a =.(A )0(B )2(C )4(D )14解析:逐次运行程序,直至程序结束得出a .a=14,b =18.第一次循环:14≠18且14<18,b =18-14=4;第二次循环:14≠4且14>4,a=14-4=10;第三次循环:10≠4且10>4,a=10-4=6;第四次循环:6≠4且6>4,a=6-4=2;第五次循环:2≠4且2<4,b =4-2=2;第六次循环:a=b =2,跳出循环,输出a=2,故选B.【数学文化】更相减损术出自《九章算术》中的求最大公约数的算法,原本是为约分而设计的,但它适用于任何需要求最大公约数的场合.本题将更相减损术与程序框图相结合,加大了该问题的考查难度.考生若能看出此程序框图的功能,便很容易解决.例5(2015年湖北卷,理2)我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓有人送来米1534石,验得米内夹谷,254粒内夹谷28粒,则这批米内夹谷约为(A )134石(B)169石(C)338石解析:254粒和1534致相同的,设1534解得x =169,故这批米内夹谷约为169石.【数学文化】中的“米谷粒分”问题,体.本题以《数书九章》为载体,例6(2018年全国新课标II,理8)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是()A.112B.114C.115D.118解析:不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有n =C 210=45种不同的情况,其中和等于30的有7+23=30,11+19=30,13+17=30,共m =3种不同的情况,则所求的概率p =m n =345=115,故选C.【数学文化】在1742年给欧拉的信中,哥德巴赫提出了如下猜想:任一大于2的偶数都可写成两个素数之和.但是哥德巴赫自己无法证明它,于是就写信请教赫赫有名的大数学家欧拉帮忙证明,但是一直到死,欧拉也无法证明.1966年,陈景润证明了“1+2”成立,即“任一充分大的偶数都可以表示成二个素数的和,或是一个素数和一个半素数的和”.本题依据这一定理,考查古典概型问题.“数学文化”题是经典与创新的完美结合,也是近几年全国及各省份高考数学题中的一大亮点.我们在教学中应引导学生多多了解中国数学史及世界数学史,以便学生在高考中更好地发挥.编辑/王一鸣E-mail:***************考试KAOSHI. All Rights Reserved.。
专题04 算法、推理与数学文化纵观近几年高考,算法、推理部分以数学文化为背景的问题,层出不穷,让人耳目一新。
同时它也使考生们受困于背景陌生,阅读受阻,使思路无法打开。
本专题通过对典型高考问题的剖析、数学文化的介绍、及精选模拟题的求解,让考生提升审题能力,增加对数学文化的认识,进而加深对数学文理解,发展数学核心素养。
【例1】(2016•新课标Ⅱ)中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a为2,2,5,则输出的s=()A.7 B.12 C.17 D.34【答案】C【解析】∵输入的x=2,n=2,当输入的a为2时,S=2,k=1,不满足退出循环的条件;当再次输入的a为2时,S=6,k=2,不满足退出循环的条件;当输入的a为5时,S=17,k=3,满足退出循环的条件;故输出的S值为17,故选:C.【试题赏析】本题以秦九韶算法为文化背景,考查程序框图,当循环次数不多,或有规律可循时,可采用模拟程序法进行解答.【例2】(2015·全国卷Ⅱ) 下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a,b分别为14,18,则输出的a=()A.0 B.2 C.4 D.14【答案】B【解析】(方法一)逐次运行程序,直至程序结束得出a值.输入a=14,b=18.第一次循环,14≠18且14<18,b=18-14=4;第二次循环,14≠4且14>4,a=14-4=10;第三次循环,10≠4且10>4,a=10-4=6;第四次循环,6≠4且6>4,a=6-4=2;第五次循环,2≠4且2<4,b=4-2=2;第六次循环,a=b=2,跳出循环,输出的a=2,故选B.(方法二)此程序的功能是求18,14的最大公约数,因为18,14的最大公约数为2,所以输出的a=2,选B. 【试题赏析】此题源于《九章算术·方田》,后人称之为“更相减损术”.“更相减损术”实质上是用来求两数的最大公约数,国外的欧几里得算法也可以解决这个问题.此题以“更相减损术”为载体,考查程序框图的应用,这样的设计,不仅可以让学生了解数学文化,形成理性思维,同时也能使学生感受我国古代数学的成就,增强民族自豪感.【例3】(2019课标Ⅱ文)在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高.丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为()A.甲、乙、丙B.乙、甲、丙C.丙、乙、甲D.甲、丙、乙【答案】A【解析】由题意,可把三人的预测简写如下:甲:甲>乙.乙:丙>乙且丙>甲.丙:丙>乙.∵只有一个人预测正确,∴分析三人的预测,可知:乙、丙的预测不正确.如果乙预测正确,则丙预测正确,不符合题意.如果丙预测正确,假设甲、乙预测不正确,则有丙>乙,乙>甲,∵乙预测不正确,而丙>乙正确,∴只有丙>甲不正确,∴甲>丙,这与丙>乙,乙>甲矛盾.不符合题意.∴只有甲预测正确,乙、丙预测不正确,甲>乙,乙>丙.故选:A.【试题赏析】本题以“一带一路”为文化背景,考查合情推理,因为只有一个人预测正确,所以本题关键是要找到互相关联的两个预测入手就可找出矛盾.从而得出正确结果.【例4】(2014•陕西)观察分析下表中的数据:多面体面数(F)顶点数(V)棱数(E)三棱柱 5 6 9五棱锥 6 6 10立方体 6 8 12猜想一般凸多面体中F,V,E所满足的等式是.【解析】凸多面体的面数为F、顶点数为V和棱数为E,①正方体:F=6,V=8,E=12,得F+V﹣E=8+6﹣12=2;②三棱柱:F=5,V=6,E=9,得F+V﹣E=5+6﹣9=2;③三棱锥:F=4,V=4,E=6,得F+V﹣E=4+4﹣6=2.根据以上几个例子,猜想:凸多面体的面数F、顶点数V和棱数E满足如下关系:F+V﹣E=2再通过举四棱锥、六棱柱、…等等,发现上述公式都成立.因此归纳出一般结论:F+V﹣E=2,故答案为:F+V﹣E=2【试题赏析】本题以欧拉公式为文化背景,考试通过观察它们的顶点数、面数和棱数,归纳出一般结论,得到欧拉公式,着重考查了归纳推理和凸多面体的性质等知识.1.《孙子算经》《孙子算经》是中国古代重要的数学著作.成书大约在四、五世纪,也就是大约一千五百年前.全书共分三卷:上卷详细地讨论了度量衡的单位和筹算的制度和方法.中卷主要是关于分数的应用题,包括面积、体积、等比数列等计算题.下卷对后世的影响最为深远,如下卷第31题即著名的“鸡兔同笼”问题,后传至日本,被改为“鹤龟算”.2.《数书九章》《数书九章》成书于1247年,是南宋数学家秦九韶唯一的数学著作,在长期艰苦的环境中写成的.全书共十八卷,分“大衍”“天时”“田域”“测望”“赋役”“钱谷”“营建”“军旅”“市物”等九类,每类九个问题,共81题.《数书九章》是一部划时代的巨著,内容丰富,精湛绝伦.秦九韶在《数书九章》中所发明的“大衍求—术”,即现代数论中一次同余式组解法,是中世纪世界数学的最高成就,比西方数学家高斯建立的同余理论早500多年,被西方称为“中国剩余定理”.此外,秦九韶还创拟了正负开方术,即任意高次方程的数值解法,也是中世纪世界数学的最高成就,秦九韶所发明的此项成果比1819年英国人霍纳的同样解法早500多年.1. (2019洛阳模拟) 秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例.若输入n,x的值分别为4,3,则输出v的值为()A.20 B.61 C.183 D.548【答案】C【解析】由程序框图知,初始值:n=4,x=3,v=1,i=3,第一次循环:v=6,i=2;第二次循环:v=20,i=1;第三次循环:v=61,i=0;第四次循环:v=183,i=1.结束循环,输出当前v的值183.2.(2019青岛联考)如图所示的程序框图的算法数学思想源于数学名著《几何原本》中的“辗转相除法”,执行该程序框图(图中“m MOD n”表示m除以n的余数),若输入的m,n分别为495,135,则输出的m=()A.0 B.5 C.45 D.90【答案】C【解析】该程序框图是求495与135的最大公约数,由495=135×3+90,135=90×1+45,90=45×2,所以495与135的最大公约数是45,所以输出的结果是45.3.(2019四川模拟)我国古代数学名著《孙子算经》有鸡兔同笼问题,根据问题的条件绘制如图的程序框图,则输出的x,y分别是()A.12,23 B.23,12 C.13,22 D.22,13【答案】B【解析】由程序框图,得:x=1,y=34,S=138;x=3,y=32,S=134;x=5,y=30,S=130;x=7,y=28,S=126;……,x=23,y=12,S=94.输出x=23,y=12.故选:B.4.(2019黄石二模)公元263年左右,我国古代数学家刘徽用圆内接正多边形的面积去逼近圆的面积求圆周率π.他从圆内接正六边形算起,令边数一倍一倍地增加,逐个算出正六边形,正十二边形,正二十四边形,……的面积,这些数值逐步地逼近圆的面积,刘徽一直计算到正3072边形,得到了圆周率π的近似值3.1416.刘徽称这个方法为“割圆术”,并且把“割圆术”的特点概括为“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”.刘徽这种想法的可贵之处在于用已知的、可求的来逼近未知的、要求的,用有限来逼近无限.这种思想极其重要,对后世产生了巨大影响.如图是利用刘徽的“割圆术”思想设计的一个程序框图.若运行该程序(参考数据:3≈1.732,sin 15°≈0.2588,sin 7.5°≈0.1305),则输出的n 的值为( )A .48B .36C .30D .24【答案】D【解析】输入n 的值为6;第一次循环,S =3sin 60°=332<3.10,n =12; 第二次循环,S =6sin 30°=3<3.10,n =24;第三次循环,S =12sin 15°≈3.1056>3.10,退出循环,则输出的n 的值为24.5.(2019汉中联考)1927年德国汉堡大学的学生考拉兹提出一个猜想:对于任意一个正整数,如果它是奇数,对它乘3加1,如果它是偶数,对它除以2,这样循环,最终结果都能得到1.有的数学家认为“该猜想任何程度的解决都是现代数学的一大进步,将开辟全新的领域”.如图是根据考拉兹猜想设计的一个程序框图,则输出i 的值为( )A .8B .7C .6D .5【答案】A【解析】3a =,1a =不满足,a 是奇数满足,10a =,2i =,10a =,1a =不满足,a 是奇数不满足,5a =,3i =,5a =,1a =不满足,a 是奇数满足,16a =,4i =,16a =,1a =不满足,a 是奇数不满足,8a =,5i =,8a =,1a =不满足,a 是奇数不满足,4a =,6i =,4a =,1a =不满足,a . 是奇数不满足,2a =,7i =,2a =,1a =不满足,a 是奇数不满足,1a =,8i =,1a =,1a =满足,输出8i =,故选A .6. (2019深圳模拟)中国古代数学著作《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而等长.意思是现有松树高5尺,竹子高2尺,松树每天长自己高度的一半,竹子每天长自己高度的一倍,问在第几天会出现松树和竹子一样高?如图是源于其思路的一个程序框图,若输入的x =5,y =2,输出的n 为4,则程序框图中判断框中应填入( )A .y ≤x?B .x ≤y?C .y <x?D .x =y?【答案】B【解析】根据程序框图,输入x =5,y =2,n =1.第一次循环,x =5+52=152,y =4,此时y <x ;第二次循环,n =2,x =152+154=454,y =8,此时y <x ; 第三次循环,n =3,x =454+458=1358,y =16,此时y <x ;第四次循环,n =4,x =1358+13516=40516,y =32,此时y ≥x ,输出n 的值4.由此可知,应填的条件是x ≤y ?.7. (2019包头模拟)我国古代的劳动人民曾创造了灿烂的中华文化,戍边的官兵通过在烽火台上举火向国内报告,烽火台上点火表示数字1,不点火表示数字0.这蕴含了进位制的思想.如图所示的程序框图的算法思路就源于我国古代戍边官兵的“烽火传信”.执行该程序框图,若输入a=110011,k=2,n=6,则输出b的值为()A.19 B.31 C.51 D.63【答案】C【解析】(方法一)输入a=110011,k=2,n=6,输入b=0,i=1.第一次循环,输入t=1,b=0+1×20=1,i=2,2>6不成立;第二次循环,输入t=1,b=1+1×21=3,i=3,3>6不成立;第三次循环,输入t=0,b=3+0×22=3,i=4,4>6不成立;第四次循环,输入t=0,b=3+0×23=3,i=5,5>6不成立;第五次循环,输入t=1,b=3+1×24=19,i=6,6>6不成立;第六次循环,输入t=1,b=19+1×25=51,i=7,7>6成立,退出循环,输出b的值为51.(方法二)将二进制数化为十进制数,a=110011(2)=1×25+1×24+0×23+0×22+1×21+1×20=51.故b的值为51.8.(2019长沙模拟)如图,一块黄铜板上插着三根宝石针,在其中一根针上从下到上穿好由大到小的若干金片.若按照下面的法则移动这些金片:每次只能移动一片金片;每次移动的金片必须套在某根针上;大片不能叠在小片上面.设移完片金片总共需要的次数为,可推得.求移动次数的程序框图模型如图所示,则输出的结果是()A.1022 B.1023 C.1024 D.1025【答案】B【解析】记个金属片从号针移动到号针最少需要次;则据算法思想有:;第一次循环,;第二次循环,;第三次循环,,…,第九次循环,,输出,故选B.9.(2019•九江三模)2018年9月24日,阿贝尔奖和菲尔兹奖双料得主、英国著名数学家阿蒂亚爵士宣布自己证明了黎曼猜想,这一事件引起了数学界的震动,在1859年,德国数学家黎曼向科学院提交了题目为《论小于某值的素数个数》的论文并提出了一个命题,也就是著名的黎曼猜想.在此之前,著名数学家欧拉也曾研究过这个问题,并得到小于数字x的素数个数大约可以表示为n(x)的结论(素数即质数,lge≈0.43429).根据欧拉得出的结论,如下流程图中若输入n的值为100,则输出k的值应属于区间()A.(15,20] B.(20,25] C.(25,30] D.(30,35]【答案】B【解析】该流程图是统计100以内素数的个数,由题可知小于数字x的素数个数大约可以表示为n(x)≈;则100以内的素数个数为:n(100)≈===50lge≈22.故选:B.10.(2019银川二模)原始社会时期,人们通过在绳子上打结来计算数量,即“结绳计数”,当时有位父亲,为了准确记录孩子的成长天数,在粗细不同的绳子上打结,由细到粗,满七进一,那么孩子已经出生多少天?()A.1 326 B.510 C.429 D.336【答案】B【解析】由题意满七进一,可得该图示为七进制数,化为十进制数为1×73+3×72+2×7+6=510. 11.(2019•天河区校级三模)将杨辉三角中的奇数换成1,偶数换成0,得到如右图所示的0﹣1三角数表.从上往下数,第1次全行的数都为1的是第1行,第2次全行的数都为1的是第3行,…,第n次全行的数都为1的是第2n﹣1行;则第61行中1的个数是()A.31 B.32 C.33 D.34【答案】B【解析】由已知图中的数据第1行 1 1第2行 1 0 1第3行 1 1 1 1第4行 1 0 0 0 1第5行 1 1 0 0 1 1…∵全行都为1的是第2n﹣1行;∵n=6时,26﹣1=63,故第63行共有64个1,逆推知第62行共有32个1,第61行共有32个1.故y=32,故选:B.12.(2019•成都模拟)“幻方’’最早记载于我国公元前500年的春秋时期《大戴礼》中.“n阶幻方(n≥3,n∈N*)”是由前,n2个正整数组成的﹣个n阶方阵,其各行各列及两条对角线所含的n个数之和(简称幻和)相等,例如“3阶幻方”的幻和为15(如表所示).则“5阶幻方”的幻和为()8 1 63 5 74 9 2A.75 B.65 C.55 D.45【答案】B【解析】由1,2,3,4…24,25的和为=325,又由“n阶幻方(n≥3,n∈N*)”的定义可得:“5阶幻方”的幻和为=65,故选:B.13.(2019•龙泉驿区模拟)如图所示,正方形上连接着等腰直角三角形,等腰直角三角形腰上再连接正方形,…,如此继续下去得到一个树形图形,称为“勾股树”.若某勾股树含有255个正方形,且其最大的正方形的边长为,则其最小正方形的边长为()A.B.C.D.【答案】A【解析】由题意,正方形的边长构成以为首项,以为公比的等比数列,现已知共得到255个正方形,则有1+2+…+2n﹣1=255,∴n=8,∴最小正方形的边长为×()7=.故选:A.14.(2019•拉萨三模)英国统计学家E.H.辛普森1951年提出了著名的辛普森悖论,下面这个案例可以让我们感受到这个悖论.有甲乙两名法官,他们都在民事庭和行政庭主持审理案件,他们审理的部分案件被提出上诉.记录这些被上述案件的终审结果如表所示(单位:件):记甲法官在民事庭、行政庭以及所有审理的案件被维持原判的比率分别为x1,x2和x,记乙法官在民事庭、行政庭以及所有审理的案件被维持原判的比率分别为y1,y2和y,则下面说法正确的是()A.x1<y1,x2<y2,x>y B.x1<y1,x2<y2,x<yC.x1 >y1,x2 >y2,x>y D.x1 >y1,x2>y2,x<y【答案】D【解析】由图表可知:x1==0,90625,y1==0,9,即x1>y1,x2=≈0.85,y2==0.8,即x2>y2,x==0.86,y==0.88,即x<y,即x1>y1,x2>y2,x<y,故选:D.15.(2019株洲二模)高铁是一种快捷的交通工具,为我们的出行提供了极大的方便。
历年高考数学文化题集锦一. 数学名著中的立几题,例如:2015年全国1卷文6理6题6、《九章算术》是我国古代内容极为丰富的数学名著,书屮有如下问题:“今有委米依垣内角,下周八尺,高五尺,问''积及为米几何?”其意思为广在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?"已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()(A) 14斛(B) 22 斛(C) 36斛(D) 66 斛答案:B2012年湖北理科数学第10题10.我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径.“开立圆术”相当于给出了已知球的体积〃,求其直径〃的一个近似公式d 珂尹.人们还用过一些类似的近似公式.根据71=3.14159…判断,下列近似公式中最精确的一个是A. B. d =何 C・d = J型7—vV 9 V157考点分析:考察球的体积公式以及估算.解析:由卩二彳龙上几削二:胚‘设选项中常数为纟,则好④;力中代入得好空=3.375,3 2 V 7C b a163中代入得K空=3, C中代入得好空卫=3.14,科代入得好空丄3.142857,2 300 21曲于I)中值最接近加勺真实值,故选择D。
二、数学名著中的数列题,例如:2011年湖北卷文9理13题;13.《九章算术》“竹九节”问题:现有1根9节的竹子,自上而下各节的容积成等差数列,上面四节的容积共3升,下面3节的容积共4升,则第5节的容积为【解析】设该数列的杵项为公筮为依题总应该疇(8)右边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术"。
执行该程序框图,若输入a,b分别为14,18,则输出的玄= ___________【答幻B晦】師atWTil®中,a, 6的值依次为a = 14. 6 = 18; 6 = 4; a = 10; a = 6; a=2 b = 2・d匕时a = b = 2程牌抹,输岀a的值为2・故选B・数学名著中的统计题,例如:2015年湖北卷文2理2题2. (5分)(2015-湖北)我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为(A. 134 石)B. 169 石C. 338 石D. 1365 石升。
数学文化背景的高考试题背景一:杨辉三角杨辉三角,又称贾宪三角形,帕斯卡三角形,是二项式系数在三角形中的一种几何排列。
下图的表在我国南宋数学家杨辉1261年所著的《详解九章算法》一书里就出现了。
1.如图,一个类似杨辉三角的数阵,则(1)第9行的第2个数是66;(2)若第n(n≥2)行的第2个数为291,则n=18.2.中国古代数学史曾经有自己光辉灿烂的篇章,其中“杨辉三角”的发现就是十分精彩的一页.而同杨辉三角齐名的世界著名的“莱布尼茨三角形”如图所示,从莱布尼茨三角形可以看出:排在第10行从左边数第3个位置上的数值是()A.B.C.D.3.[2006湖北L-15]将杨辉三角(如图(1))中的每一个数都换成分数,就得到一个如图(2)所示的分数三角形,称为莱布尼茨三角形.从莱布尼茨三角形可以看出:,其中x=r+1.背景二:古希腊多边形数教材背景:必修⑤数列引入1.[2009湖北L-W-10]古希腊人常用小石子在沙滩上摆成各种形状来研究数。
比如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似的,称图2中的1,4,9,16,…这样的数为正方形数。
下列数中既是三角形数又是正方形数的是A.289B.1024C.1225D.13782.[2012湖北W-17]传说古希腊毕达哥拉斯学派的数学家经常在沙滩上面画点或用小石子表示数。
他们研究过如图所示的三角形数:将三角形数1,3, 6,10,…记为数列{a n },将可被5整除的三角形数按从小到大的顺序组成一个新数列{b n },可以推测:(Ⅰ)b 2012是数列{an}中的第______项;(Ⅱ)b 2k-1=______。
(用k 表示)3.[2013湖北L-14]古希腊毕达哥拉斯学派的数学家研究过各种多边形数。
如三角形数1,3,6,10,…,第n 个三角形数为()2111222n n n n +=+。
记第n 个k 边形数为(),N n k ()3k ≥,以下列出了部分k 边形数中第n 个数的表达式:三角形数 ()211,322N n n n =+ 正方形数 ()2,4N n n =五边形数 ()231,522N n n n =-六边形数 ()2,62N n n n =- ……可以推测(),N n k 的表达式,由此计算()10,24N = 。
2021 年全国统一高考数学试卷〔文科〕〔大纲版〕一.选择题1.〔 5 分〕集合 A={ x| x 是平行四边形 } ,B={ x| x 是矩形 } ,C={ x| x 是正方形 } ,D={ x| x 是菱形 } ,那么〔〕A.A? B B.C? B C.D? C D.A? D2.〔5 分〕函数的反函数是〔〕A.y=x2﹣ 1〔 x≥ 0〕B.y=x2﹣1〔x≥ 1〕C.y=x2+1〔x≥ 0〕D.y=x2 +1〔x≥1〕3.〔5分〕假设函数是偶函数,那么φ=〔〕A.B.C.D.4.〔5分〕α为第二象限角,,那么 sin2 α=〔〕A.B.C.D.5.〔5分〕椭圆的中心在原点,焦距为4,一条准线为 x=﹣4,那么该椭圆的方程为〔〕A.B.C.D.6.〔5分〕数列 { a n} 的前 n 项和为 S n,a1 =1, S n=2a n+1,那么当 n>1 时, S n=〔〕A.〔〕n﹣1B.2n﹣ 1C.〔〕n﹣1D.〔﹣1〕7.〔5 分〕 6 位选手依次演讲,其中选手甲不在第一个也不在最后一个演讲,那么不同的演讲次序有〔〕A.240 种B.360 种C.480 种D.720 种.〔分〕正四棱柱ABCD﹣A1B1C1D1中, AB=2,CC,E 为 CC1的中点,那么直线 AC 与平8 51=21面 BED的距离为〔〕A.2B.C.D.19.〔5分〕△ ABC中, AB 边的高为 CD,假设= , = , ?=0,| | =1, | | =2,那么=〔〕A.B.C.D.10.〔5分〕1、F2为双曲线 C: x2﹣y2的左、右焦点,点P在C上F=2∠F1PF2=〔〕A.B.C.D.11.〔 5 分〕 x=ln π, y=log52,,那么〔〕A.x<y<z B.z<x< y C. z<y<x D. y<z<x 12.〔 5 分〕正方形 ABCD的边长为 1,点 E 在边 AB 上,点 F 在边 BC上,发沿直线向 F 运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角到 E 时, P 与正方形的边碰撞的次数为〔〕A.8B.6C. 4D. 3二、填空题〔共 4 小题,每题 5 分,共 20 分,在试卷上作答无效〕13.〔 5 分〕的展开式中x2的系数为.14.〔 5 分〕假设 x,y 满足约束条件那么z=3x﹣y的最小值为15.〔 5 分〕当函数 y=sinx﹣cosx〔0≤ x<2π〕取得最大值时, x=16.〔5分〕正方体ABCD﹣A1B1C1D1中,E,F 分别为 BB ,CC 的中点,11所成角的余弦值为.三、解答题:本大题共 6 小题,共 70 分.解容许写出文字说明、证明过程或作答无效!17.〔 10 分〕△ ABC中,内角 A, B,C 成等差数列,其对边a, b, c第 1 页〔共 13 页〕18.〔 12 分〕数列 { a n } 中, a1=1,前 n 项和20.〔 12 分〕乒乓球比赛规那么规定:一局比赛,对方比分在10 平前,一方球 2 次后,对〔1〕求 a2, a3;〔2〕求 { a n } 的通项公式.19.〔 12 分〕如图,四棱锥 P﹣ABCD中,底面ABCD为菱形, PA⊥底面 ABCD,,PA=2,E 是PC上的一点, PE=2EC.〔Ⅰ〕证明: PC⊥平面 BED;〔Ⅱ〕设二面角 A﹣PB﹣ C 为 90°,求 PD 与平面 PBC所成角的大小.第 2 页〔共 13 页〕21.〔 12 分〕函数.22.〔 12 分线 C:y=〔〔 1〕讨论 f〔x〕的单调性;在 A 处两切线为同l.〔 2〕设 f 〔x〕有两个极值点 x1,x2,假设过两点〔 x1, f〔x1〕〕,〔 x2,f〔 x2〕〕的直线 l 与 x 轴的交点〔Ⅰ〕求 r;在曲线 y=f〔x〕上,求 a 的值.〔Ⅱ〕设 m 异于 l 且与 C 都相切的两条线, m, n 为 D,求 D 距离.第 3 页〔共 13 页〕2021 年全国统一高考数学试卷〔文科〕〔大纲版〕参考答案与试题解析一.选择题1.〔 5 分〕集合 A={ x| x 是平行四边形 } ,B={ x| x 是矩形 } ,C={ x| x 是正方形 } ,D={ x| x 是菱形 } ,那么〔〕A.A? B B.C? B C.D? C D.A? D【考点】 1E:交集及其运算.【专题】 11:计算题.【分析】直接利用四边形的关系,判断选项即可.【解答】解:因为菱形是平行四边形的特殊情形,所以D? A,矩形与正方形是平行四边形的特殊情形,所以B? A,C? A,正方形是矩形,所以C? B.应选: B.【点评】此题考查集合的根本运算,几何图形之间的关系,根底题.2.〔5 分〕函数的反函数是〔〕A.y=x2﹣ 1〔 x≥ 0〕B.y=x2﹣1〔x≥ 1〕C.y=x2+1〔x≥ 0〕 D. y=x2+1〔x ≥ 1〕【考点】 4R:反函数.【专题】 11:计算题.【分析】直接利用反函数的求法求解即可.【解答】解:因为函数,解得x=y2﹣1,所以函数的反函数是 y=x2﹣1〔x≥0〕.应选: A.【点评】此题考查函数的反函数的求法,考查计算能力.3.〔5 分〕假设函数是偶函数,那么A.B.C.D.【考点】 H6:正弦函数的奇偶性和对称性;HK:由 y=Asin〔ωx+φ〕的局部【专题】 11:计算题.【分析】直接利用函数是偶函数求出? 的表达式,然后求出? 的值.【解答】解:因为函数是偶函数,所以,k∈z,所以 k=0 时, ?=∈[ 0,2π].应选: C.【点评】此题考查正弦函数的奇偶性,三角函数的解析式的应用,考查计算能4.〔5 分〕α为第二象限角,,那么sin2α=〔〕A.B.C.D.【考点】 GG:同角三角函数间的根本关系;GS:二倍角的三角函数.【专题】 11:计算题.【分析】直接利用同角三角函数的根本关系式,求出cosα,然后利用二倍角【解答】解:因为α为第二象限角,,所以 cosα=﹣=﹣.所以 sin2α=2sin αcosα==.应选: A.【点评】此题考查二倍角的正弦,同角三角函数间的根本关系的应用,考查计第 4 页〔共 13 页〕5.〔5 分〕椭圆的中心在原点,焦距为4,一条准线为 x=﹣4,那么该椭圆的方程为〔〕A.B.C.D.【考点】 K3:椭圆的标准方程; K4:椭圆的性质.【专题】 11:计算题.【分析】确定椭圆的焦点在x 轴上,根据焦距为4,一条准线为x=﹣4,求出几何量,即可求得椭圆的方程.【解答】解:由题意,椭圆的焦点在x 轴上,且∴c=2, a2=8∴b2=a2﹣c2 =4∴椭圆的方程为应选: C.【点评】此题考查椭圆的标准方程,考查椭圆的几何性质,属于根底题.n}的前n项和为S n ,a1, n n+1,那么当n>1时,S n 〔〕6.〔5 分〕数列 { a=1 S =2a=A.〔〕n﹣1B.2n﹣ 1C.〔〕n﹣1D.〔﹣1〕【考点】 8H:数列递推式.【专题】 35:转化思想; 54:等差数列与等比数列.【分析】利用递推关系与等比数列的通项公式即可得出.【解答】解:∵ S n=2a n+1,得 S n =2〔S n+1﹣ S n〕,即 3S n =2S n+1,由 a1,所以n≠0.那么= .=1S ∴数列 { S n} 为以 1 为首项,公比为的等比数列∴ S n=.应选: A.【点评】此题考查了递推关系与等比数列的通项公式,考查了推理能力与计算7.〔5 分〕 6 位选手依次演讲,其中选手甲不在第一个也不在最后一个演讲,〔〕A.240 种B.360 种C. 480 种D. 720 种【考点】 D9:排列、组合及简单计数问题.【专题】 11:计算题.【分析】直接从中间的 4 个演讲的位置,选 1 个给甲,其余全排列即可.【解答】解:因为 6 位选手依次演讲,其中选手甲不在第一个也不在最后一个开始与结尾的位置还有个选择,剩余的元素与位置进行全排列有,个位置,所以不同的演讲次序有=480 种.应选: C.【点评】此题考查排列、组合以及简单的计数原理的应用,考查计算能力.8.〔5分〕正四棱柱ABCD﹣A1B1 C1D1中, AB=2,CC1=2,E为1平CC 面 BED的距离为〔〕A.2B.C.D. 1【考点】 MI:直线与平面所成的角.【专题】 11:计算题.【分析】先利用线面平行的判定定理证明直线C1A∥平面 BDE,再将线面距后利用等体积法求点面距离即可【解答】解:如图:连接 AC,交 BD 于 O,在三角形 CC1A 中,易证 OE∥C1A第 5 页〔共 13 页〕∴直线 AC1与平面 BED的距离即为点 A 到平面 BED的距离,设为 h,∴ AB=在三棱锥 E﹣ABD中, V E﹣ABD△ABD×EC=× ×2×2×=由射影定理可得, AC2=AD?AB =S在三棱锥 A﹣BDE中, BD=2,BE= , DE=,∴ S△EBD×2×∴==2∴ V﹣ BDE×△EBD×h=×2×h=A=S∴∴ h=1∴==应选: D.应选:D.【点评】此题主要考查了线面平行的判定,线面距离与点面距离的转化,三棱锥的体积计算方法,等体积法求点面距离的技巧,属根底题9.〔5 分〕△ ABC中, AB 边的高为 CD,假设= ,= , ? =0,|| =1, || =2,那么 =〔A.B.C.D.【考点】 9Y:平面向量的综合题.【分析】由题意可得, CA⊥CB,CD⊥ AB,由射影定理可得, AC2可求,进而可求=AD?AB 从而可求与的关系,进而可求【解答】解:∵ ? =0,∴ CA⊥CB∵ CD⊥AB∵ | | =1,|| =2第 6 页〔共 13 页〕应选: C.【点评】此题考查双曲线的性质,考查双曲线的定义,考查余弦定理的运用,属于中档题.11.〔 5 分〕 x=ln π,y=log5 2,,那么〔〕A.x<y<z B.z< x< y C.z<y<x D.y<z<x【考点】 72:不等式比拟大小.【专题】 11:计算题; 16:压轴题.【分析】利用 x=ln π> 1, 0< y=log5<,>z=>,即可得到答案.21【解答】解:∵ x=ln π> lne=1,0<log52<log5=,即y∈〔0,〕;1=e0>=>=,即z∈〔,1〕,∴y< z<x.应选: D.【点评】此题考查不等式比拟大小,掌握对数函数与指数函数的性质是解决问题的关键,属于根底题.12.〔 5 分〕正方形 ABCD的边长为 1,点 E 在边 AB上,点 F 在边 BC上,.定点P从E出发沿直线向 F 运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当点P 第一次碰到 E 时, P 与正方形的边碰撞的次数为〔〕A.8B.6C.4D.3【考点】 IQ:与直线关于点、直线对称的直线方程.【专题】 15:综合题; 16:压轴题.【分析】根据中的点E,F 的位置,可知入射角的正切值为,通过相后的点的位置,从而可得反射的次数.【解答】解:根据中的点E,F的位置,可知入射角的正切值为,第的过程中,直线是平行的,利用平行关系及三角形的相似可得第二次碰撞点为第三次碰撞点为H,在 DC上,且 DH= ,第四次碰撞点为M ,在 CB 撞点为 N,在 DA 上,且 AN= ,第六次回到 E 点, AE= .故需要碰撞 6 次即可.应选: B.【点评】此题主要考查了反射原理与三角形相似知识的运用.通过相似三角形位置,从而可得反射的次数,属于难题二、填空题〔共 4 小题,每题 5 分,共 20 分,在试卷上作答无效〕13.〔 5 分〕的展开式中x2的系数为7.【考点】 DA:二项式定理.【专题】 11:计算题.【分析】直接利用二项式定理的通项公式,求出x2的系数即可.【解答】解:因为的展开式的通项公式为:=当 8﹣2r=2,即 r=3 时,的展开式中x2的系数为:=7.故答案为: 7.第 7 页〔共 13 页〕【点评】此题考查二项式定理的应用,特定项的求法,考查计算能力.14.〔 5 分〕假设 x, y 满足约束条件那么z=3x﹣y的最小值为﹣1.【考点】 7C:简单线性规划.【专题】 11:计算题.【分析】作出不等式组表示的平面区域,由z=3x﹣y可得y=3x﹣z,那么﹣z表示直线3x﹣y﹣z=0在y轴上的截距,截距越大 z 越小,结合图形可求【解答】解:作出不等式组表示的平面区域,如下图由 z=3x﹣ y 可得 y=3x﹣z,那么﹣ z 表示直线 3x﹣y﹣ z=0在 y 轴上的截距,截距越大z 越小结合图形可知,当直线z=3x﹣y 过点 C 时 z 最小由可得 C〔0, 1〕,此时 z=﹣1故答案为:﹣ 1根底试题15.〔 5 分〕当函数 y=sinx﹣cosx〔0≤ x<2π〕取得最大值时, x=【考点】 GP:两角和与差的三角函数;HW:三角函数的最值.【专题】 11:计算题; 16:压轴题.【分析】利用辅助角公式将y=sinx﹣cosx 化为 y=2sin〔x﹣〕〔0≤x<cosx〔0≤x<2π〕取得最大值时x 的值.【解答】解:∵ y=sinx﹣cosx=2〔sinx﹣cosx〕 =2sin〔 x﹣〕.∵ 0≤ x< 2π,∴﹣≤x﹣<,∴y max=2,此时 x﹣ = ,∴x=.故答案为:.【点评】此题考查三角函数的最值两与角和与差的正弦函数,着重考查辅助角性质,将 y=sinx﹣ cosx〔 0≤ x<2π〕化为 y=2sin〔x﹣〕〔 0≤ x< 2π档题.16.〔 5 分〕正方体 ABCD﹣A1B1C1D1中,E,F 分别为 BB1,CC1的中点,所成角的余弦值为.【考点】 L2:棱柱的结构特征; LM:异面直线及其所成的角.【专题】 11:计算题; 16:压轴题.【分析】设正方体 ABCD﹣ A1【点评】此题主要考查了线性规划的简单应用,解题的关键是明确目标函数中z 的几何意义,属于角坐标系,那么第 8 页〔共 13 页〕所成角的余弦值.【解答】解:设正方体 ABCD﹣A1B1C1D1棱长为 2,以 DA 为 x 轴, DC为 y 轴, DD1为 z轴,建立空间直角坐标系,则A〔2,0,0〕, E〔 2, 2, 1〕D1〔0,0,2〕, F〔 0, 2,1〕∴,=〔 0,2,﹣ 1〕,设异面直线 AE 与 D1 F 所成角为θ,那么 cosθ=|cos<,>| =|| = .故答案为:.【点评】此题考查异面直线所成角的余弦值的求法,是根底题.解题时要认真审题,仔细解答,注意向量法的合理运用.三、解答题:本大题共 6 小题,共 70 分.解容许写出文字说明、证明过程或演算步骤.在试卷上作答无效!17.〔 10 分〕△ ABC中,内角 A,B,C 成等差数列,其对边a,b,c 满足 2b2=3ac,求 A.【考点】 8N:数列与三角函数的综合.【专题】 15:综合题; 2A:探究型.【分析】由题设条件,可先由A,B,C 成等差数列,及 A+B+C=π得到 B=,及 A+C=,再由正弦定理将条件 2b2=3ac 转化为角的正弦的关系,结合〔〕﹣求得cos A+C =cosAcosC sinAsinCcosAcosC=0,从而解出 A【解答】解:由 A,B,C 成等差数列,及A+B+C=π得 B=,故有A+C=由2b2=3ac得2sin2B=3sinAsinC= ,所以 sinAsinC=所以 cos〔A+C〕=cosAcosC﹣sinAsinC=cosAcosC﹣即cosAcosC﹣ =﹣,可得 cosAcosC=0所以 cosA=0或 cosC=0,即 A 是直角或 C 是直角所以 A 是直角,或 A=【点评】此题考查数列与三角函数的综合,涉及了三角形的内角和,两角和的理的作用边角互化,解题的关键是熟练掌握等差数列的性质及三角函数的相了转化的思想,有一定的探究性及综合性18.〔 12 分〕数列 { a n} 中, a1=1,前 n 项和(1〕求 a2, a3;(2〕求 { a n } 的通项公式.【考点】 8H:数列递推式.【专题】 11:计算题.【分析】〔1〕直接利用,求出a2,a3;〔 2〕利用关系式,推出数列相邻两项的关系式,利用累积法,求出数列的通项【解答】解:〔1〕数列 { a n} 中, a1,前n项和,=1可知,得 3〔a1+a2〕=4a2,解得 a2=3a1=3,由,得3〔a1+a2+a3〕=5a3,解得 a3==6.〔 2〕由意知 a1=1,当 n>1 ,有 a n=s n s n﹣1=,整理得,于是 a1=1,a2= a1,a3= a2,⋯,a n﹣1 =a n﹣2,,将以上 n 个式子两端分相乘,整理得:.上 { a n} 的通公式【点】本考数列的的求法,累法的用,考算能力.【考点】 LW:直与平面垂直; MI:直与平面所成的角; MM :向量言表述面的垂关系.【】 11:算.【分析】〔I〕先由建立空直角坐系, D〔,b,0〕,从而写出相关点和相关向量的要条件,明 PC⊥BE, PC⊥DE,从而利即可;〔 II〕先求平面 PAB的法向量,再求平面 PBC的法向量,利用两平面垂直的性,即最后利用空向量角公式即可求得面角的正弦,而求得面角【解答】解:〔I〕以 A 坐原点,建立如空直角坐系 A xyz,19.〔 12 分〕如,四棱P ABCD中,底面ABCD菱形, PA⊥底面 ABCD,,PA=2,E D〔,b,0〕,C〔2,0,0〕,P〔0,0,2〕,E〔,0,〕,〔,b,0〕是 PC上的一点, PE=2EC.∴ =〔2,0, 2〕, =〔,b,〕, =〔, b,〕〔Ⅰ〕明: PC⊥平面 BED;〔Ⅱ〕二面角 A PB C90°,求 PD 与平面 PBC所成角的大小.∴ ? ==0, ? =0∴PC⊥BE,PCB E ∩D E = E ∴P C ⊥平面B E D 〔I I 〕=〔0,0,2〕,=〔,b ,0〕平面P A B 的=〔x,y,z〕,第 10 页〔共 13 页〕取 =〔b,,0〕设平面 PBC的法向量为=〔p,q,r〕,那么取 =〔1,﹣,〕∵平面 PAB⊥平面 PBC,∴? =b﹣=0.故 b=∴ =〔1,﹣ 1,〕,=〔﹣,﹣,2〕∴ cos<,>==设 PD 与平面 PBC所成角为θ,θ∈[ 0,] ,那么 sin θ=∴θ=30°∴ PD与平面 PBC所成角的大小为30°【点评】此题主要考查了利用空间直角坐标系和空间向量解决立体几何问题的一般方法,线面垂直的判定定理,空间线面角的求法,有一定的运算量,属中档题20.〔 12 分〕乒乓球比赛规那么规定:一局比赛,对方比分在10 平前,一方连续发球 2 次后,对方再连续发球两次,依次轮换.每次发球,胜方得 1 分,负方得 0 分.设在甲、乙的比赛中,每次发球,发球方得 1 分的概率为,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发(1〕求开始第 4 次发球时,甲、乙的比分为 1:2 的概率;(2〕求开始第 5 次发球时,甲领先得分的概率.【考点】 C8:相互独立事件和相互独立事件的概率乘法公式;CA: n 次独次的概率.【专题】 5I:概率与统计.【分析】〔Ⅰ〕记 A i表示事件:第 1 次和第 2 次这两次发球,甲共得i 分,第 3 次和第 4 次这两次发球,甲共得 i 分, i=0, 1, 2, A 表示事件:第表示事件:开始第 4 次发球时,甲、乙的比分为 1 比 2,C 表示事件:开始分领先. B=,由此能求出开始第 4 次发球时,甲、乙的比分〔Ⅱ〕,P〔B1〕=2××,由 C=A1?B2+A2?B1+A2?B2,能求出开始第 5 次发球时,甲领先得分的概率【解答】解:〔Ⅰ〕记 A i表示事件:第 1 次和第 2 次这两次发球,甲共得B i表示事件:第 3 次和第 4 次这两次发球,甲共得i 分, i=0, 1, 2,A 表示事件:第 3 次发球,甲得 1 分,B 表示事件:开始第 4 次发球时,甲、乙的比分为 1 比 2,C 表示事件:开始第 5 次发球时,甲得分领先.∴ B=,P〔A〕,P〔A0〕2,P〔A1〕=2××,P〔B〕==P〔A0?A〕+P〔〕=××〔 1﹣〕.答:开始第 4 次发球时,甲、乙的比分为1:2 的概率是.第 11 页〔共 13 页〕〔Ⅱ〕,P〔B1〕 =2××,,,∵C=A1?B2+A2?B1+A2?B2,∴P〔 C〕 =P〔A1?B2+A2B1+A2?B2〕1 2〕+P〔A2 1〕+P〔A22〕=P〔A ?B?B?B=P〔A1〕P〔B〕 +P〔A2〕 P〔 B1〕+P〔 A2〕P〔B2〕×××.答:开始第 5 次发球时,甲领先得分的概率是.【点评】此题考查事件的概率的求法,解题时要认真审题,仔细解答,注意n 次独立重复试验的性质和公式的灵活运用.21.〔 12 分〕函数.(1〕讨论 f〔x〕的单调性;(2〕设 f 〔x〕有两个极值点 x1,x2,假设过两点〔 x1, f〔x1〕〕,〔 x2,f〔 x2〕〕的直线 l 与 x 轴的交点在曲线 y=f〔x〕上,求 a 的值.【考点】 6B:利用导数研究函数的单调性;6C:函数在某点取得极值的条件.【专题】 11:计算题; 16:压轴题; 3:解题思想; 32:分类讨论.【分析】〔1〕先对函数进行求导,通过 a 的取值,求出函数的根,然后通过导函数的值的符号,推出函数的单调性.〔 2〕根据导函数的根,判断a 的范围,进而解出直线 l 的方程,利用 l 与 x 轴的交点为〔 x0, 0〕,可解出 a 的值.【解答】解:〔1〕f ′〔x〕 =x2+2x+a=〔x+1〕2+a﹣ 1.且仅当 a=1,x=﹣ 1 时, f ′〔x〕=0,所以 f〔x〕是 R 上的增函数;②当 a<1 时, f ′〔x〕=0,有两个根,x1=﹣1﹣,x2=﹣1+,当 x∈时,f′〔x〕>0,f〔x〕是增函数.当 x∈时,f′〔x〕<0,f〔x〕是减函数.当 x∈时,f′〔x〕>0,f〔x〕是增函数.〔 2〕由题意 x1,x2,是方程 f ′〔x〕=0 的两个根,故有 a<1,,,因此====,同理.因此直线 l 的方程为: y=.设 l 与 x 轴的交点为〔 x0,0〕得 x0=,=,由题设知,点〔 x0,0〕在曲线 y=f〔x〕上,故 f〔x0〕=0,解得 a=0,或 a=或a=【点评】此题主要考查函数在某点取得极值的条件,考查分类讨论,函数与方程能力.22.〔 12 分〕抛物线 C :y=〔x+1〕2 与圆〔r > 0〕有一个公共点 A ,且在 A 处两曲线的切线为同一直线l .〔Ⅰ〕求 r ;〔Ⅱ〕设 m ,n 是异于 l 且与 C 及 M 都相切的两条直线, m ,n 的交点为 D ,求 D 到 l 的距离.【考点】 IM :两条直线的交点坐标; IT :点到直线的距离公式; KJ :圆与圆锥曲线的综合.【专题】 15:综合题; 16:压轴题.【分析】〔Ⅰ〕设 A 〔 x 0 ,〔 x 0+1〕2〕,根据 y=〔x+1〕2,求出 l 的斜率,圆心 M 〔1, 〕,求得MA的斜率,利用 l ⊥MA 建立方程,求得 A 的坐标,即可求得 r 的值;〔Ⅱ〕设〔 t ,〔t+1〕2〕为 C 上一点,那么在该点处的切线方程为y ﹣〔 t+1〕2〔 〕〔 ﹣ 〕,即=2 t+1 x t 〔 〕 ﹣ t 2+1,假设该直线与圆 M 相切,那么圆心 M 到该切线的距离为 ,建立方程,求得 y=2 t+1 x t 的值,求出相应的切线方程,可得 D 的坐标,从而可求 D 到 l 的距离.【解答】 解:〔Ⅰ〕设 A 〔x 0,〔x 0+1〕 2〕,∵ y=〔x+1〕2,y ′=2〔 x+1〕 ∴ l 的斜率为 k=2〔x 0+1〕当 x 0=1 时,不合题意,所以 x 0≠1圆心 M 〔 1, 〕, MA 的斜率.∵ l ⊥MA ,∴ 2〔 x 0+1〕×=﹣1∴ x 0 ,∴ 〔 , 〕,=0A 0 1∴ r=| MA| = ;〔Ⅱ〕设〔 t ,〔t+1〕2〕为 C 上一点,那么在该点处的切线方程为y ﹣〔 t+1〕2 〔 〕〔 ﹣ 〕,即=2 t+1 x ty=2〔t+1〕x ﹣t 2+1假设该直线与圆 M 相切,那么圆心 M 到该切线的距离为∴∴ t 2〔t 2﹣4t ﹣ 6〕 =0∴ t 0=0,或 t 1=2+,t 2=2﹣抛物线 C 在点〔 t i ,〔t i +1〕 2〕〔i=0,1,2〕处的切线分别为l ,m ,n ,y=2x+1①, y=2〔t 1+1〕 x ﹣②, y=2〔t 2+1〕 x ﹣ ③②﹣③: x=代入②可得: y=﹣1∴ D 〔2,﹣ 1〕,∴ D 到 l 的距离为【点评】 此题考查圆与抛物线的综合,考查抛物线的切线方程,考查导数知识的线的距离公式的运用,关键是确定切线方程,求得交点坐标.。
数学文化背景的高考试题背景一:杨辉三角杨辉三角,又称贾宪三角形,帕斯卡三角形,是二项式系数在三角形中的一种几何排列。
下图的表在我国南宋数学家杨辉1261年所著的《详解九章算法》一书里就出现了。
1.如图,一个类似杨辉三角的数阵,则(1)第9行的第2个数是66;(2)若第n(n≥2)行的第2个数为291,则n=18.2.中国古代数学史曾经有自己光辉灿烂的篇章,其中“杨辉三角”的发现就是十分精彩的一页.而同杨辉三角齐名的世界著名的“莱布尼茨三角形”如图所示,从莱布尼茨三角形可以看出:排在第10行从左边数第3个位置上的数值是()A.B.C.D.3.[2006湖北L-15]将杨辉三角(如图(1))中的每一个数都换成分数,就得到一个如图(2)所示的分数三角形,称为莱布尼茨三角形.从莱布尼茨三角形可以看出:,其中x=r+1.背景二:古希腊多边形数教材背景:必修⑤数列引入1.[2009湖北L-W-10]古希腊人常用小石子在沙滩上摆成各种形状来研究数。
比如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似的,称图2中的1,4,9,16,…这样的数为正方形数。
下列数中既是三角形数又是正方形数的是A.289B.1024C.1225D.13782.[2012湖北W-17]传说古希腊毕达哥拉斯学派的数学家经常在沙滩上面画点或用小石子表示数。
他们研究过如图所示的三角形数:将三角形数1,3, 6,10,…记为数列{a n },将可被5整除的三角形数按从小到大的顺序组成一个新数列{b n },可以推测:(Ⅰ)b 2012是数列{an}中的第______项;(Ⅱ)b 2k-1=______。
(用k 表示)3.[2013湖北L-14]古希腊毕达哥拉斯学派的数学家研究过各种多边形数。
如三角形数1,3,6,10,…,第n 个三角形数为()2111222n n n n +=+。
记第n 个k 边形数为(),N n k ()3k ≥,以下列出了部分k 边形数中第n 个数的表达式:三角形数 ()211,322N n n n =+ 正方形数 ()2,4N n n =五边形数 ()231,522N n n n =-六边形数 ()2,62N n n n =- ……可以推测(),N n k 的表达式,由此计算()10,24N = 。
2023年广西高考数学(文)真题及答案注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集{}1,2,3,4,5U =,集合{}{}1,4,2,5M N ==,则U N M =ð()A.{}2,3,5 B.{}1,3,4 C.{}1,2,4,5 D.{}2,3,4,52.()()()351i 2i 2i +=+-()A.1- B.1C.1i- D.1i+3.已知向量()()3,1,2,2a b ==,则cos ,a b a b +-= ()A.117B.1717C.5D.54.某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为()A.16B.13C.12D.235.记n S 为等差数列{}n a 的前n 项和.若264810,45a a a a +==,则5S =()A.25B.22C.20D.156.执行下边的程序框图,则输出的B =()A.21B.34C.55D.897.设12,F F 为椭圆22:15x C y +=的两个焦点,点P 在C 上,若120PF PF ⋅= ,则12PF PF ⋅=()A.1B.2C.4D.58.曲线e 1=+xy x 在点e 1,2⎛⎫ ⎪⎝⎭处的切线方程为()A.e 4y x =B.e 2y x =C.e e 44y x =+ D.e 3e24y x =+9.已知双曲线22221(0,0)x y a b a b-=>>522(2)(3)1x y -+-=交于A ,B 两点,则||AB =()A.55B.255C.355D.45510.在三棱锥-P ABC 中,ABC 是边长为2的等边三角形,2,6PA PB PC ===,则该棱锥的体积为()A.1B.3C.2D.311.已知函数()2(1)e x f x --=.记236,,222a f b f c f ⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()A.b c a>> B.b a c>> C.c b a>> D.c a b>>12.函数()y f x =的图象由cos 26y x π⎛⎫=+⎪⎝⎭的图象向左平移6π个单位长度得到,则()y f x =的图象与直线1122y x =-的交点个数为()A.1B.2C.3D.4二、填空题:本大题共4小题,每小题5分,共20分.13.记n S 为等比数列{}n a 的前n 项和.若6387S S =,则{}n a 的公比为________.14.若()2π(1)sin 2f x x ax x ⎛⎫=-+++⎪⎝⎭为偶函数,则=a ________.15.若x ,y 满足约束条件323,2331,x y x y x y -≤⎧⎪-+≤⎨⎪+≥⎩,则32z x y =+的最大值为________.16.在正方体1111ABCD A B C D -中,4,AB O =为1AC 的中点,若该正方体的棱与球O 的球面有公共点,则球O 的半径的取值范围是________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.记ABC 的内角,,A B C 的对边分别为,,a b c ,已知2222cos b c aA+-=.(1)求bc ;(2)若cos cos 1cos cos a B b A ba Bb A c--=+,求ABC 面积.18.如图,在三棱柱111ABC A B C -中,1A C ⊥平面,90ABC ACB ∠=︒.(1)证明:平面11ACC A ⊥平面11BB C C ;(2)设11,2AB A B AA ==,求四棱锥111A BB C C -的高.19.一项试验旨在研究臭氧效应,试验方案如下:选40只小白鼠,随机地将其中20只分配到试验组,另外20只分配到对照组,试验组的小白鼠饲养在高浓度臭氧环境,对照组的小白鼠饲养在正常环境,一段时间后统计每只小白鼠体重的增加量(单位:g).试验结果如下:对照组的小白鼠体重的增加量从小到大排序为15.218.820.221.322.523.225.826.527.530.132.634.334.835.635.635.836.237.340.543.2试验组的小白鼠体重的增加量从小到大排序为7.89.211.412.413.215.516.518.018.819.219.820.221.622.823.623.925.128.232.336.5(1)计算试验组的样本平均数;(2)(ⅰ)求40只小白鼠体重的增加量的中位数m ,再分别统计两样本中小于m 与不小于m 的数据的个数,完成如下列联表m<m≥对照组试验组(ⅱ)根据(i)中的列联表,能否有95%的把握认为小白鼠在高浓度臭氧环境中与在正常环境中体重的增加量有差异?附:()()()()22()n ad bc K a b c d a c b d -=++++,()2P K k ≥0.1000.0500.010k2.7063.8416.63520.已知函数()2sin π,0,cos 2x f x ax x x ⎛⎫=-∈ ⎪⎝⎭.(1)当1a =时,讨论()f x 的单调性;(2)若()sin 0f x x +<,求a 的取值范围.21.已知直线210x y -+=与抛物线2:2(0)C y px p =>交于,A B 两点,AB =.(1)求p ;(2)设F 为C 的焦点,,M N 为C 上两点,且0FM FN ⋅=,求MFN △面积的最小值.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程](10分)22.已知点()2,1P ,直线2cos ,:1sin x t l y t αα=+⎧⎨=+⎩(t 为参数),α为l 的倾斜角,l 与x 轴正半轴、y 轴正半轴分别交于,A B ,且4PA PB ⋅=.(1)求α;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求l 的极坐标方程.[选修4-5:不等式选讲](10分)23.已知()2||, 0 f x x a a a =-->.(1)求不等式()f x x <的解集;(2)若曲线()y f x =与x 轴所围成的图形的面积为2,求a .解析及参考答案注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集{}1,2,3,4,5U =,集合{}{}1,4,2,5M N ==,则U N M =ð()A.{}2,3,5 B.{}1,3,4 C.{}1,2,4,5 D.{}2,3,4,5【答案】A 【解析】【分析】利用集合的交并补运算即可得解.【详解】因为全集{1,2,3,4,5}U =,集合{1,4}M =,所以{}2,3,5U M =ð,又{2,5}N =,所以{2,3,5}U N M = ð,故选:A.2.()()()351i 2i 2i +=+-()A.1- B.1C.1i- D.1i+【答案】C 【解析】【分析】利用复数的四则运算求解即可.【详解】()()351i 51i 1i(2i)(2i)5+-==-+-故选:C.3.已知向量()()3,1,2,2a b ==,则cos ,a b a b +-= ()A.117B.1717C.D.【答案】B 【解析】【分析】利用平面向量模与数量积的坐标表示分别求得()(),,a b a b a b a b +-+⋅-,从而利用平面向量余弦的运算公式即可得解.【详解】因为(3,1),(2,2)a b ==,所以()()5,3,1,1a b a b +=-=- ,则a b a b +==-== ()()()51312a b a b +⋅-=⨯+⨯-= ,所以()()17cos ,17a b a b a b a b a b a b+⋅-+-==+-.故选:B.4.某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为()A.16B.13C.12D.23【答案】D 【解析】【分析】利用古典概率的概率公式,结合组合的知识即可得解.【详解】依题意,从这4名学生中随机选2名组织校文艺汇演,总的基本事件有24C 6=件,其中这2名学生来自不同年级的基本事件有1122C C 4=,所以这2名学生来自不同年级的概率为4263=.故选:D.5.记n S 为等差数列{}n a 的前n 项和.若264810,45a a a a +==,则5S =()A.25B.22C.20D.15【答案】C 【解析】【分析】方法一:根据题意直接求出等差数列{}n a 的公差和首项,再根据前n 项和公式即可解出;方法二:根据等差数列的性质求出等差数列{}n a 的公差,再根据前n 项和公式的性质即可解出.【详解】方法一:设等差数列{}n a 的公差为d ,首项为1a ,依题意可得,2611510a a a d a d +=+++=,即135a d +=,又()()48113745a a a d a d =++=,解得:11,2d a ==,所以515455210202S a d ⨯=+⨯=⨯+=.故选:C.方法二:264210a a a +==,4845a a =,所以45a =,89a =,从而84184a a d -==-,于是34514a a d =-=-=,所以53520S a ==.故选:C.6.执行下边的程序框图,则输出的B =()A .21B.34C.55D.89【答案】B【解析】【分析】根据程序框图模拟运行即可解出.【详解】当1k =时,判断框条件满足,第一次执行循环体,123A =+=,325B =+=,112k =+=;当2k =时,判断框条件满足,第二次执行循环体,358A =+=,8513B =+=,213k =+=;当3k =时,判断框条件满足,第三次执行循环体,81321A =+=,211334B =+=,314k =+=;当4k =时,判断框条件不满足,跳出循环体,输出34B =.故选:B.7.设12,F F 为椭圆22:15x C y +=的两个焦点,点P 在C 上,若120PF PF ⋅= ,则12PF PF ⋅=()A.1B.2C.4D.5【答案】B 【解析】【分析】方法一:根据焦点三角形面积公式求出12PF F △的面积,即可解出;方法二:根据椭圆的定义以及勾股定理即可解出.【详解】方法一:因为120PF PF ⋅= ,所以1290FPF ∠=,从而122121tan 4512FP F S b PF PF ===⨯⋅,所以122PF PF ⋅=.故选:B.方法二:因为120PF PF ⋅= ,所以1290FPF ∠=,由椭圆方程可知,25142c c =-=⇒=,所以22221212416PF PF F F +===,又122PF PF a +==22121212216220PF PF PF PF PF PF ++=+=,所以122PF PF ⋅=.故选:B.8.曲线e 1=+xy x 在点e 1,2⎛⎫ ⎪⎝⎭处的切线方程为()A.e 4y x =B.e 2y x =C.e e 44y x =+ D.e 3e 24y x =+【答案】C 【解析】【分析】先由切点设切线方程,再求函数的导数,把切点的横坐标代入导数得到切线的斜率,代入所设方程即可求解.【详解】设曲线e 1xy x =+在点e 1,2⎛⎫ ⎪⎝⎭处的切线方程为()e 12y k x -=-,因为e 1xy x =+,所以()()()22e 1e e 11x xxx x y x x +-'==++,所以1e|4x k y ='==所以()e e124y x -=-所以曲线e 1xy x =+在点e 1,2⎛⎫ ⎪⎝⎭处的切线方程为e e 44y x =+.故选:C9.已知双曲线22221(0,0)x y a b a b-=>>22(2)(3)1x y -+-=交于A ,B 两点,则||AB =() A.55B.255C.355D.455【答案】D 【解析】【分析】根据离心率得出双曲线渐近线方程,再由圆心到直线的距离及圆半径可求弦长.【详解】由e =,则222222215c a b b a a a+==+=,解得2ba=,所以双曲线的一条渐近线不妨取2y x =,则圆心(2,3)到渐近线的距离55d ==,所以弦长45||5AB ===.故选:D10.在三棱锥-P ABC 中,ABC 是边长为2的等边三角形,2,PA PB PC ===,则该棱锥的体积为()A.1B.C.2D.3【答案】A 【解析】【分析】证明AB ⊥平面PEC ,分割三棱锥为共底面两个小三棱锥,其高之和为AB 得解.【详解】取AB 中点E ,连接,PE CE ,如图,ABC 是边长为2的等边三角形,2PA PB ==,,PE AB CE AB ∴⊥⊥,又,PE CE ⊂平面PEC ,PE CE E = ,AB ∴⊥平面PEC ,又322PE CE ==⨯=,PC =故222PC PE CE =+,即PE CE ⊥,所以11121332B PEC A PEC PEC V V V S AB --=+=⋅=⨯⨯=△,故选:A11.已知函数()2(1)e x f x --=.记,,222a f b f c f ⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()A.b c a>> B.b a c>> C.c b a>> D.c a b>>【答案】A 【解析】【分析】利用作差法比较自变量的大小,再根据指数函数的单调性及二次函数的性质判断即可.【详解】令2()(1)g x x =--,则()g x 开口向下,对称轴为1x =,因为4112222⎛⎫---= ⎪ ⎪⎝⎭,而22491670-=+-=->,所以636341102222⎛⎫---=-> ⎪ ⎪⎝⎭,即631122->-由二次函数性质知63)22g g <,因为4112222⎛⎫---=- ⎪ ⎪⎝⎭,而22481682)0+-=+==<,即621122-<-,所以62)22g g >,综上,263222g g g <<,又e x y =为增函数,故a c b <<,即b c a >>.故选:A.12.函数()y f x =的图象由cos 26y x π⎛⎫=+⎪⎝⎭的图象向左平移6π个单位长度得到,则()y f x =的图象与直线1122y x =-的交点个数为()A.1 B.2C.3D.4【答案】C 【解析】【分析】先利用三角函数平移的性质求得()sin 2f x x =-,再作出()f x 与1122y x =-的部分大致图像,考虑特殊点处()f x 与1122y x =-的大小关系,从而精确图像,由此得解.【详解】因为πcos 26y x ⎛⎫=+⎪⎝⎭向左平移π6个单位所得函数为πππcos 2cos 2sin 2662y x x x ⎡⎤⎛⎫⎛⎫=++=+=- ⎪ ⎢⎥⎝⎭⎝⎭⎣⎦,所以()sin 2f x x =-,而1122y x =-显然过10,2⎛⎫- ⎪⎝⎭与()1,0两点,作出()f x 与1122y x =-的部分大致图像如下,考虑3π3π7π2,2,2222x x x =-==,即3π3π7π,,444x x x =-==处()f x 与1122y x =-的大小关系,当3π4x =-时,3π3πsin 142f ⎛⎫⎛⎫-=--=- ⎪ ⎪⎝⎭⎝⎭,13π1π4284312y +⎛⎫=⨯--=-<- ⎪⎝⎭;当3π4x =时,3π3πsin 142f ⎛⎫=-= ⎪⎝⎭,13π13π412428y -=⨯-=<;当7π4x =时,7π7πsin 142f ⎛⎫=-= ⎪⎝⎭,17π17π412428y -=⨯-=>;所以由图可知,()f x 与1122y x =-的交点个数为3.故选:C.二、填空题:本大题共4小题,每小题5分,共20分.13.记n S 为等比数列{}n a 的前n 项和.若6387S S =,则{}n a 的公比为________.【答案】12-【解析】【分析】先分析1q ≠,再由等比数列的前n 项和公式和平方差公式化简即可求出公比q .【详解】若1q =,则由6387S S =得118673a a ⋅=⋅,则10a =,不合题意.所以1q ≠.当1q ≠时,因为6387S S =,所以()()6311118711a q a q qq--⋅=⋅--,即()()638171q q ⋅-=⋅-,即()()()33381171q q q ⋅+-=⋅-,即()3817q ⋅+=,解得12q =-.故答案为:12-14.若()2π(1)sin 2f x x ax x ⎛⎫=-+++ ⎪⎝⎭为偶函数,则=a ________.【答案】2【解析】【分析】根据常见函数的奇偶性直接求解即可.【详解】()()()222π1sin 1cos (2)1cos 2f x x ax x x ax x x a x x ⎛⎫=-+++=-++=+-++ ⎪⎝⎭ ,且函数为偶函数,20a ∴-=,解得2a =,故答案为:215.若x ,y 满足约束条件323,2331,x y x y x y -≤⎧⎪-+≤⎨⎪+≥⎩,则32z x y =+的最大值为________.【答案】15【解析】【分析】由约束条件作出可行域,根据线性规划求最值即可.【详解】作出可行域,如图,由图可知,当目标函数322zy x =-+过点A 时,z 有最大值,由233323x y x y -+=⎧⎨-=⎩可得33x y =⎧⎨=⎩,即(3,3)A ,所以max 332315z =⨯+⨯=.故答案为:1516.在正方体1111ABCD A B C D -中,4,AB O =为1AC 的中点,若该正方体的棱与球O 的球面有公共点,则球O 的半径的取值范围是________.【答案】[22,23]【解析】【分析】当球是正方体的外接球时半径最大,当边长为4的正方形是球的大圆的内接正方形时半径达到最小.【详解】设球的半径为R .当球是正方体的外接球时,恰好经过正方体的每个顶点,所求的球的半径最大,若半径变得更大,球会包含正方体,导致球面和棱没有交点,正方体的外接球直径2R '为体对角线长22214443AC =++,即23,3R R ''==,故max 3R =;分别取侧棱1111,,,AA BB CC DD 的中点,,,M H G N ,显然四边形MNGH 是边长为4的正方形,且O 为正方形MNGH 的对角线交点,连接MG ,则42MG =MNGH 的外接圆,球的半径达到最小,即R 的最小值为22.综上,[22,3]R ∈.故答案为:[22,23]三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.记ABC 的内角,,A B C 的对边分别为,,a b c ,已知2222cos b c aA+-=.(1)求bc ;(2)若cos cos 1cos cos a B b A ba Bb A c--=+,求ABC 面积.【答案】(1)1(2)34【解析】【分析】(1)根据余弦定理即可解出;(2)由(1)可知,只需求出sin A 即可得到三角形面积,对等式恒等变换,即可解出.【小问1详解】因为2222cos a b c bc A =+-,所以2222cos 22cos cos b c a bc A bc A A+-===,解得:1bc =.【小问2详解】由正弦定理可得cos cos sin cos sin cos sin cos cos sin cos sin cos sin a B b A b A B B A B a B b A c A B B A C---=-++()()()()()sin sin sin sin 1sin sin sin A B A B B B A B A B A B ---=-==+++,变形可得:()()sin sin sin A B A B B --+=,即2cos sin sin A B B -=,而0sin 1B <≤,所以1cos 2A =-,又0πA <<,所以3sin 2A =,故ABC 的面积为1133sin 12224ABC S bc A ==⨯⨯=△.18.如图,在三棱柱111ABC A B C -中,1A C ⊥平面,90ABC ACB ∠=︒.(1)证明:平面11ACC A ⊥平面11BB C C ;(2)设11,2AB A B AA ==,求四棱锥111A BB C C -的高.【答案】(1)证明见解析.(2)1【解析】【分析】(1)由1A C ⊥平面ABC 得1A C BC ⊥,又因为ACBC ⊥,可证BC ⊥平面11ACC A ,从而证得平面11ACC A ⊥平面11BCC B ;(2)过点1A 作11A O CC ⊥,可证四棱锥的高为1AO ,由三角形全等可证1A C AC =,从而证得O 为1CC 中点,设1A C AC x ==,由勾股定理可求出x ,再由勾股定理即可求1AO .【小问1详解】证明:因为1A C ⊥平面ABC ,BC ⊂平面ABC ,所以1A C BC ⊥,又因为90ACB ∠= ,即ACBC ⊥,1,A C AC ⊂平面11ACC A ,1AC AC C ⋂=,所以BC ⊥平面11ACC A ,又因为BC ⊂平面11BCC B ,所以平面11ACC A ⊥平面11BCC B .【小问2详解】如图,过点1A 作11A O CC ⊥,垂足为O .因为平面11ACC A ⊥平面11BCC B ,平面11ACC A 平面111BCC B CC =,1A O ⊂平面11ACC A ,所以1A O ⊥平面11BCC B ,所以四棱锥111A BB C C -的高为1AO .因为1A C ⊥平面ABC ,,AC BC ⊂平面ABC ,所以1A C BC ⊥,1A C AC ⊥,又因为1A B AB =,BC 为公共边,所以ABC 与1A BC 全等,所以1A C AC =.设1A C AC x ==,则11A C x =,所以O 为1CC 中点,11112OC AA ==,又因为1A C AC ⊥,所以22211A C AC AA +=,即2222x x +=,解得x =,所以11A O ==,所以四棱锥111A BB C C -的高为1.19.一项试验旨在研究臭氧效应,试验方案如下:选40只小白鼠,随机地将其中20只分配到试验组,另外20只分配到对照组,试验组的小白鼠饲养在高浓度臭氧环境,对照组的小白鼠饲养在正常环境,一段时间后统计每只小白鼠体重的增加量(单位:g).试验结果如下:对照组的小白鼠体重的增加量从小到大排序为15.218.820.221.322.523.225.826.527.530.132.634.334.835.635.635.836.237.340.543.2试验组的小白鼠体重的增加量从小到大排序为7.89.211.412.413.215.516.518.018.819.219.820.221.622.823.623.925.128.232.336.5(1)计算试验组的样本平均数;(2)(ⅰ)求40只小白鼠体重的增加量的中位数m ,再分别统计两样本中小于m 与不小于m 的数据的个数,完成如下列联表m<m≥对照组试验组(ⅱ)根据(i)中的列联表,能否有95%的把握认为小白鼠在高浓度臭氧环境中与在正常环境中体重的增加量有差异?附:()()()()22()n ad bc K a b c d a c b d -=++++,()2P K k ≥0.1000.0500.010k2.7063.8416.635【答案】(1)19.8(2)(i)23.4m =;列联表见解析,(ii)能【解析】【分析】(1)直接根据均值定义求解;(2)(i)根据中位数的定义即可求得23.4m =,从而求得列联表;(ii)利用独立性检验的卡方计算进行检验,即可得解.【小问1详解】试验组样本平均数为:1(7.89.211.412.413.215.516.518.018.819.219.820.220+++++++++++39621.622.823.623.925.128.232.336.5)19.820++++++++==【小问2详解】(i)依题意,可知这40只小鼠体重的中位数是将两组数据合在一起,从小到大排后第20位与第21位数据的平均数,由原数据可得第11位数据为18.8,后续依次为19.2,19.8,20.2,20.2,21.3,21.6,22.5,22.8,23.2,23.6, ,故第20位为23.2,第21位数据为23.6,所以23.223.623.42m +==,故列联表为:m<m≥合计对照组61420试验组14620合计202040(ii)由(i)可得,2240(661414) 6.400 3.84120202020K ⨯⨯-⨯==>⨯⨯⨯,所以能有95%的把握认为小白鼠在高浓度臭氧环境中与在正常环境中体重的增加量有差异.20.已知函数()2sin π,0,cos 2x f x ax x x ⎛⎫=-∈ ⎪⎝⎭.(1)当1a =时,讨论()f x 的单调性;(2)若()sin 0f x x +<,求a 的取值范围.【答案】(1)()f x 在π0,2⎛⎫⎪⎝⎭上单调递减(2)0a ≤【解析】【分析】(1)代入1a =后,再对()f x 求导,同时利用三角函数的平方关系化简()f x ',再利用换元法判断得其分子与分母的正负情况,从而得解;(2)法一:构造函数()()sin g x f x x =+,从而得到()0g x <,注意到()00g =,从而得到()00g '≤,进而得到0a ≤,再分类讨论0a =与a<0两种情况即可得解;法二:先化简并判断得2sin sin 0cos xx x-<恒成立,再分类讨论0a =,a<0与0a >三种情况,利用零点存在定理与隐零点的知识判断得0a >时不满足题意,从而得解.【小问1详解】因为1a =,所以()2sin π,0,cos 2x f x x x x ⎛⎫=-∈ ⎪⎝⎭,则()()22432cos cos 2cos sin sin cos 2sin 11cos cos x x x x xx x f x xx--+'=-=-()3333222cos cos 21cos coscos 2cos cos x x xx x xx---+-==,令cos t x =,由于π0,2x ⎛⎫∈ ⎪⎝⎭,所以()cos 0,1t x =∈,所以()()()23233222cos cos 22221211x x t t t t t t t t t +-=+-=-+-=-++-()()2221t t t =++-,因为()2222110t t t ++=++>,10t -<,33cos 0x t =>,所以()233cos cos 20cos x x f x x +-'=<在π0,2⎛⎫ ⎪⎝⎭上恒成立,所以()f x 在π0,2⎛⎫⎪⎝⎭上单调递减.【小问2详解】法一:构建()()2sin πsin sin 0cos 2x g x f x x ax x x x ⎛⎫=+=-+<< ⎪⎝⎭,则()231sin πcos 0cos 2x g x a x x x +⎛⎫'=-+<< ⎪⎝⎭,若()()sin 0g x f x x =+<,且()()00sin 00g f =+=,则()0110g a a '=-+=≤,解得0a ≤,当0a =时,因为22sin 1sin sin 1cos cos x x x x x ⎛⎫-=- ⎪⎝⎭,又π0,2x ⎛⎫∈ ⎪⎝⎭,所以0sin 1x <<,0cos 1x <<,则211cos x>,所以()2sin sin sin 0cos xf x x x x+=-<,满足题意;当a<0时,由于π02x <<,显然0ax <,所以()22sin sin sin sin sin 0cos cos x xf x x ax x x x x+=-+<-<,满足题意;综上所述:若()sin 0f x x +<,等价于0a ≤,所以a 的取值范围为(],0-∞.法二:因为()2232222sin cos 1sin sin cos sin sin sin cos cos cos cos x x x x x x x x x x x x ---===-,因为π0,2x ⎛⎫∈ ⎪⎝⎭,所以0sin 1x <<,0cos 1x <<,故2sin sin 0cos x x x-<在π0,2⎛⎫ ⎪⎝⎭上恒成立,所以当0a =时,()2sin sin sin 0cos x f x x x x +=-<,满足题意;当a<0时,由于π02x <<,显然0ax <,所以()22sin sin sin sin sin 0cos cos x x f x x ax x x x x+=-+<-<,满足题意;当0a >时,因为()322sin sin sin sin cos cos x x f x x ax x ax x x+=-+=-,令()32sin π0cos 2x g x ax x x ⎛⎫=-<< ⎪⎝⎭,则()22433sin cos 2sin cos x x x g x a x+'=-,注意到()22433sin 0cos 02sin 000cos 0g a a +'=-=>,若π02x ∀<<,()0g x '>,则()g x 在π0,2⎛⎫ ⎪⎝⎭上单调递增,注意到()00g =,所以()()00g x g >=,即()sin 0f x x +>,不满足题意;若0π02x ∃<<,()00g x '<,则()()000g g x ''<,所以在π0,2⎛⎫ ⎪⎝⎭上最靠近0x =处必存在零点1π20,x ⎛⎫∈ ⎪⎝⎭,使得()10g x '=,此时()g x '在()10,x 上有()0g x '>,所以()g x 在()10,x 上单调递增,则在()10,x 上有()()00g x g >=,即()sin 0f x x +>,不满足题意;综上:0a ≤.【点睛】关键点睛:本题方法二第2小问讨论0a >这种情况的关键是,注意到()00g '>,从而分类讨论()g x '在π0,2⎛⎫ ⎪⎝⎭上的正负情况,得到总存在靠近0x =处的一个区间,使得()0g x '>,从而推得存在()()00g x g >=,由此得解.21.已知直线210x y -+=与抛物线2:2(0)C y px p =>交于,A B 两点,AB =.(1)求p ;(2)设F 为C 的焦点,,M N 为C 上两点,且0FM FN ⋅= ,求MFN △面积的最小值.【答案】(1)2p =(2)12-【解析】【分析】(1)利用直线与抛物线的位置关系,联立直线和抛物线方程求出弦长即可得出p ;(2)设直线MN :x my n =+,()()1122,,,,M x y N x y 利用0MF NF ⋅= ,找到,m n 的关系,以及MNF 的面积表达式,再结合函数的性质即可求出其最小值.【小问1详解】设()(),,,A A B B A x y B x y ,由22102x y y px -+=⎧⎨=⎩可得,2420y py p -+=,所以4,2A B A B y y p y y p +==,所以A B AB y y ==-==即2260p p --=,因为0p >,解得:2p =.【小问2详解】因为()1,0F ,显然直线MN 的斜率不可能为零,设直线MN :x my n =+,()()1122,,,M x y N x y ,由24y x x my n⎧=⎨=+⎩可得,2440y my n --=,所以,12124,4y y m y y n +==-,22161600m n m n ∆=+>⇒+>,因为0MF NF ⋅= ,所以()()1212110x x y y --+=,即()()1212110my n my n y y +-+-+=,亦即()()()()2212121110m y y m n y y n ++-++-=,将12124,4y y m y y n +==-代入得,22461m n n =-+,()()22410m n n +=->,所以1n ≠,且2610n n -+≥,解得3n ≥+或3n ≤-.设点F 到直线MN 的距离为d,所以d =12MN y y ==-=1==-,所以MNF的面积()2111122S MN d n =⨯⨯=-=-,而3n ≥+或3n≤-,所以,当3n =-时,MNF的面积(2min 212S =-=-【点睛】本题解题关键是根据向量的数量积为零找到,m n 的关系,一是为了减元,二是通过相互的制约关系找到各自的范围,为得到的三角形面积公式提供定义域支持,从而求出面积的最小值.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程](10分)22.已知点()2,1P ,直线2cos ,:1sin x t l y t αα=+⎧⎨=+⎩(t 为参数),α为l 的倾斜角,l 与x 轴正半轴、y 轴正半轴分别交于,A B ,且4PA PB ⋅=.(1)求α;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求l 的极坐标方程.【答案】(1)3π4(2)cos sin 30ραρα+-=【解析】【分析】(1)根据t 的几何意义即可解出;(2)求出直线l 的普通方程,再根据直角坐标和极坐标互化公式即可解出.【小问1详解】因为l 与x 轴,y 轴正半轴交于,A B 两点,所以ππ2α<<,令0x =,12cos t α=-,令0y =,21sin t α=-,所以21244sin cos sin 2PA PB t t ααα====,所以sin 21α=±,即π2π2k α=+,解得π1π,42k k α=+∈Z ,因为ππ2α<<,所以3π4α=.【小问2详解】由(1)可知,直线l 的斜率为tan 1α=-,且过点()2,1,所以直线l 的普通方程为:()12y x -=--,即30x y +-=,由cos ,sin x y ραρα==可得直线l 的极坐标方程为cos sin 30ραρα+-=.[选修4-5:不等式选讲](10分)23.已知()2||, 0 f x x a a a =-->.(1)求不等式()f x x <的解集;(2)若曲线()y f x =与x 轴所围成的图形的面积为2,求a .【答案】(1),33a a ⎛⎫ ⎪⎝⎭(2)263【解析】【分析】(1)分x a ≤和x a >讨论即可;(2)写出分段函数,画出草图,表达面积解方程即可.【小问1详解】若x a ≤,则()22f x a x a x =--<,即3x a >,解得3a x >,即3a x a <≤,若x a >,则()22f x x a a x =--<,解得3x a <,即3a x a <<,综上,不等式的解集为,33a a ⎛⎫⎪⎝⎭.【小问2详解】2,()23,x a x a f x x a x a -+≤⎧=⎨->⎩.画出()f x 的草图,则()f x 与坐标轴围成ADO △与ABCABC 的高为3,(0,),,0,,022a a a D a A B ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,所以||=AB a 所以21132224OAD ABC S S OA a AB a a +=⋅+⋅== ,解得263a =。