线性离散系统的理论基础
- 格式:ppt
- 大小:436.50 KB
- 文档页数:70
线性离散哈密顿系统谱理论自从1835年Hamilton提出Hamilton原理以来,Hamilton原理已经成为现代物理的基石。
Hamilton原理描述的是一切真实的,耗散效应可以忽略不计的物理过程均可表示成Hamilton系统。
由于Hamilton系统的广泛应用,因此人们对Hamilton系统的研究长盛不衰。
线性Hamilton系统谱理论不仅具有理论意义,而且是解决实际问题的工具。
例如,Schr(?)dinger方程是量子力学的基本方程。
量子力学中,粒子的行为可由Schr(?)dinger方程的波函数来描述,它的能量对应着Schr(?)dinger算子的谱。
其中,孤立点谱对应着粒子的能量级,它解释了粒子由一个能量级向另一个能量级跃迁的现象。
这种现象是经典力学无法解释的,而连续谱与粒子的分布有密切关系。
Schr(?)dinger方程就是Hamilton系统的特殊形式。
连续Hamilton系统基本理论的研究已有很长历史(见[1,2]及其参考文献),它的谱理论也已被集中而深入地研究。
连续线性Hamilton系统的谱问题可分为两类:定义在有限闭区间上且系数具有很好性质的谱问题称为正则谱问题;否则,称之为奇异谱问题。
对于正则谱问题,已取得了许多很好的成果(见[3-11,13])。
奇异系统谱问题研究相当困难,这是因为奇异微分算子不但有点谱,还有连续谱等,已不能单纯利用处理有界算子谱问题的方法进行研究。
1910年,H.Weyl 开创了二阶奇异形式自伴微分算子谱理论(奇异Sturm-Liouville理论)的研究[14]。
此后不久,奇异Sturm-Liouville理论就成为刚刚兴起的量子物理学描述微观粒子状态的主要数学手段之一,从而引起了数学界与物理学界的关注。
许多知名学者,如Titchmarsh,Coddington,Levinson,Weidmann,Hinton,Krall 等,将H.Weyl的工作进一步深化并推广到线性Hamilton系统(见[3,4,6,15-37]及其参考文献)。
离散时间信号和系统理论知识介绍离散时间信号和系统理论是信号与系统理论领域的重要分支,用于描述和分析在离散时间点上的信号及其相应的系统行为。
离散时间信号是在离散时间集合上定义的函数,通常由离散采样得到。
离散时间系统则是对输入离散时间信号进行操作和处理得到输出信号的过程。
离散时间信号是时间的一个离散序列,可以通过对连续时间信号进行采样得到。
最常见的离散时间信号是离散时间单位脉冲信号,其在一个时间点的值为1,其他时间点的值为0。
其他常见的离散时间信号包括阶跃信号、正弦信号、方波信号等。
每个离散时间信号都有其特定的频谱和幅度特性。
离散时间系统是对离散时间信号进行处理和操作的载体。
离散时间系统可以是线性系统或非线性系统。
线性系统可以通过线性时不变(LTI)系统模型来描述,即系统的输入和输出之间存在线性时不变关系。
LTI系统可以用巴特沃斯(Bartow)方程式或其它传输方程式来表示,并可以通过离散时间卷积来分析系统的响应。
非线性系统则不满足线性性质的要求,其描述和分析方法更为复杂。
离散时间信号和系统理论的基本概念包括线性性、时不变性、因果性和稳定性等。
线性性要求系统对输入信号的加法性和乘法性具有反应;时不变性要求系统的性质不随时间变化而改变;因果性要求系统的响应仅依赖于过去和当前的输入信号;稳定性要求系统的输出有界且有限。
离散时间信号和系统的分析方法包括时域分析和频域分析。
时域分析主要关注信号和系统在时间域上的行为,如脉冲响应、单位样本响应、单位阶跃响应等;频域分析则关注信号和系统在频域上的特性,如频谱分析、频率响应等。
离散时间信号和系统在实际应用中有广泛的应用。
例如,它们可以用于数字音频处理、数字图像处理、通信系统、控制系统等领域中。
在这些应用中,离散时间信号和系统的理论方法可以帮助我们分析和设计系统,优化信号处理算法,并提高系统的性能。
总而言之,离散时间信号和系统理论是信号与系统理论中重要的一部分,用于描述和分析离散时间信号和系统的特性。
§10-4 线性离散系统的分析前面讨论了线性离散系统的数学模型:一种是输入输出模型,一种是状态空间模型。
本节将要根据这些数学模型来分析线性离散系统的特性,例如稳定性、能控性和能观测性。
一、稳定性稳定性是动力学系统的一个十分重要的性质。
本节只讨论线性定常系统的稳定性,而时变系统的稳定性问题是比较复杂的。
有两大类的稳定性分析方法。
一类是分析离散系统极点在z 平面内的位置。
一个闭环系统是稳定的充分必要条件是其特征方程的全部根都必须分布在z 平面内以原点为圆心的单位圆内。
当然,我们可以用直接的方法求出特征方程,然后再求出其根(例如用贝尔斯特-牛顿叠代法)。
但是在工程上希望不经过解特征方程而找到一些间接的方法,例如代数判据法,基于频率特性分析的奈奎斯特法,或通过双线性变换把z 平面问题变成s 平面的问题,再用连续系统的稳定判据。
另一类研究稳定性的方法是李雅普诺夫第二方法,它规定了关于稳定性的严格定义和方法。
本节只介绍代数判据法。
Routh 、Schur 、Cohn 和Jury 都研究过相类似的稳定判据。
如果已知一个系统的特征多项式()n n na za z a z A +++=- 110 (10.87)Jury 把它的系数排列成如下的算表:11110a a a a a a a a a a nn n nn n =--α―――――――――――――――――――10111101211111110-------------=n n n n n n n n n n n n n a a aaaa a a α――――――――――――――――――――――――――――――――――――――10111110a a a a 10111a a =α―――――――――――――――――――0a 其中kk i k kik k k i k i a a a a a a 01=-=--α表中第一行和第二行分别是(10.87)中的系数按正序和倒序排列的。
自动控制原理胡寿松笔记自动控制原理是电气工程领域的重要课程,胡寿松教授的笔记是该领域学习的重要参考资料。
本文将按照章节顺序,对胡寿松教授的笔记进行梳理和总结,帮助读者更好地理解和掌握自动控制原理。
第一章自动控制的基本概念1. 自动控制的基本组成:控制器、传感器、执行器、被控对象。
2. 自动控制的目的:实现对系统的稳态和动态性能的优化。
3. 自动控制的基本术语:控制量、受控量、干扰、传递、转换等。
4. 自动控制系统的分类:开环控制系统和闭环控制系统。
第二章自动控制系统的数学模型1. 微分方程:描述系统动态特性的基本数学工具。
2. 传递函数:描述控制系统动态特性的重要数学模型。
3. 动态结构图:描述控制系统动态特性的图形工具。
4. 信号流图:描述控制系统内部信息传递方式的图形工具。
5. 梅逊公式:用于将微分方程转化为传递函数的公式。
第三章线性定常系统的时域分析法1. 控制系统性能的评价指标:稳态误差、超调量、调节时间等。
2. 系统的稳定性分析:稳定性定义、代数稳定判据、李亚普诺夫直接法。
3. 系统性能的改善:放大缩小法、超前滞后补偿法、PID控制器等。
4. 一系列具体分析方法的介绍:单位阶跃响应、斜坡响应、李亚普诺夫直接法等。
第四章线性定常系统的根轨迹法1. 根轨迹的基本概念和性质:幅值-相位特性、零点-极点关系、渐近线等。
2. 绘制根轨迹的基本规则和步骤:参数方程、几何意义、注意事项等。
3. 根轨迹图的特征分析:闭环零点、极点与系统性能的关系等。
4. 基于根轨迹法的系统优化设计:稳定化控制器设计、增益调度等。
第五章线性系统的频域分析法1. 频率域的基本概念和性质:频率特性、频率响应、频域分析方法等。
2. 频率域分析方法的应用:稳定性分析、系统性能评估、频率特性设计等。
3. 对数频率特性曲线及其应用:增益边界和相位边界的意义、系统性能的评估等。
4. 基于频率域分析法的系统优化设计:频率相关控制器设计、频率调制等。
线性系统理论线性系统理论是一个广泛应用的数学分支,该分支研究线性系统的性质、行为和解决方案。
线性系统可以描述很多现实世界中的问题,包括电子、机械、化学和经济系统等。
在这篇文章中,我们将探讨线性系统理论的基础、应用、稳定性和控制等不同方面。
一、线性系统基础线性系统是一种对于输入响应线性的系统。
当输入为零时,系统的响应为零,称之为零输入响应。
当没有外界干扰时,系统内部存在固有的动态响应,称之为自然响应。
当有外界输入时,系统将对输入做出响应,称之为强制响应。
线性系统具有很多性质,可以让我们更好地理解系统的行为。
其中一个重要的性质是线性可加性,就是说当输入是线性可加的时候,输出也是线性可加的。
换句话说,如果我们有两个输入信号,将它们分别输入到系统中,我们可以在系统的输出中将它们加起来,并得到对应的输出信号。
另外一个重要的性质是时不变性,就是说当输入信号的时间变化时,输出信号的时间变化也会随之发生。
这个性质告诉我们,系统的行为不随着时间的改变而改变。
除此之外,线性系统还有其他很多性质,比如可逆性、稳定性、因果性等等。
二、线性系统的应用线性系统有着广泛的应用,它们可以用来描述很多各种各样的问题,包括但不限于电子电路、航天控制、化学反应、经济系统等等。
下面我们来看看这些应用领域中的具体案例。
1. 电子电路线性系统在电子电路中有着广泛应用。
例如,如果我们想要设计一个低通滤波器,以使高频信号被抑制,我们可以使用线性系统来描述它的行为。
我们可以将电子电路看作一个输入信号到输出信号的转换器。
这个转换器的输出信号可以通过控制电子器件的电流、电压等参数来实现。
这种线性系统可以用来滤掉任何频率的信号,因此在广播和通信中也有广泛的应用。
2. 航天控制航天控制是线性系统理论的一个应用重点。
它包括控制飞行器姿态、轨道以及动力学行为。
在这些问题中,线性可变系统被广泛应用。
这种系统的输出信号是受到飞行器的控制和环境因素的影响。
控制器的任务是计算信号,以引导飞行员和总体系统实现期望的性能和特征。
离散系统建模与仿真理论基础_南开大学中国大学mooc课后章节答案期末考试题库2023年1.SIMSCRIPT的第一个版本基于以下哪个算法?答案:事件调度算法2.有些统计工具软件总是会拟合出某个概率分布,而不论其是否合理。
答案:正确3.对于两个系统比较的相关抽样法,如果一个系统在模型结构的某一方面完全不同于另一个系统,则同步性将不再适用,或者说不能实现同步。
答案:正确4.比较两个系统性能时,统计显著性与仿真实验和输出数据有关。
答案:正确5.在无限源模型中,到达率(单位时间内到达顾客的平均数量)不受已进入排队系统顾客数量的影响。
答案:正确6.考虑到排队系统的多样性,有学者针对并行服务台系统提出了一套被广为采用的符号体系,这一体系缩略版为A/B/c/N/K,其中A代表什么含义()?答案:到达间隔时间分布7.选择仿真软件时,需要考虑的输出特性不包括()答案:动作质量8.发生在外部环境,对系统造成影响的活动和事件是指什么()?答案:外生(活动或事件)9.发生在系统内部的活动和事件是指什么()?答案:内生(活动或事件)10.下列关于随机数流的说法不正确的是()。
答案:对于线性同余生成器而言,随机数流就是一组数据11.下列哪项不属于仿真历史的一个时期?答案:成熟期12.随机数生成后,若完全相同的随即数列重复出现,说明该方法发生了()。
答案:退化13.在随机数检验中,即使一个数集通过了全部检验,也不能保证随机数生成器的随机性,因为还有很多方法可能得出不同的结论。
答案:正确14.在独立性检验中,如果不能拒绝原假设,意味着通过检验未发现存在依存关系的证据。
答案:正确15.在排队系统中,如果服务台数量减少,那么排队等待时间、服务台利用率,以及顾客到达后不能立即获得服务的概率都会()?答案:增加16.连续型经验累积分布函数的反函数是:X=x(i-1)-ai(R-ci-1),其中ci-1<R≤ci。
答案:错误17.舍选法就是不断生成服从某种统计分布的随机变量R直到满足条件为止。
辽宁大学2020年全国硕士研究生招生考试初试自命题科目考试大纲科目代码:865科目名称:自动控制原理满分:150分
1.自动控制系统的基本概念
(1)自动控制系统的组成
(2)自动控制系统的工作原理
(3)自动控制系统的类型
(4)自动控制系统的性能指标
2.自动控制系统的数学模型
(1)传递函数的定义及典型环节的传递函数
(2)根据物理定律写出描写系统动态的微分方程并求传递函数
(3)画出系统的动态结构图并通过化简求出传递函数
(4)画出系统的信号流图并通过化简求出传递函数
3.自动控制系统的时域分析
(1)根据系统的微分方程或传递函数求出系统的时域响应,并分析系统的性能(2)根据系统的特征方程判断系统的稳定性
(3)稳态误差的计算
4.自动控制系统的根轨迹分析法
(1)根轨迹的概念和绘制方法
(2)利用根轨迹分析系统的性能
5.自动控制系统的频率分析法
(1)频率特性的概念及表示方法
(2)典型环节及开环系统频率特性的绘制
(3)利用系统的开环频率特性分析系统的性能(4)闭环频率特性及与系统的动态性能的关系
6.控制系统的校正及综合
(1)控制系统校正的基本概念
(2)串联校正、反馈校正、复合校正的原理和方法7.非线性系统分析
(1)非线性系统的特点
(2)典型的非线性系统
(3)利用描述函数法分析非线性系统
(4)相平面法
8.线性离散系统的理论基础
(1)离散系统的基本概念及基础知识
(2)脉冲传递函数的定义及推导
(3)采样控制系统的时域分析。