8 金属的固态扩散
- 格式:pdf
- 大小:544.43 KB
- 文档页数:11
关于影响金属材料固态扩散的因素与控制影响金属材料固态扩散的因素与控制摘要:由扩散第一定律可知,在浓度梯度一定时,原子扩散仅取决于扩散系数D。
对于典型的原子扩散过程,D符合Arrhenius公式,。
因此,D仅取决于D0、Q和T,凡是能改变这三个参数的因素都将影响扩散过程。
关键词:温度,因素,扩散,组元,系数一,温度由扩散系数表达式看出,温度越高,原子动能越大,扩散系数呈指数增加。
以C 在γ-Fe中扩散为例,已知D0=2.0×10-5m2/s,Q=140×103J/mol,计算出927℃和1027℃时C的扩散系数分别为1.76×10-11m2/s,5.15×10-11m2/s。
温度升高100℃,扩散系数增加三倍多。
这说明对于在高温下发生的与扩散有关的过程,温度是最重要的影响因素。
应该注意,有些材料在不同温度范围内的扩散机制可能不同,那么每种机制对应的D和Q不同,D便不同。
在这种情况下,~并不是一条直线,而是由若干条直线组成的折线。
例如,许多卤化物和氧化物等离子化合物的扩散系数在某一温度会发生突变,反映了在这一温度以上和以下受到两种不同的机制控制。
图3.15表示出Na+离子在NaCl晶体中扩散系数的实验值。
其中,高温区发生的是以点缺陷扩散为主的本征扩散,低温区发生的是以夹杂产生或控制的缺陷扩散为主的非本征扩散。
二,成分1,组元性质原子在晶体结构中跳动时必须要挣脱其周围原子对它的束缚才能实现跃迁,这就要部分地破坏原子结合键,因此扩散激活能Q和扩散系数D必然与表征原子结合键大小的宏观或者微观参量有关。
无论是在纯金属还是在合金中,原子结合键越弱,Q越小,D越大。
合金中的情况也一样。
考虑A、B组成的二元合金,若B组元的加入能使合金的熔点降低,则合金的互扩散系数增加;反之,若能使合金的熔点升高,则合金的互扩散系数减小,在微观参量上,凡是能使固溶体溶解度减小的因素,都会降低溶质原子的扩散激活能,扩散系数增大。
第三章固体金属中的扩散物质的迁移可通过对流可扩散两种方式进行。
在气体和液体中物质的迁移一般是通过对流和扩散来实现的。
但在固体中不发生对流,扩散是唯一的物质迁移方式,其原子或分子由于热运动不断地从一个位置迁移到另一个位置。
扩散是固体材料中的一个重要现象,诸如金属铸件的凝固及均匀化退火,冷变形金属的回复和再结晶,陶瓷或粉末冶金的烧结,材料的固态相变,高温蠕变,以及各种表面处理等等,都与扩散密切相关。
要深入地了解和控制这些过程,就必须先掌握有关扩散的基本规律。
研究扩散一般有两种方法:①表象理论——根据所测量的参数描述物质传输的速率和数量等;②原子理论——扩散过程中原子时如何迁移的。
本章主要讨论固体材料中扩散的一般规律、扩散的影响因素和扩散机制等内容。
固体材料设计金属、陶瓷和高分子化合物三类;金属中的原子结合是以金属键方式;陶瓷中的原子结合主要是以离子键方式为主;而高分子化合物中的原子结合方式是共价键或氢键结合,并形成长链结构,这就导致了三种类型固体中原子或分子扩散的方式不同,描述它们各自运动方式的特征也是本章的主要目的之一。
3.1扩散定律及其应用3.1.1菲克第一定律当固体中存在着成分差异时,原子将从浓度高处向浓度低处扩散。
如何描述原子的迁移速率,阿道夫•菲克(Adolf Fick)对此进行了研究,并在1855年久得出:扩散中原子的通量与质量浓度梯度成正比,即该方程称为菲克第一定律或扩散第一定律。
其中,J为扩散通量,表示单位时间内通过垂直于扩散方向x的单位面积的扩散物质质量,其单位为kg∕(㎡·s);D为扩散系数,其单位为㎡∕s;而ρ是扩散物质的质量浓度,其单位为kg∕m³。
式中的负号表示物质的扩散方向与质量浓度梯度dρ∕dx方向相反,即表示物质从高的质量浓度区向低的质量浓度区方向迁移。
菲克第一定律描述了一种稳态扩散,即质量浓度不随时间而变化。
史密斯(R.P.Smith)在1953年发表了运用菲克第一定律测定碳在у-Fe中的扩散系数的论文,他将一个半径为r,长度为l的纯铁空心圆筒置于1000℃高温中渗碳,即筒内和筒外分别渗碳和脱碳气氛,经过一定时间后,筒壁内各点的浓度不再随时间面变化,满足稳态扩散的条件,此时,单位时间内通过管壁的碳量q∕t为常数。