1.2金属固态相变的分类
- 格式:ppt
- 大小:115.50 KB
- 文档页数:21
金属固态相变教程1. 引言金属固态相变是金属在固态下由一种晶体结构转变为另一种晶体结构的过程。
相变是固态物体内部原子或离子的重新排列,伴随着固态材料的物理性质和晶体结构的改变。
金属固态相变的研究对于材料科学和工程中的合金设计、热处理工艺以及材料性能的改善具有重要意义。
本教程将介绍金属固态相变的基本概念、分类、影响因素以及相关应用。
2. 金属固态相变的基本概念金属固态相变指的是金属在固态下由一种晶体结构转变为另一种晶体结构的过程。
晶体结构的改变导致材料的宏观性质发生变化,如机械性能、磁性和导电性等。
金属固态相变可分为等温相变和等温相分离两种类型。
2.1 等温相变等温相变是指金属在相变温度范围内,由一种晶体结构转变为另一种晶体结构,且相变前后的温度保持恒定。
等温相变的过程中,晶体的原子重新排列,形成新的结构。
常见的金属等温相变包括铁素体相变和马氏体相变。
2.2 等温相分离等温相分离是指金属在相变温度范围内,由一种晶体结构分离成两种或多种晶体结构。
相分离过程中,金属晶体内部形成不连续的晶界和相颗粒。
常见的金属等温相分离包括共析相分离和析出相分离。
3. 金属固态相变的分类金属固态相变可根据相变过程中晶体结构的改变方式进行分类。
根据晶体结构改变的方式,金属固态相变可分为构型相变和组元相变两种类型。
3.1 构型相变构型相变是指金属晶体在相变过程中原子排列方式的改变。
构型相变通常伴随着晶胞参数的改变,如晶胞的长度、角度和原子的配位数等。
常见的构型相变包括立方-四方相变、体心立方-面心立方相变以及体心立方-六方相变等。
3.2 组元相变组元相变是指金属晶体在相变过程中组成元素的变化。
组元相变通常涉及金属中原子或离子之间的交换和重新排列。
常见的组元相变包括固溶体相变和化合物相变等。
4. 金属固态相变的影响因素金属固态相变受多种因素的影响,包括温度、压力、组分、晶体缺陷和外界应力等。
这些因素对金属的晶体结构和相变过程产生影响,进而影响材料的性能和行为。
固态相变By Dong大魔王固态相变:金属和陶瓷等固态材料在温度和压力改变时,其内部组织或结构会发生变化,即发生从一种状态到另一种状态的改变,这种转变称为固态相变。
按热力学分类:一级相变:相变时新旧两相的化学势相等,但化学势的一级偏微熵不等的相变称为一级相变;二级相变:相变时新旧两相的化学势相等,且化学势的一级偏微熵也相等,但化学势的二级偏微熵不相等的相变称为二级相变。
按平衡状态图分类:①平衡相变指在缓慢加热或冷却过程中所发生的能获得的符合平衡状态相图的平衡组织的相变。
主要有同素异构转变、多形性转变、平衡脱溶沉淀、共析相变、调幅分解、有序化转变。
②非平衡相变:伪共析相变、马氏体相变、贝氏体相变、非平衡脱溶相变按原子迁移情况分类:①扩散型相变:相变时,相界面的移动是通过原子近程或远程扩散而进行的相变称为扩散型相变。
基本特点是:相变过程中有原子扩散运动,相变速率受原子扩散速度所控制;新相和母相得成分往往不同;只有因新相和母相比容不同而引起的体积变化,没有宏观形状改变。
②非扩散型相变:相变过程中原子不发生扩散,参与转变的所有原子的运动是协调一致的相变称为非扩散型相变。
一般特征是:存在由于均匀切变引起的宏观形状改变,可在预先制备的抛光试样表面上出现浮突现象;相变不需要通过扩散,新相和母相的化学成分相同;新相和母相之间存在一定的晶体学位向关系;某些材料发生非扩散相变时,相界面移动速度极快,可接近声速。
试述金属固态相变的主要特征①相界面:金属固态相变时,新相和母相的界面分为两种。
②位相关系:两相界面为共格或半共格时新相和母相之间必然有一定位相关系,两项之间没有位相关系则为非共格界面。
③惯习面:新相往往在母相一定晶面上形成,这个晶面称为惯习面。
④应变能:圆盘型粒子所导致的应变能最小,其次是针状,球状最大。
固态相变阻力包括界面能和应变能。
⑤晶体缺陷的影响:新相往往在缺陷处优先成核。
原子的扩散:收扩散控制的固态相变可以产生很大程度的过冷。
第1章金属固态相变概论1.1金属固态相变的主要类型1.2金属固态相变的分类1.3金属固态相变的主要特点1.4固态相变的形核1.5固态相变时的晶核长大1.6固态相变动力学1.1金属固态相变的主要类型21ααα+→一、平衡转变61.同素异构体转变和多晶型转变62.平衡脱溶转变6共析转变6包析转变6调幅分解6有序化转变1.1金属固态相变的主要类型二、不平衡转变6伪共析转变6马氏体转变6块状转变6贝氏体转变6不平衡脱溶沉淀(时效)固态相变包括三个基本变化6晶体结构的变化:如同素异构转变、多晶型转变、马氏体相变;6化学成分的变化:调幅分解,只有成分转变而无相结构的变化;6有序程度的变化:如有序化转变,磁性转变、超导转变1.2金属固态相变的分类按热力学分类6平衡转变:缓慢加热或冷却同素异构、共析转变、调幅分解等6不平衡转变:快速加热或冷却伪共析转变、M转变、B转变等按动力学分类(依据原子运动的情况)6扩散型:脱溶沉淀、共析转变、有序化、块状转变、同素异构转变6非扩散型:M转变1.3金属固态相变的主要特点基本特点:È固态相变阻力大È原子迁移率低È非均匀形核派生特点:È低温相变时出现亚稳相È新相有特定形状È相界面È位向关系È存在惯习面新相有特定形状析出物的形状由相变中比体积(比容差)应变能和界面能的共同作用。
新相与母相保持弹性联系时,相同体积的晶核比较,新相呈片状的比体积应变能最小,针状次之,球状最大。
若过冷度很大,r*很小,界面能居主要地位,两相间易形成共格或半共格界面以降低表面能,同时应变能的降低使新相倾向于形成盘状(或薄片状)若过冷度很小时,r*较大,界面能居次要地位,两相间易形成非共格界面以降低应变能,若两相比容差很小,新相倾向于形成球状以降低界面能;若两相比容差较大,则倾向于形成针状以兼顾界面能和应变能相界面界面能居中界面能最小界面能最大位向关系为了减少界面能,新相与母相之间往往存在一定的晶体学关系,它们常以原子密度大而彼此匹配较好的低指数晶面相互平行来保持这种位向关系。
金属与合金中的固态相变金属与合金是人类社会中不可或缺的材料,它们广泛应用于各个领域,如建筑、交通、电子、医疗等。
在金属与合金的制备和应用过程中,固态相变是一个重要的现象。
本文将从金属与合金的角度出发,介绍固态相变的基本概念、分类和应用。
一、基本概念固态相变是指物质在固态下,由于温度、压力等条件的改变,发生晶体结构、晶格常数、原子排列等方面的变化。
固态相变可以分为两类:一类是一级相变,即物质在相变时伴随着热量的吸收或释放,如冰的融化和凝固;另一类是二级相变,即物质在相变时不伴随着热量的吸收或释放,如铁的铁磁相变。
二、金属中的固态相变金属是一类具有良好导电性、导热性和延展性的材料,其固态相变主要包括晶格常数的变化、晶体结构的变化和相变温度的变化。
晶格常数的变化是指金属在相变时晶格常数的改变。
例如,铁在加热至910℃时,其晶格常数由室温下的2.87Å增加至3.64Å,发生了由体心立方晶系向面心立方晶系的相变。
晶体结构的变化是指金属在相变时晶体结构的改变。
例如,铝在加热至660℃时,从面心立方晶系转变为体心立方晶系。
相变温度的变化是指金属在相变时相变温度的改变。
例如,铜在加热至1083℃时,发生由面心立方晶系向液态的相变。
三、合金中的固态相变合金是由两种或两种以上金属或非金属元素组成的材料,其固态相变主要包括共晶反应、共析反应和析出反应。
共晶反应是指两种或两种以上金属或非金属元素在一定比例下,同时熔化并形成共晶组织。
例如,铜和锡的共晶温度为227℃,共晶组织为铜锡共晶。
共析反应是指合金中的一种元素在一定温度下先于其他元素析出。
例如,铝和铜的共析温度为548℃,共析组织为铝铜共析。
析出反应是指合金中的一种元素在一定温度下从固溶体中析出。
例如,钢中的碳在加热至一定温度时,从固溶体中析出形成铁素体。
四、应用固态相变在金属与合金的制备和应用中具有重要的作用。
例如,通过控制金属的固态相变,可以改变其力学性能、磁性能、导电性能等,从而满足不同领域的需求。
固态相变:金属和陶瓷等固态材料在温度和压力改变时,其内部组织或结构会发生变化,即发生从一种状态到另一种状态的改变,这种转变称为固态相变。
按热力学分类:一级相变:相变时新旧两相的化学势相等,但化学势的一级偏微熵不等的相变称为一级相变; 二级相变:相变时新旧两相的化学势相等,且化学势的一级偏微熵也相等,但化学势的二级偏微熵不相等的相变称为二级相变。
按平衡状态图分类:平衡相变指在缓慢加热或冷却过程中所发生的能获得的符合平衡状态相图的平衡组织的相变。
主要有同素异构转变、多形性转变、平衡脱溶沉淀、共析相变、调幅分解、有序化转变。
非平衡相变:伪共析相变、马氏体相变、贝氏体相变、非平衡脱溶相变按原子迁移情况分类:扩散型相变:相变时,相界面的移动是通过原子近程或远程扩散而进行的相变称为扩散型相变。
基本特点是:①相变过程中有原子扩散运动,相变速率受原子扩散速度所控制;②新相和母相得成分往往不同;③只有因新相和母相比容不同而引起的体积变化,没有宏观形状改变。
非扩散型相变:相变过程中原子不发生扩散,参与转变的所有原子的运动是协调一致的相变称为非扩散型相变。
一般特征是:①存在由于均匀切变引起的宏观形状改变,可在预先制备的抛光试样表面上出现浮突现象;②相变不需要通过扩散,新相和母相的化学成分相同;③新相和母相之间存在一定的晶体学位向关系;④某些材料发生非扩散相变时,相界面移动速度极快,可接近声速。
共格界面:若两相晶体结构相同、点阵常数相等、或者两相晶体结构和点阵常数虽有差异,单存在一组特定的晶体学平面使两相原子之间产生完全匹配。
此时,界面上原子所占位置恰好是两相点阵的共有位置,界面上原子为两相所共有,这种界面称为共格界面。
当两相之间的共格关系依靠正应变来维持时,称为第一类共格;而以切应变来维持时,成为第二类共格。
半共格界面:半共格界面的特点:在界面上除了位错核心部分以外,其他地方几乎完全匹配。
在位错核心部分的结构是严重扭曲的,并且点阵面是不连续的。
金属固态相变知识点总结一、金属固态相变概述金属的固态相变是指金属在固态下由于温度、压力等外部条件的变化而发生的结构变化。
金属的固态相变具有一定的规律性,可以通过实验和理论研究来预测和解释金属相变过程中的行为。
金属固态相变对于金属材料的性能和应用具有重要的影响,因此对金属固态相变进行深入的研究具有重要的意义。
二、金属固态相变类型1. 多种金属的固态相变类型金属的固态相变包括晶格变化、相变温度、相变形式等不同的类型,主要有以下几种类型:(1) α-β型固溶体相变α-β型固溶体相变是金属合金中比较常见的相变类型,指的是在金属合金中存在两种不同的固溶体相,分别为α相和β相。
这种相变类型在许多重要的金属合金中都有出现,如Fe-C合金、Ni-Cr合金等。
(2) 费氏体相变费氏体相变是一种典型的金属固态相变类型,指的是金属在一定温度下发生由奥氏体相向费氏体相转变的过程。
这种相变类型在一些铁素体不锈钢中尤为常见。
(3) 莫尔铂相变莫尔铂相变是一种金属固态相变类型,指的是金属在相变过程中由六方最密堆积(HCP)结构向立方最密堆积(FCC)结构的转变。
这种相变类型在一些贵金属合金中具有重要作用。
2. 典型金属的固态相变不同的金属在固态下的相变类型也有所不同,下面以常见的几种金属为例进行介绍:(1) 铁素体不锈钢的固态相变铁素体不锈钢是一种重要的金属材料,其固态相变主要包括奥氏体到费氏体的相变,以及费氏体到马氏体的相变。
这些相变在不锈钢的应用性能中具有重要的影响。
(2) 铝合金的固态相变铝合金是一种广泛应用的金属材料,其固态相变主要包括固溶体相变和析出相变。
这些相变对于铝合金的强度和耐腐蚀性能具有重要的影响。
(3) 镍基高温合金的固态相变镍基高温合金是一种用途广泛的高温合金,其固态相变主要包括γ'-γ''转变、析出相变等。
这些相变对于高温合金的高温强度和高温抗氧化性能具有重要的影响。
三、金属固态相变的影响因素金属的固态相变受到多种因素的影响,主要包括温度、压力、合金元素、晶体结构等因素。
金属固态相变一、概论1.基本概念相:金属或合金中结构相同、成分和性能均一并以界面相互分开的组成部分。
固态相变:固态金属或合金中固态相之间的转变。
2.分类:(1)转变条件:平衡转变:同素异构转变、多形性转变、共析转变、包析转变、平衡脱溶沉淀、调幅分解、有序化转变。
非平衡转变:伪共析转变、马氏体转变、贝氏体转变、不平衡脱溶沉淀、块状转变。
(2)原子迁移特征:扩散型相变、无扩散型相变。
(3)热力学:一级相变、二级相变。
(4)相变方式:形核-长大型相变、无核相变。
3.特点(1)根据新相和母相原子在相界面上的晶体学匹配程度,形成具有晶体学特征的相界面。
基本条件:两相晶体结构相同,点阵常数相等或者两相晶体结构和点阵常数有差异,但在某一组特定的晶体学平面可使两相原子之间产生完全匹配。
共格晶面:界面上原子所占位置恰好是两相点阵的共有结点位置,两相在界面上的原子可以一对一地相互匹配。
δ<0.05。
第一类共格(正应变),第二类共格(切应变)。
界面能最小,应变能最大。
半共格晶面:在界面上两相原子部分保持匹配。
0.05<δ<0.25。
非共格晶面:两相界面处的原子排列差异很大,即错配度大,其原子连半共格关系也不能维持。
δ>0.25。
界面能最大,应变能最小。
错配度:两相界面上原子间距的相对差值。
δ=Δa/a(2)弹性应变能和界面能一起成为相变阻力。
弹性应变能:①共格应变能:固态相变时新相与母相界面上的原子由于要强制地实行匹配,以建立共格或半共格联系,在界面附近区域将产生应变能。
(共格最大,半共格次之,非共格为0。
)。
②比体积差应变能:由于新相和母相的比体积不同,新相形成时的体积变化将受到周围母相的约束而产生的弹性应变能。
(圆盘状最小,针状次之,球状最大。
)。
界面能:①界面上原子排列的不规则性造成能量的增加。
②新旧两相化学成分的改变引起的化学能改变。
(3)原子的迁移率低。
10-12-10-11cm·s-1。
金属固态相变原理金属固态相变是指金属在温度、压力等条件下发生晶体结构和性质的变化。
金属固态相变原理是金属材料学中的重要内容,对于理解金属材料的性能和应用具有重要意义。
首先,我们来看一下金属固态相变的分类。
金属固态相变可以分为两类,一类是在固态下发生的晶体结构的变化,另一类是在固态下发生的晶体结构和相的变化。
晶体结构的变化包括晶格参数、晶胞体积和晶体形态的变化,而晶体结构和相的变化则包括晶体结构和晶体相的变化。
其次,金属固态相变的原理在于金属原子在不同温度、压力等条件下的排列方式发生变化。
金属原子在晶体中的排列方式决定了金属的性能和行为。
当金属原子的排列方式发生变化时,金属的性能和行为也会发生相应的变化。
因此,了解金属固态相变的原理对于控制金属材料的性能具有重要意义。
金属固态相变的原理还涉及到热力学和动力学的知识。
热力学是研究热平衡状态和热平衡过程的科学,而动力学是研究物体运动规律的科学。
金属固态相变的原理可以通过热力学和动力学的知识来解释和理解。
热力学可以揭示金属固态相变的原因和条件,而动力学可以揭示金属固态相变的过程和速率。
金属固态相变的原理对于金属材料的加工、热处理和应用具有重要意义。
通过控制金属固态相变的条件和过程,可以改变金属材料的结构和性能,从而实现对金属材料的调控和优化。
金属固态相变的原理也为金属材料的设计和制备提供了重要的理论基础。
总之,金属固态相变原理是金属材料学中的重要内容,对于理解金属材料的性能和应用具有重要意义。
通过深入研究金属固态相变的原理,可以更好地掌握金属材料的性能调控和应用技术,从而推动金属材料领域的发展和进步。