无线电测向体制概述
- 格式:docx
- 大小:248.84 KB
- 文档页数:13
20207News Dissemination新闻传播无线电的管理工作难度较大,需要有效的技术支持,随着无线电管理工作的有效开展,进一步提高了无线电监测水平。
在进行监测过程,需要提高测向技术水平,因此,本文对无线电监测与测向技术进行了实践探索,希望通过有效阐述,能够为相关工作开展奠定良好基础。
一、无线电测向技术概述在有效的研究无线电监测技术过程中,要提高对于测向技术的研究能力,实施无线电测向技术时,可以利用天线系统确认来波信息和信息处理的方法,对此,可以把这个过程分成两类,包括标量测向系统和矢量信息系统。
前者的作用是获得并使用与来波型号有关系的标量信息数据,后者作用是获得并使用和来波型号有关的矢量信息数据。
而对于标量测向系统来讲,不仅历史悠久,而且还有很大的发展前景,它的测向天线和测向方向图也都非常实用。
测向机是利用测向的专业机构来区分固定站和移动站点,所以,应该用无线电测定来波方向并使用固定的辐射源,这样不仅能给电台单位做好定位,而且还能够进行分化交互测试,进而更好地确定辐射源位置。
除此之外,还可利用不同的测向分析,详细划分测向的体制。
系统组成及工作原理:测向天线,输入匹配单元、接收机、方位信息处理显示,这些都是无线电测向系统的组成部分,而一个测向站的主要组成部分又包括了测向系统,通信系统以及附属设备。
无线电测向测定的是来波的方向,主要目的是将辐射源确定下来,这就需要位置不同的测向站要进行组网测向。
另外,整个测向的过程中,为了能够让示向度达到准确,还需要充分满足优质测向台址环境,匹配的测向体制、精度高的测向机,经验丰富的操作人员等四个条件。
通过对系统的进一步分析,提高了测向技术认识,能够保证测向工作有效开展。
在进行工作实践研究过程中,需要相关工作人员提高技术的应用能力,从而有利于加强无线电监管水平。
二、无线电监测与测向系统的构建(一)测向系统的基本组成及功能在无线电监测与测向原理上,需要构建出最为实用的固定测向站,并把测向机天线搬到已经改装好的监测车辆上,以此达到机动交汇定位的目的。
无线电测向原理
无线电测向原理是一种通过测量无线电信号到达接收器的方向来确定信号发射源位置的技术。
该原理基于电磁波传播的特性,利用接收器接收到的信号的方向性信息来定位信号源。
无线电测向原理的关键在于利用多个接收器或天线阵列来接收同一个信号。
通过测量接收到信号的时间差和信号强度的变化,可以计算出信号的到达角度。
这种测向方式被称为时差测向和幅度比测向。
时差测向是基于接收到信号的时间差来测量信号到达的角度。
当信号到达不同的接收器或天线时,会产生微小的时间差。
通过计算这些时间差,可以确定信号的到达角度。
幅度比测向则是基于接收到信号的强度变化来测量信号到达的角度。
当信号到达不同的接收器或天线时,由于传播路径的不同,信号的强度会发生变化。
通过计算这些幅度变化,可以确定信号的到达角度。
无线电测向原理常用于无线电定位、无线电导航、无线电干扰源定位等领域。
它的应用范围广泛,可以用于定位无线通信设备、监测无线电信号、解决无线电干扰问题等。
总的来说,无线电测向原理通过测量接收到的信号的方向性信息来确定信号发射源的位置。
它是一种基于电磁波传播特性的技术,可以在无线通信、定位、干扰源定位等领域发挥重要作用。
无线电测向原理无线电测向是利用无线电波的传播特性,通过对信号的接收和处理,确定信号的方向的一种技术。
无线电测向原理是基于电磁波传播的基本原理和天线接收信号的特性,通过对接收到的信号进行分析,确定信号的来向。
下面将从无线电测向的基本原理、测向系统的组成和测向方法等方面进行介绍。
首先,无线电测向的基本原理是基于电磁波的传播特性。
当电磁波在空间中传播时,会受到地形、建筑物等物体的影响而产生衍射、反射等现象,这些现象会使信号在接收端产生多径效应,从而导致信号的强度和相位发生变化。
利用这些变化,可以通过信号处理技术确定信号的方向。
其次,测向系统通常由天线、接收机、信号处理器和显示器等组成。
天线是接收信号的装置,不同类型的天线适用于不同频率的信号接收。
接收机是用于接收信号的设备,它可以将接收到的信号转换成电信号,并将其传送给信号处理器。
信号处理器是用于对接收到的信号进行处理和分析的设备,它可以提取信号的特征参数,并通过计算确定信号的方向。
显示器则用于显示测向结果,通常以图形或数字的形式呈现。
最后,无线电测向的方法主要包括干扰测向、方位测向和跟踪测向等。
干扰测向是指利用干扰信号的特征参数确定干扰源的位置,通常用于无线电干扰的监测和定位。
方位测向是指确定信号来向的方向,通常用于通信情报收集和无线电定位。
跟踪测向是指对移动目标进行实时跟踪,通常用于雷达导航和目标追踪等应用。
综上所述,无线电测向是一种利用无线电波的传播特性,通过对信号的接收和处理,确定信号方向的技术。
它的原理是基于电磁波的传播特性,测向系统由天线、接收机、信号处理器和显示器等组成,测向方法主要包括干扰测向、方位测向和跟踪测向等。
无线电测向技术在通信情报、无线电干扰监测和雷达导航等领域有着重要的应用价值。
第3篇无线电测向与空间谱估计测向体制第五十八研究所朱锦生赵衡内容简介:本文简述无线电测向原理,几种典型的无线电模拟电子技术的无线电测向设备,以及空间谱估计测向的含义和它目前达到的水平。
1 无线电测向的基本原理1.1 无线电测向的目的是测定辐射源(或发射机)的位置无线电测向是靠测定电波传播的方向来实现的。
电波传播方向的轨迹是沿地球的大圆弧前进的,即地面上两点(如辐射源和观测点的两点)间的最短直线距离。
因此测定电波的来向,也即测定了辐射源的方向。
1.2 无线电测向的定位三角交会定位由地面两个以上的观测点对同一辐射源测定电波的来向,这些来波行进轨迹的交会点,即为辐射源或发射机的位置,如图1。
(1)单站定位(一般对短波测向而言)由观测点测定来波的方位角、仰角,通过精确电离层模型计算出电离层反射点的等效高度。
由仰角和电离层等效高度计算出观测点距辐射源的距离,由此距离与方位角一起就可确定辐射源的位置,见图2。
图1 多站测向交会定位示意图图2 短波单站定位示意图1.3 实际电波传播不可能是完全理想的影响电波传播行进轨迹的因素,最大有两个:(1) 电波传播短波远距传播均通过电离层反射来实现,但电离层并不是一面实际的镜子,它有一定的厚度,实际是漫反射,是由逐渐的折射达到反射,见图3。
因此电离层的电子密度对电波传播影响很大。
电离层电子密度的不均匀,相当反射镜面的倾斜,使得电波传播行进的轨迹偏离地球大圆弧(即直线)的轨迹。
除此还有电离层各个不同层的分别反射,即使同一层,也有不同的反射次数,即跳数,结果形成多径传播,见图4。
由于各个途径的电波传播是随时间变化的,结果合成的来波不仅方向上有误差,同时来波的方向还明显呈游动。
(1) 地形地物的影响地形地物如各种建筑物、铁塔、山脉、树林等障碍物,它们也接收电波的照射,同时还产生再次辐射。
这样到达观测点的电波,不仅有直接来自辐射源的电波,而且还有障碍物的再次辐射电波,它们合成的来波方向,偏离辐射源,并根据影响程度,向障碍物偏转一定的角度,这就产生误差。
第十章无线电测向体制概述摘要:本文首先介绍了无线电测向的一般知识,说明了无线电测向机的分类方法和应用;着重从测向原理的角度说明了不同测向体制的特点和主要技术指标;最后从实际出发,提出选用建议。
供读者参考。
无线电测向的一般知识。
随着无线电频谱资源的广泛应用和无线电通信的日益普及,为了有序和可靠地利用有限的频谱资源,以及确保无线电通信的畅通,无线电监测和无线电测向已经必不可少,其地位和作用还会与时俱进。
什么是无线电测向呢?无线电测向是依据电磁波传播特性,使用仪器设备测定无线电波来波方向的过程。
测定无线电来波方向的专用仪器设备,称为无线电测向机。
在测定过程中,根据天线系统从到达来波信号中获得信息以及对信息处理的方法,可以将测向系统分为两大类:标量测向系统和矢量测向系统。
标量测向系统仅能获得和使用到达来波信号有关的标量信息数据;矢量测向系统可以获得和使用到达来波信号的矢量信息数据。
标量测向系统仅能单独获得和使用电磁波的幅度或者相位信息,而矢量测向系统可以同时获得和使用电磁波的幅度和相位信息.标量测向系统历史悠久,应用最为广泛。
最简单的幅度比较式标量测向系统,是如图(1)所示的旋转环型测向机,该系统对垂直极化波的方向图成8字形。
大多数幅度比较式的标量测向系统,其测向天线和方向图,都是采用了某种对称的形式,例如:阿德考克(Adcock)测向机和沃特森-瓦特(Watson-Watt)测向机,以及各种使用旋转角度计的圆形天线阵测向机;属于相位比较的标量测向系统,有如:干涉仪(Inteferometry)测向机和多普勒(Dopple)测向机等。
在短波标量测向系统可以设计成只测量方位角,也可设计成测量方位角,同时测量来波的仰角。
矢量测向系统,具有从来波信号中获得和使用矢量信息数据的能力。
例如:空间谱估计测向机。
矢量系统的数据采集,前端需要使用多端口天线阵列和至少同时利用两部以上幅度、相位相同的接收机,后端根据相应的数学模型和算法,由计算机进行解算。
无线电测向无形的导航助手无线电测向技术是一种通过测量无线信号的方向和强度来确定信号来源位置的技术。
它在无线通信、导航和情报收集等领域具有广泛应用。
本文将介绍无线电测向技术的原理、应用以及未来的发展趋势。
一、无线电测向技术的原理无线电测向技术通过测量信号到达接收器的时间差或相位差,结合天线阵列的空间配置,可以确定信号的方位角和俯仰角,从而确定信号的来源位置。
常用的无线电测向技术包括单站测向和多站测向两种。
单站测向是指通过单个接收器接收信号并测量其方向的技术。
它适用于已知接收器位置的场景,如航标测向和救援定位。
多站测向是指通过多个接收器接收信号,利用信号到达不同接收器的时间差或相位差来计算信号的源位置。
多站测向适用于需要在未知位置的情况下确定信号来源的场景,如辐射源搜索和无线电干扰定位。
二、无线电测向技术的应用1. 导航定位无线电测向技术在航海、航空、车辆导航、移动通信等领域中具有重要应用。
通过接收导航信号,利用无线电测向技术可以实现精确的位置定位。
例如,在航海中,通过接收卫星导航系统的信号,并利用无线电测向技术计算信号的方向和强度,船只可以准确确定自身位置。
2. 通信定位在移动通信领域,无线电测向技术被广泛应用于基站定位、呼叫追踪等功能。
通过测量接收信号的方向和强度,可以确定移动终端设备的位置,从而实现对终端设备的定位追踪。
3. 电子侦察无线电测向技术在军事领域中有着重要的作用。
通过测量敌方无线电信号的方向和强度,可以追踪和定位敌方通信设备,为电子侦察、情报收集提供有力支持。
同时,无线电测向技术也可以用于干扰源的搜索和定位,帮助军队进行电子干扰对抗。
4. 灾难救援在灾难救援中,无线电测向技术可以用于定位受困人员或者遇险船只的位置,协助救援行动的展开。
通过接收幸存者的无线电信号,并利用无线电测向技术确定信号来源的位置,救援人员可以迅速找到被困者,并进行救援。
三、无线电测向技术的发展趋势近年来,随着科技的不断进步,无线电测向技术也得到了飞速发展。
浅谈无线电监测与测向定位技术摘要:无线电监测和测向定位技术包括分析判断,测向定位,实施监测等内容,尤其在部队特殊监测,电磁环境监测和民用常规监测中都得到了广泛的应用。
近年来,随着我国经济建设的飞速发展,无线电通信技术也取得了很大的进步,为避免无线电资源遭到不合理的利用,有必要加强无线电的监测管理工作,研究无线电监测与测向定位技术具有重要的意义。
文章主要对无线电监测与测向定位技术分析探究,可供同行借鉴。
关键词:无线电;监测;测向定位前言随着当前无线电业务的创新发展,台站数量越来越多,导致无线电的干扰问题频发,无线电的监测任务也日趋繁重,无线电的频谱资源也越来越有限化,增加了电磁环境复杂性。
因此,加强无线电监测与测向定位管理,有利于空中电波秩序的管理与维护。
无线电监测与测向定位技术的运用范围广,涵盖实施监测、测向定位、分析判断等多个方面,无论是民用常规监测、工业电磁环境监测还是军用特种监测上都会运用。
一、无线电测向概述1.1无线电测向方法的基本原理无线电测向有幅度比较式测向、沃特森-瓦特测向、干涉仪测向等几种方式。
无线电测向主要是为了对无线电波辐射源的方向进行测量。
利用波的特性,通过场强检测电路来测得场强的强弱。
在具体的测向过程中,天线体系的天线元之间的距离受到限制,因此,可以将电波辐射场中的天线元接收到电场强度看作是等值,只是存在相位上的差别。
因此,在测向的过程中,方位信息就被包含各个相位中。
在不同的天线体系上,会产生一定的感应电动势力。
因此,可以对目标电台方位信息进行不同的处理。
1.2测向技术1.2.1比幅测向法比幅测向法中应用最广泛的是沃特森-瓦特体制,测向时采用计算得出结果或得出反正切值。
该体制的优点是对波道干扰不敏感、测向速度快,易于实现,属于幅度比较式测向方法中的一种,但是该体制测向精度和测向灵敏度低,抗波前失真的能力弱。
因为沃特森-瓦特测向体制所使用的天线阵列是小基础的天线,尺寸较小,所以特别适合手持、车载式的小型测向设备上使用。
浅析主流无线电测向技术体制引言随着各级无线电管理部门不断加大投资力度,加快无线电监测网的建设,全国无线电监测网的格局正逐步形成。
如何合理地配备先进的无线电监测系统和正确选择监测、测向系统的技术体制,降低建设成本,加快建设周期,提高监测效率,已经成为无线电监测网建设中的一个重要课题。
无线电测向就是利用无线电测量设备测定目标无线电信号的来波方位。
根据不同的测向方法,将测向体制分为幅度比较式测向体制、沃特森-瓦特测向体制、干涉仪测向体制、多普勒测向体制、空间谱估计测向体制等。
干涉仪测向体制中基于复数电压测量的相关干涉仪测向体制以其具有测向准确度高、测向灵敏度高、测向速度快、抗干扰能力强、稳定性好、设备复杂度较低等优点,成为目前无线电监测中主流的测向体制。
相关干涉仪测向体制的基本原理与技术基础1.1 基本原理在远离辐射的某一观察面上,设置由几个天线构成的天线阵列,尽管各天线可能有一些差别,并对电场有一定的扰动,但只要是稳定不变的,那么对一个确定频率、确定方位到达的电波,各天线元间输出一个确定的相对复电压数组,它们在复数平面上,就有一个确定的图案,如图1。
如果在给定的频率上对θ1,θ2,…,θm,…,θm+1(θm=360m/M,m=0,1,…,M-1)方位上的电波事先测量并存储M 个复数组作标准库,那么在同样频率上对未知方向电波按同样程序实时测得一个复数组,并用该复数数组与对应不同方向的标准数组进行比较,就会从标准库中找到一个最接近的数组(对应θn)和次接近的数组(对应θn+1)。
如果M 值足够大,说明待测电波的到达方向在θn与θn+1之间,通过内插运算,就可求得未知电波的到达方向。
1.2 基本工作模式相关干涉仪测向方法的基本工作模式: (1)设置一个天线阵列,天线阵列为。
无线电测向体制概述无线电测向的一般知识。
随着无线电频谱资源的广泛应用和无线电通信的日益普及,为了有序和可靠地利用有限的频谱资源,以及确保无线电通信的畅通,无线电监测和无线电测向已经必不可少,其地位和作用还会与时俱进。
什么是无线电测向呢?无线电测向是依据电磁波传播特性,使用仪器设备测定无线电波来波方向的过程。
测定无线电来波方向的专用仪器设备,称为无线电测向机。
在测定过程中,根据天线系统从到达来波信号中获得信息以及对信息处理的方法,可以将测向系统分为两大类:标量测向系统和矢量测向系统。
标量测向系统仅能获得和使用到达来波信号有关的标量信息数据;矢量测向系统可以获得和使用到达来波信号的矢量信息数据。
标量测向系统仅能单独获得和使用电磁波的幅度或者相位信息,而矢量测向系统可以同时获得和使用电磁波的幅度和相位信息.标量测向系统历史悠久,应用最为广泛。
最简单的幅度比较式标量测向系统,是如图(1)所示的旋转环型测向机,该系统对垂直极化波的方向图成8字形。
大多数幅度比较式的标量测向系统,其测向天线和方向图,都是采用了某种对称的形式,例如:阿德考克(Adcock)测向机和沃特森-瓦特(Watson-Watt)测向机,以及各种使用旋转角度计的圆形天线阵测向机;属于相位比较的标量测向系统,有如:干涉仪(Inteferometry)测向机和多普勒(Dopple)测向机等。
在短波标量测向系统可以设计成只测量方位角,也可设计成测量方位角,同时测量来波的仰角。
矢量测向系统,具有从来波信号中获得和使用矢量信息数据的能力。
例如:空间谱估计测向机。
矢量系统的数据采集,前端需要使用多端口天线阵列和至少同时利用两部以上幅度、相位相同的接收机,后端根据相应的数学模型和算法,由计算机进行解算。
矢量系统依据天线单元和接收机数量以及后续的处理能力,可以分辨两元以至多元波场和来波方向。
矢量测向系统的提出还是近十几年的事,它的实现有赖于数字技术、微电子技术和数字处理技术的进步。
目前尚未普及。
图1 比幅式环形测向在上述的说明中,我们使用的是测定“来波方向”,而没有使用测定“辐射源方向”,这两者之间是有区别的。
我们在这里侧重的是:测向机所在地实在的电磁环境,但是,无线电测向,通常的最终目的,还是要确定“辐射源的方向”和“辐射源的具体位置”。
无线电测向从上个世纪初诞生至今,已经形成了系统的理论,这就是无线电测向学。
无线电测向学,是研究电磁波特性及传播规律、无线电测向原理及实现方法、测向误差规律及减小和克服误差的方法。
总之,无线电测向学,是研究无线电测向理论、技术与应用的科学。
无线电测向学是与无线电工程学、无线电电子学、地球物理学、无线电通信技术、计算机技术、数字技术紧密相关的一门科学。
图2 无线电测向系统的组成无线电测向系统的组成,如图(2)所示。
通常包括测向天线、输入匹配单元、接收机和方位信息处理显示四个部分。
测向天线是电磁场能量的探测器、传感器,又是能量转换器,它把空中传播的电磁波能量感应接收下来,连同幅度、相位、到达时间等信息转换为交流电信号,馈送给接收机;输入匹配单元实现天线至接收机的匹配传输和必要的变换;接收机的作用是选频、下变频、无失真放大和信号解调;检测、比较、计算、处理、显示(指示)方位信息,是第四部分的任务。
无线电测向以测向机所在地,以及过地理北极的子午线为参考零度方向。
两点之间方位度数按下述方法确定:假设地球表面A、B两点,A点为测向机所在地,基准方向与方位角如图(3)所示。
量判B点相对于A点的方位角,是从过A点的子午线(零度)顺时针旋转到A至B的大圆路连线的度数。
B 点相对于A点的方位角度数具有唯一性图3基准方向与方位角测向机在测向过程中显示(指示)的测向读数称为示向度。
由于电波传播以及测向仪器的误差等原因,测向时,示向度通常不是一个十分精确的单值。
示向度与方位角之差,称为测向误差。
如果在测向中,示向度与方位角重合,则测向误差为零。
实际上,在测向过程中导致产生误差的原因是多方面的,但是基本上可以归纳为主观误差和客观误差两大方面。
影响和产生客观误差的因素很多,以后我们还将另文专述。
在测向中,为了获得比较准确的示向度,通常有四个必须具备的条件:优良的测向台址环境、匹配的测向体制、高精度的测向机、经验丰富的操作人员。
优良的测向台址环境为电波的正常传播提供条件;正确选择测向体制,以满足使用中的不同要求;精良的测向机是设备基础;在测向的过程中,常常需要处理预想不到的情况,人的知识经验十分宝贵,经验丰富的操作人员,有着非常重要的作用。
这是四个必须同时具备的条件。
测向设备、通信系统和附属设备,可以组成测向站(台)。
测向站是专门执行测向任务的机构,它有固定站和移动站之分。
无线电测向测定电波来波方向,通常是为了确定辐射源的位置,这时往往需要以几个位置不同的测向站(台)组网测向,用各测向站的示向度(线)进行交汇。
如图(4)所示。
条件允许时,也可以用移动测向站,在不同位置依次分时交测。
图4各测向站的示向交汇短波的单台定位,是在测向的同时测定来波的仰角,以仰角、电离层高度计算距离,用示向度和距离粗判台位。
单台定位如图(5)所示。
图5短波单台(站)定位实际操作上要确定未知辐射源的具体位置,往往需要完成由远而近分步交测,以逐步实现接近和确定辐射源的具体位置。
无线电测向的应用。
无线电测向系统的应用在三个方面:一、测定未知辐射源方向和位置的测向系统。
测向站(台)可以是固定的,也可能是移动的。
例如:在无线电频谱管理中,对未知干扰源的测向与定位。
二、测定已知辐射源方向,用以确定自身位置的测向系统。
这时测向机通常安装在运动载体上。
例如:在船舶航海与飞机飞行中的导航设备。
三、引导带有辐射源的运动载体到达预定目标的测向系统。
测向站(台)可以是固定的,也可以是移动的。
无线电测向的应用领域包括民用和军用两大方面。
无线电频谱管理、自然生态科研、航空管理、寻地与导航、内防安全和体育运动等,属于前者;通信与非通信信号侦察、战略战术电子对抗与反对抗等,在电子战中的应用,属于后者。
无线电测向机的分类方法。
经过了近百年的研究、实践与发展,无线电测向机已经拥有了一个庞大的家族。
基于着眼点的不同,测向机有着下列各种不同的分类方法(分类中的交叉不可避免):1.依照工作频段分类有:超长波、长波、中波、短波、超短波和微波测向机;2.依照工作方式分类有:固定测向机、移动测向机。
移动测向机又因为运载工具的不同,可以进一步分为车载、船载、机载(飞机)测向机以及手持和佩带式测向机;3.依照测向机的作用距离分类(主要指短波)有:近距离测向机、中距离测向机、远(程)距离测向机;4.依照测向天线间隔(基础、孔径)尺寸的大小分类有:大基础测向机、中基础测向机、小基础测向机;5.依照测向天线是否具有放大器分类有:有源天线测向机、无源天线测向机;6.依照测向机所使用的测向天线种类分类有:环(框)形天线测向机、交叉环(框)形天线测向机、间隔双环(框)形天线测向机、单极子(加载)天线测向机、对称阵子(垂直、水平)天线测向机、对数天线测向机、行波环天线测向机、磁性天线测向机、微波透镜天线测向机等;7.依照测向机示向度读出方式分类有:听觉测向机、视觉测向机、数字测向机;8.依照测向机使用接收机的信道分类有:单、双信道测向机、多信道测向机。
像上面的分类方法,可能还有一些,这里不再赘述。
测向原理及测向体制概述。
在测向机家庭中,依据不同的测向原理,可以把现有的测向机归纳为不同的测向体制、体系和样式。
以下将分别介绍它们的工作原理和特点。
一、幅度比较式测向体制幅度比较式测向体制的工作原理是:依据电波在行进中,利用测向天线阵或测向天线的方向特性,对不同方向来波接收信号幅度的不同,测定来波方向。
例如:间隔设置的四单元U形天线阵、小基础测向(阿德考克)机,如图(6)所示。
其表达公式如公式(1)所示。
U ns=kU13SinθCosεU ew=kU24CosθCosεU nsθ=arctg—— (1)U ew上面的公式中:U ns、U ew分别为北-南、东-西天线感应电压,θ为来波方位角,ε为来波仰角,k 为相位常数,2bπk= ———λ其中:b为天线间距,λ为工作波长。
对于360度(θ)不同方向的来波,北-南天线感应接收信号的幅度遵循正弦Sinθ规律,东西天线感应接收信号的幅度遵循余弦Cosθ规律,有了两组信号幅度,测向时设法对二者求解或显示它们的反正切值,即可得到来波方向。
这只是幅度比较式测向体制中的一个典型的测向机例子。
图6 四单元阿德考克天线阵幅度比较式测向体制的原理应用十分广泛,其测向机的方向图也不尽相同。
例如:环形天线测向机、间隔双环天线测向机、旋转对数天线测向机等,属于直接旋转测向天线和方向图;交叉环天线测向机、U形天线测向机、H型天线测向机等,属于间接旋转测向天线方向图。
间接旋转测向天线方向图,是通过手动或电气旋转角度计实现的。
手持或佩带式测向机通常也是属于幅度比较式测向体制。
这是不再赘述。
幅度比较式测向体制的特点:测向原理直观明了,一般来说系统相对简单,体积小,重量轻,价格便宜。
小基础测向体制(阿德考克)存在间距误差和极化误差,抗波前失真的能力受到限制。
频率覆盖范围、测向灵敏度、准确度、测向时效、抗多径能力和抗干扰能力等重要指标,要根据具体情况做具体分析。
二、沃特森-瓦特测向体制沃特森-瓦特测向体制的工作原理:沃特森-瓦特测向机实际上也是属于幅度比较式的测向体制,但是它在测向时不是采用直接或间接旋转天线方向图,而是采用计算求解或显示反正切值。
鉴于它在测向机家族中的特殊地位和目前仍然在广泛应用,所以在此单独说明。
基本公式同公式(1)。
正交的(Sinθ、Cosθ)测向天线信号,分别经过两部幅度、相位特性相同的接收机进行变频、放大,最后求解或显示反正切值,解出或显示来波方向。
属于沃特森瓦特测向机的有:多信道沃特森-瓦特测向机、单信道沃特森-瓦特测向机。
这里所说的多信道,通常是指三信道,另外一个信道的作用是与全向天线相接,以解决“180度不确定性”和“值班收信”问题。
多信道沃特森-瓦特测向原理方框图如图(7)所示。
图7 多信道沃特森-瓦特框图单信道沃特森-瓦特测向机是将正交的测向天线信号,分别经过两个低频信号进行调制,而后通过单信道接收机变频、放大,解调出方向信息信号,然后求解或显示反正切值,给出来波方向。
单信道沃特森-瓦特测向机原理方框图如图(8)所示。
图8 单信道沃特森-瓦特框图沃特森-瓦特测向体制的特点:多信道沃特森-瓦特测向机测向时效高,速度快,在良好场地上测向准确,而且CRT显示方式,还可以分辨同信道干扰。
该体制测向天线属于小基础,测向灵敏度和抗波前失真受到限制。
多信道体制系统复杂;双信道接收机实现幅度、相位一致,有一定技术难度;单信道体制同属于小基础,系统简单,体积小,重量轻,但是测向速度受到一定限制。