无线电测向原理
- 格式:docx
- 大小:60.04 KB
- 文档页数:7
无线电测向原理无线电测向是一种利用无线电波进行信号测向的技术,它可以用于确定信号的方向和位置。
无线电测向技术在军事、民用通信、天文学等领域都有着重要的应用。
本文将介绍无线电测向的原理及其在实际中的应用。
首先,我们来了解一下无线电测向的基本原理。
无线电测向的基本原理是利用天线接收信号,并通过对接收到的信号进行分析,确定信号的方向和位置。
在实际的应用中,通常会使用多个天线来接收信号,通过对比不同天线接收到的信号强度和相位差异,可以计算出信号的方向和位置。
无线电测向技术主要包括两种方法,一种是方位测向,另一种是距离测向。
方位测向是通过对接收到的信号进行方位角的测量,确定信号的方向;而距离测向则是通过对接收到的信号进行距离的测量,确定信号的位置。
这两种方法可以单独应用,也可以结合起来进行综合测向。
在实际的无线电测向系统中,通常会采用多种测向技术相结合的方式,以提高测向的准确度和可靠性。
例如,可以通过使用多个天线阵列来实现高精度的方位测向;同时结合多普勒效应来实现距离测向。
这样可以在不同的环境和条件下,实现更加灵活和精准的测向。
无线电测向技术在军事领域有着广泛的应用。
在军事侦察、雷达导航、通信干扰监测等方面,都需要使用无线电测向技术来获取目标的方向和位置信息。
同时,在民用通信领域,无线电测向技术也可以用于无线电定位、无线电导航等应用。
此外,无线电测向技术还可以应用于天文学领域,用于天体信号的测向和观测。
总的来说,无线电测向技术是一种重要的信号测向技术,它可以通过对接收到的无线电信号进行分析,确定信号的方向和位置。
在实际的应用中,无线电测向技术可以应用于军事、民用通信、天文学等多个领域,具有着重要的意义和价值。
随着无线电技术的不断发展,无线电测向技术也将会得到进一步的完善和应用。
无线电测向原理
无线电测向原理是一种通过测量无线电信号到达接收器的方向来确定信号发射源位置的技术。
该原理基于电磁波传播的特性,利用接收器接收到的信号的方向性信息来定位信号源。
无线电测向原理的关键在于利用多个接收器或天线阵列来接收同一个信号。
通过测量接收到信号的时间差和信号强度的变化,可以计算出信号的到达角度。
这种测向方式被称为时差测向和幅度比测向。
时差测向是基于接收到信号的时间差来测量信号到达的角度。
当信号到达不同的接收器或天线时,会产生微小的时间差。
通过计算这些时间差,可以确定信号的到达角度。
幅度比测向则是基于接收到信号的强度变化来测量信号到达的角度。
当信号到达不同的接收器或天线时,由于传播路径的不同,信号的强度会发生变化。
通过计算这些幅度变化,可以确定信号的到达角度。
无线电测向原理常用于无线电定位、无线电导航、无线电干扰源定位等领域。
它的应用范围广泛,可以用于定位无线通信设备、监测无线电信号、解决无线电干扰问题等。
总的来说,无线电测向原理通过测量接收到的信号的方向性信息来确定信号发射源的位置。
它是一种基于电磁波传播特性的技术,可以在无线通信、定位、干扰源定位等领域发挥重要作用。
小升初无线电测向无线电测向是一种利用无线电信号的传播特性来确定信号源位置的技术。
在小升初考试中,无线电测向也是一个重要的考点。
下面,我们来了解一下关于无线电测向的基本知识。
一、无线电测向的原理无线电测向是利用无线电信号传播时的信号强度、相位差等特性来确定信号源的位置。
当一个无线电信号源发出信号时,信号会在空间中传播并到达接收器。
通过接收机测量到的信号参数,例如信号强度、相位差等,结合接收机的方向性,可以计算出信号源的位置。
二、无线电测向的应用无线电测向在现实生活中有着广泛的应用。
最常见的应用就是无线电定位系统,例如GPS系统。
通过多个接收器接收到的信号强度差异,可以确定接收器所在的位置。
此外,无线电测向还可以用于电磁波辐射监测、通信干扰定位等领域。
三、无线电测向的方法无线电测向主要有三种方法:信号强度测向、相位测向和多基站测向。
1. 信号强度测向:这是最简单也是最常用的测向方法。
通过测量信号强度,比较不同接收器的信号强度差异来确定信号源的位置。
但是由于信号的传播受到环境等因素的影响,信号强度测向的精度较低。
2. 相位测向:相位测向是通过测量接收到的信号相位差来确定信号源的位置。
相位测向的精度较高,但需要较为复杂的算法和设备支持。
3. 多基站测向:多基站测向是利用多个接收器同时接收信号,并通过测量不同接收器之间的信号时差来确定信号源的位置。
多基站测向的精度较高,但需要多个接收器的支持。
四、无线电测向的局限性无线电测向虽然在定位和测向方面有着广泛的应用,但也存在一些局限性。
首先,信号的传播受到环境等因素的影响,如建筑物、地形等会对信号传播产生阻碍或反射,影响测向的精度。
其次,测向设备的成本较高,对设备的要求也较高,限制了无线电测向的推广应用。
无线电测向是一种通过测量无线电信号参数来确定信号源位置的技术。
在小升初考试中,了解无线电测向的原理、应用和方法是很重要的。
希望通过本文的介绍,可以为大家对无线电测向有一个初步的了解。
无线电测向原理无线电测向是利用无线电波的传播特性,通过对信号的接收和处理,确定信号的方向的一种技术。
无线电测向原理是基于电磁波传播的基本原理和天线接收信号的特性,通过对接收到的信号进行分析,确定信号的来向。
下面将从无线电测向的基本原理、测向系统的组成和测向方法等方面进行介绍。
首先,无线电测向的基本原理是基于电磁波的传播特性。
当电磁波在空间中传播时,会受到地形、建筑物等物体的影响而产生衍射、反射等现象,这些现象会使信号在接收端产生多径效应,从而导致信号的强度和相位发生变化。
利用这些变化,可以通过信号处理技术确定信号的方向。
其次,测向系统通常由天线、接收机、信号处理器和显示器等组成。
天线是接收信号的装置,不同类型的天线适用于不同频率的信号接收。
接收机是用于接收信号的设备,它可以将接收到的信号转换成电信号,并将其传送给信号处理器。
信号处理器是用于对接收到的信号进行处理和分析的设备,它可以提取信号的特征参数,并通过计算确定信号的方向。
显示器则用于显示测向结果,通常以图形或数字的形式呈现。
最后,无线电测向的方法主要包括干扰测向、方位测向和跟踪测向等。
干扰测向是指利用干扰信号的特征参数确定干扰源的位置,通常用于无线电干扰的监测和定位。
方位测向是指确定信号来向的方向,通常用于通信情报收集和无线电定位。
跟踪测向是指对移动目标进行实时跟踪,通常用于雷达导航和目标追踪等应用。
综上所述,无线电测向是一种利用无线电波的传播特性,通过对信号的接收和处理,确定信号方向的技术。
它的原理是基于电磁波的传播特性,测向系统由天线、接收机、信号处理器和显示器等组成,测向方法主要包括干扰测向、方位测向和跟踪测向等。
无线电测向技术在通信情报、无线电干扰监测和雷达导航等领域有着重要的应用价值。
无线电测向原理对于自由空间中的一个固定接收点来说,如果不事先知道关于幅射源距离、方向、功率的任何信息,仅凭到达的电磁波信号是无法测定来波方向的。
但是对于两个离开一定距离的固定接收点来说,当幅射源处于不同方向时,到达两个点的电磁波信号所走的距离就会有差别。
无线电测向就是通过分析这种差别来确定幅射源方向的。
因此,无线电测向至少要有两段离开一定距离的天线来从两个不同点截取信号。
在具体实施上,这两段天线可以用一定的方法连接在一起,让两个不同点接收到的信号直接叠加,形成一副定向天线,如环形天线、爱德考克天线以及其他一些相控天线。
这两段天线也可以互相分离,通过寄生辐射或其它形式耦合在一起,形成一副定向天线,如八木天线,以及和带其它线形、平面或抛物面反射器的天线。
这两段天线也可以是完全独立的天线,信号分别进入接收机的两路射频通道,通过专门的电路对它们进行处理、比较,例如到达时差法。
不同的天线方案要求配用不同的信号处理方法。
当磁棒轴线与电波传播方向垂直(θ=90°、θ=2700°)时,磁场方向与磁棒轴线平行,即磁力线与磁性天线线圈截面垂直,磁力线可顺着磁棒通过,磁棒聚集了最多的磁力线穿过线圈,线圈中的感应电势最大。
当磁棒轴线与电波传播方向成其它某一角度,磁场方向也与磁棒成某一角度,会有部分磁力线穿过线圈,线圈中有一定感应电势输出。
θ越接近于0或180°,感应电势越小;越接近90°或270°,感应电势越大。
感应电势随θ的变化而变化,形成“8”字形。
由以上分析不难看出,测向机的声音大小会随磁性天线输出电势的大小而变化,但对极性的变化无法分辨。
当磁棒轴线对准电台(θ=0,θ=180°)时,耳机声音最小,甚至完全没有声音,此时磁性天线正对着电台的那个面,称小音面;当磁棒轴线的垂直方向对准电台(θ=90°、θ=270°)时,耳机声音最大,此时磁性天线正对着电台的那个面,称大音面。
无线电测向机的原理下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!一、无线电测向机原理1. 接收天线阵列1.1 无线电测向机通常包含一个或多个接收天线,这些天线可以放置在不同的位置,以便于接收来自不同方向的无线电信号。
测向天线测向天线部分由直立天线 A、单双向转换开关 K1、调相电阻 R16、磁性天线 L1、L2 及调谐电容 C1 等组成。
L1与 C1并联,调整 C1, 使天线回路谐振于 3.53MHz。
高频放大高频放大级由晶体管 BG1、偏置电阻 R1-R4、耦合电容 C2、谐振电容 C3、旁路电容 C4、及高放线圈 B1 等组成共发射极高频放大电路。
测向天线接收到的 3.5-3.6MHz 高频信号通过隔直流电容器 C2 耦合到三极管 BG1 的基极。
信号电流在 BG1 基极和发射极间流过,通过三极管的电流放大作用控制着集电极的电流。
BG1 的集电极负载是由可调电感 Bl 初级和电容器 C3 组成的 3.5MHz 并联谐振回路。
当随着信号而变化的 BGl 集电极电流流过并联回路时,只有与回路固有谐振频率相同的信号才会在回路内激起最强的振荡电流,而其它频率的干扰信号则被相对削弱。
为了使 BGl 的集电极输出阻抗和 B1/C3 相匹配,以保持最佳的选择性和整机增益,B1 初级线圈中间抽头,只让集电极电流流过它的一部分。
Bl 的初级线圈与 C3 并联,调整 Bl 磁芯,谐振于 3.57MHz,这样即可与天线回路的谐振频率3.53MHz 进行参差调谐,使整个高频放大曲线在 3.5-3.6MHz 的接收频率范围内均较平缓,即高放增益较均匀,见图 5-2-1-3。
为使测向机在近台区强信号时,高放级不出现阻塞现象,仍能维持正常的放大并保持良好的方向性,采用控制高放级工作点 (调节 W1-1) 来控制高放增益。
此办法不仅可省略衰减开关,而且可获得非常宽的增益控制范围。
不过,改变工作点会造成一定的失真,但由于我们接收的是电报信号,在听觉上不会有太大的影响。
R3 是 BG1 的直流负反馈电阻,如果由于某种原因流过 BG1 发射极的总平均电流增大,这个电流流过 R3 时的电压降会成比例增大,使基极-发射极的相对电压降低,基极平均电流减少,这个减少量通过三极管的电流放大作用使流过发射极的总电流减少。
无线电测向原理无线电波在均匀介质 (如空气)中,具有直线传播的特点。
只要测出电波传播的方向,就可以确定出信号源(发射台)所在方向。
无线电测向是指通过无线电测向机测定发射台(或接收台)方位的过程,但是无线电测向运动中,要快速寻找隐蔽巧妙的信号源,必须掌握无线电波的传播规律。
一、无线电波无线电波既看不见,也摸不着,却充满了整个空间。
广播、移动通讯、电视等,已经是现代社会生活必不可少的一部分。
无线电波属于电磁波中频率较低的一种,它可直接在空间辐射传播。
无线电波的频率范围很宽,频段不同,特性也不尽相同。
我国目前开展的无线电测向运动涉及三个频段:频率为1.8—2兆赫的中波波段,波长为150—166.6米,称160米波段测向;频率为3.5—3.6兆赫的短波波段,波长为83.3—85.7米,称80米波段测向;频率为144—146兆赫的超短波段,波长为2.08—2.055米,称2米波段测向。
二、天线天线是一个能量转换器,可将发射机馈给的高频电能转换为向空间辐射的电磁能,也可将空间传播的电磁能转换为高频电能输送到接收机,前者称为发射天线,后者称为接收天线。
发射天线和接收天线的主要参数和特性都是相同。
例如,某根天线用作发射天线时,它向某一方向辐射的无线电波最强,而当用作接收天线时,同样也是对这个方向来的天线电波接收最强,说明发射天线和接收天线具有可逆性。
天线的方向性天线的方向性是指天线向一定方向辐射或者接收来自某一方向无线电波的能力。
某一天线向空间辐射无线电波时,并不是向任何一个方同辐射的强度都一样。
不同的天线向各方向辐射的场强也不同,说明天线发射无线电波具有方向性。
为了表达天线的方向性,在离天线等距离的地方,不同的方向上测量天线辐射电波的电场强度,并将其值按比例标在以方向为坐标 (极坐标)的图上,得到了天线的方向图。
三、磁性天线的工作原理因此,测向机的声音大小会随磁性天线输出电势的大小而变化,但对极性的变化无法分辨。
第二章无线电测向的一般原理2.1 无线电波和传播2.4 无线电导航定位原理2.2 信号的调制和接收2.3 无线电测量原理导航系统的集成电路板2.1 无线电波以及传播无线电系统的目的是由发射台向接收用户传递消息,其构成原理体现了一般无线电系统的特点,主要是由发射台和接收用户两部分:信息源调制高频功放载波震荡器高频放大调解放大终端发射台接收用户2.1 无线电波以及传播2.1.1 无线电波的产生由于电磁感应,在交变电场的周围将产生交变磁场,该交变磁场有感应产生交变电场,这个过程将循环交替进行下去,,若所有的电能或磁能存在于一个无界空间内,则整个电磁能量的转换将在这个空间内进行,形成电场、磁场的互相激发并向外辐射与传播,产生电磁波,也称无线电波或者电波。
无线电波的工作频率可以从几Hz到3000GHz,对应的波长从几万Km到0.1mm。
不同波段的无线电波,其传播特性有很大的差别。
2.1 无线电波以及传播2.1.1 无线电波的产生无线电窗口:在0.3~10Ghz频段内的信号,大气传输的损耗小,适应电波穿越大气层的传播,此波段称为无线电窗口半透明无线电窗口:在30Ghz频段附近有个损耗谷,大气传输的损耗相对较小,此波段称为半透明无线电窗口2.1 无线电波以及传播2.1.2 无线电波的极化方式无线电波的极化:在空间辐射场上某一固定位置上电场矢量端点随时间运动的轨迹,按其运动的轨迹可以分为线极化、圆极化和椭圆极化。
无线电波的极化与接收的关系:无线电接收机接收信号时需要对其极化进行调整以实现最佳的接收效果,天线不能接受与其正交的极化分量或者与其旋转方向相反的极化分量,否则会造成极化失配,造成功率损失。
2.1 无线电波以及传播2.1.3 无线电波的传播特性自由空间的概念:它是电导率为零、相对介电常数和相对磁导率都恒为1的各向同性、均匀无耗介质空间,其介质特性与真空等效。
电磁波在自由空间传播时,只有直线传播的扩散损耗,传播速度等于真空中的光速。
无线电测向无形的导航助手无线电测向技术是一种通过测量无线信号的方向和强度来确定信号来源位置的技术。
它在无线通信、导航和情报收集等领域具有广泛应用。
本文将介绍无线电测向技术的原理、应用以及未来的发展趋势。
一、无线电测向技术的原理无线电测向技术通过测量信号到达接收器的时间差或相位差,结合天线阵列的空间配置,可以确定信号的方位角和俯仰角,从而确定信号的来源位置。
常用的无线电测向技术包括单站测向和多站测向两种。
单站测向是指通过单个接收器接收信号并测量其方向的技术。
它适用于已知接收器位置的场景,如航标测向和救援定位。
多站测向是指通过多个接收器接收信号,利用信号到达不同接收器的时间差或相位差来计算信号的源位置。
多站测向适用于需要在未知位置的情况下确定信号来源的场景,如辐射源搜索和无线电干扰定位。
二、无线电测向技术的应用1. 导航定位无线电测向技术在航海、航空、车辆导航、移动通信等领域中具有重要应用。
通过接收导航信号,利用无线电测向技术可以实现精确的位置定位。
例如,在航海中,通过接收卫星导航系统的信号,并利用无线电测向技术计算信号的方向和强度,船只可以准确确定自身位置。
2. 通信定位在移动通信领域,无线电测向技术被广泛应用于基站定位、呼叫追踪等功能。
通过测量接收信号的方向和强度,可以确定移动终端设备的位置,从而实现对终端设备的定位追踪。
3. 电子侦察无线电测向技术在军事领域中有着重要的作用。
通过测量敌方无线电信号的方向和强度,可以追踪和定位敌方通信设备,为电子侦察、情报收集提供有力支持。
同时,无线电测向技术也可以用于干扰源的搜索和定位,帮助军队进行电子干扰对抗。
4. 灾难救援在灾难救援中,无线电测向技术可以用于定位受困人员或者遇险船只的位置,协助救援行动的展开。
通过接收幸存者的无线电信号,并利用无线电测向技术确定信号来源的位置,救援人员可以迅速找到被困者,并进行救援。
三、无线电测向技术的发展趋势近年来,随着科技的不断进步,无线电测向技术也得到了飞速发展。
无线电测向机的原理框无线电测向机是一种用于测量无线电信号来自何方向的设备。
其原理框如下:1. 接收天线:无线电测向机首先将接收天线与要测量的无线电信号相连。
接收天线通常是一个带有向心性能的天线,可以接收来自不同方向的信号。
2. 信号放大器:接收到的信号被送入信号放大器,以放大信号的强度,以便更好地进行测量。
信号放大器通常是一个低噪声放大器,能够提高信号强度,同时不引入太多的噪声。
3. 相移网络:经过信号放大器放大的信号被送入相移网络。
相移网络用于改变信号的相位,通过改变相位,可以实现对信号方向的测量。
相移网络通常由一组电子元件(如相移器或延迟线)组成。
4. 相位比较器:经过相移网络处理后的信号被送入相位比较器。
相位比较器将信号与参考信号进行比较,以确定信号的相位差。
相位差可以用来确定信号来自何方向。
5. 显示器:最后,测向机将测量到的信号方向显示在显示器上。
显示器通常是一个数字显示屏或指示灯,可以显示信号来自的方向。
无线电测向机的工作原理可以概括为接收信号、放大信号、改变相位、比较相位差以及显示信号方向。
通过测量信号的相位差,无线电测向机可以确定信号来自何方向。
此外,为了提高测向机的准确性和灵敏度,还可以采用以下措施:1. 天线阵列:使用多个接收天线组成天线阵列,可以提高测向机的方向探测能力。
通过分析天线阵列接收到的信号,可以利用多路径效应实现更精确的方向测量。
2. 单侧带调制:采用单侧带调制技术可以提高无线电测向机的灵敏度。
单侧带调制可以将信号的能量集中在较低的频率范围内,减少了噪声的干扰,提高了信号的可测性。
3. 数字信号处理:采用数字信号处理技术可以提高测向机的处理能力和抗干扰能力。
通过对信号进行数字滤波、频谱分析、相关计算等处理,可以提高测向的准确性和测量的稳定性。
综上所述,无线电测向机的原理框包括接收天线、信号放大器、相移网络、相位比较器和显示器。
通过测量信号的相位差,无线电测向机可以确定信号来自何方向。
1 无线电测向基础1.1 示向度为了确定某个目标的方位,必须确定连接该目标至已知坐标的点的直线同某个起始方向(起始线之间的夹角。
例如,在点X 上有一个须要确定方位的目标,而点A 的地理坐标已知,那么,点X 和点A 的连线同地理正北方向之间的夹角A a 称为示向度(图1-1。
这就是说,示向度是以已知地理坐标的观测点A 的地球子午线的指北方向沿顺针方向旋转至点A 与被测目标连线所转过的角度。
其取值范围:0≤示向度<360°。
无线电测向是用无线电技术手段确定来波..的示向度。
请注意,无线电测向设备所测定的是来波..的示向度(到达角,由于电波传播中可能出现的不正常现象会导致其等相位面畸变,因而来波的到达角未必是其辐射源所在的方位。
图1-1 测向与定位1.2 交会定位只在一个已知地理坐标的点测向,只能得到一条方位线,而不能得到一个定位点。
为了实现定位,必须产生两条或两条以上相互独立的方位线。
例如,点X 有一个须要确定位置的目标,而点A 与点B 的地理坐标已知,那么,由点A 和点B 测得示向度A a 和B a 与相应的方位线A LOP 和B LOP ,方位线A LOP 与B LOP 的交点,就认为是目标位置(图1-1。
如果用n 条方位线交会定位,那么,由于测向误差的影响,在目标真实位置W 周围将得出最多可达m 个交会点。
m 由下式得出:21(-=n n m (1-1a式中,n ——用于交会定位的方位线的条数。
目标真实位置w 仅以一定的概率位于这些交点所构成的多边形内。
这个概率121--=n n n p (1-2式中,n ——用于交会定位的方位线的条数。
n p 随着用于交会定位的方位线的条数的增多而增大。
表1-1是根据式(1-2制得的。
表1-1 目标位于方位线交点多边形内的概率与方位线条数的关系1.3 电磁波电磁场是相互联系着的电场与磁场的总和。
由发射天线辐射出来的无线电波的电磁场是行波场:电磁场的相位随着电波传播的路程成比例地变化,而幅度变化比较小。
无线电测向在地质勘探中的应用无线电测向技术是一种利用无线电波测量目标物理位置或方向的技术。
在地质勘探中,无线电测向技术有着广泛的应用。
本文将介绍无线电测向在地质勘探中的原理、方法和案例分析。
一、无线电测向原理无线电测向原理是基于信号的强度和方向变化来进行目标物位置或方向的测量。
当一个无线电源发出信号时,接收器能够接收到信号,并通过测量信号的强度和接收时的相位差来确定目标位置或方向。
二、无线电测向方法1.信号强度测量法该方法是通过测量接收到的信号强度来确定目标物的位置。
根据信号强度与距离的关系,可以利用数学模型计算出目标物的位置。
这种方法简单易行,成本较低,适用于地质勘探中的一些简单应用场景。
2.方位测量法方位测量法是通过测量信号到达接收器时的方位角来确定目标物的位置。
该方法需要至少两个接收器,通过测量信号到达两个接收器的时间差和接收器之间的角度差,利用三角关系计算出目标物的位置。
3.多点测量法多点测量法是通过在地面上设置多个接收器,接收目标物发出的信号,并测量接收到的信号参数来确定目标物的位置。
该方法可以提高定位的准确度和覆盖范围,适用于复杂地质环境中的勘探任务。
三、无线电测向在地质勘探中的应用案例1.矿产资源勘探无线电测向技术在矿产资源勘探中得到了广泛应用。
通过在地下埋设接收器网络,接收地下矿石发出的信号,可以确定矿石的位置和储量。
这对于矿区开发和资源利用具有重要意义。
2.地质灾害预警无线电测向技术可以用于地质灾害预警,如地震、滑坡等。
通过在受灾地区部署接收器网络,监测地下信号的变化,可以提前判断地质灾害的发生概率和规模,为救援和防灾工作提供重要依据。
3.地下水资源勘探无线电测向技术可以用于地下水资源的勘探和评估。
通过在地下埋设接收器网络,接收地下水发出的信号,可以确定地下水的分布和储量。
这对于水源保护和水资源管理具有重要意义。
4.地下管线检测无线电测向技术可以用于地下管线的检测和维护。
通过在地下埋设接收器网络,接收管道发出的信号,可以确定管道的位置和状态。
无线电测向在航海中的应用无线电测向是一项重要的技术,在航海中具有广泛的应用。
通过利用无线电测向技术,航海人员可以确定船只与其他物体的相对位置,以及确定导航方向和航道,从而提高航海的安全性和准确性。
本文将探讨无线电测向在航海中的应用,并介绍其原理和技术。
一、无线电测向技术的原理无线电测向技术基于接收无线电信号的方向来确定信号源的位置。
它利用接收天线的特性,包括回波时间延迟、信号强度和相位差等,来确定信号的到达方向。
无线电测向技术可以分为主动测向和被动测向两种。
主动测向是指通过发送无线电信号,然后利用接收天线接收信号的回波,从而确定信号的方向。
这种方法常用于雷达导航和定位系统中,通过测量信号的回波时间和相位差,可以计算出信号源的位置。
被动测向是指通过接收现有的无线电信号,然后利用接收天线的特性来确定信号的方向。
这种方法常用于海上通信和导航系统中,通过测量信号的强度和相位差,可以确定信号源的位置。
二、无线电测向在航海中的应用1. 确定航向和航道无线电测向技术可以用于确定船只的航向和航道。
通过接收岸上或其他船只发出的信号,船只可以确定自己相对于信号源的位置和方向,从而进行航向和航道的调整。
这对于船只在复杂的海上环境中进行导航和定位非常重要。
2. 导航和定位系统无线电测向技术在导航和定位系统中广泛应用。
比如全球定位系统(GPS)就是基于测向技术来确定接收器的位置和方向。
通过接收来自卫星的信号,GPS接收器可以计算出自己的位置,并提供导航和定位服务。
3. 搜索和救援无线电测向技术对于搜索和救援行动非常重要。
在海上遇险的船只可以发出紧急信号,通过接收这些信号并测向信号源,救援人员可以快速确定船只的位置,并进行救援行动。
4. 水下探测和测量无线电测向技术还可以用于水下探测和测量。
比如在海洋勘探中,通过接收海底传感器发出的信号,在船只上可以确定探测器的位置和方向,从而获取海底地质和生物信息。
三、无线电测向技术的发展趋势随着技术的不断进步,无线电测向技术在航海中的应用也在不断发展。
无线电测向原理无线电测向发射的仅仅是一组固定重复的莫尔斯电报信号。
电台的发射功率小,信号能到达的距离也极为有限。
一般在10公里以内。
1. 无线电波的传播途径无线电测向竞赛的距离通常都在10公里以内,所以,除用于远距离通信的天波外,其它传播方式都与测向有关,160米和80米波段测向,主要使用地波;2米波段测向,主要使用直射波和地面发射波。
2. 无线电波在传播中的主要特性无线电波离开天线后,既在媒介质中传播,也沿各种媒介质的交界面(如地面)传播,其传播的情况是非常复杂的。
它虽具有一定的规律性,但对它产生影响的因素却很多。
无线电波在传播中的主要特性如下:(1)直线传播均匀媒介质(如空气)中,电波沿直线传播。
无线电测向就是利用这一特性来确定电台方位的。
(2)反射与折射电波由一种媒介质传导另一种媒介质时,在两种介质的分界面上,传播方向要发生变化。
、一般情况下反射和折射是同时发生的。
入射角等于反射角,但不一定等于折射角。
反射和折射给测向准确性带来很大的不良影响;反射严重是,测向机误指反射体,给接近电台造成极大困难。
(3)绕射电波在传播途中,有力图饶过难以穿透的障碍物的能力。
绕射能力的强弱与电波的频率有关,又和障碍物大小有关。
频率越低的电波,绕射能力越弱;障碍物越大,绕射越困难。
工作于80米波段的电波,绕射能力是较强的,除陡峭高山(相对高度在200米以上)外,一般丘陵均可逾越。
2米波段的电波绕射能力就很差了,一座楼房,或一个小山丘,都可能使信号难以绕过去。
因此,测向点的选择就成为测向爱好者随时都要考虑的一大问题。
(4)干涉直射波与地面反射波或其它物体的反射波在某处相遇时,测向机收到的信号为两个电波合成后的信号,其信号强度有可能增强(两个信号跌叠加)也可能减弱(两个信号相互抵消)。
这种现象称为波的干涉。
产生干涉的结果,使得测向机在某些接收点收到的信号强,而某些接收点收到的信号弱,甚至收不到信号,给判断电台距离造成错觉。
无线电测向的现状分析无线电测向是一种通过接收目标上的无线电信号来定位目标位置的技术。
随着科技的进步和无线通信的普及,无线电测向技术也得到了广泛应用。
本文将对无线电测向的现状进行分析,并探讨其在不同领域的应用。
一、无线电测向的基本原理无线电测向的基本原理是通过接收到的信号强度和信号到达时间差来确定目标的位置。
当目标发出无线电信号时,接收器会接收到这些信号,并通过测量信号到达接收器的时间差来计算目标的位置。
同时,接收器还会测量信号的强度,从而进一步确定目标的位置。
二、无线电测向的应用领域1. 无线电导航系统无线电测向技术在导航系统中得到广泛应用。
例如,全球定位系统(GPS)就是一种基于无线电测向原理的导航系统。
通过接收卫星发射的无线电信号,并测量信号到达时间差来计算接收器的位置。
此外,航空航天领域和军事领域也广泛使用无线电测向技术进行导航定位。
2. 通信系统优化无线电测向技术可以用于优化通信系统的覆盖范围和信号质量。
通过测量信号的强度和到达时间差,可以确定信号的覆盖范围和障碍物对信号的影响。
然后,可以据此调整信号发射功率和天线方向,以提高通信系统的性能和覆盖范围。
3. 电子侦察与情报收集在军事情报收集和电子侦察中,无线电测向技术被广泛用于目标位置的定位和跟踪。
通过接收目标发射的无线电信号,并测量信号到达时间差和强度,可以确定目标的位置和运动轨迹。
这对于军事目的和国家安全至关重要。
4. 精准定位与导航无线电测向技术还可以用于精准定位和导航。
例如,在城市中使用无线电测向技术可以定位行人和车辆的位置,并根据定位结果提供导航信息。
类似地,物流行业可以利用无线电测向技术追踪货物的位置和运输进程。
三、无线电测向的挑战和发展趋势尽管无线电测向技术在各个领域发挥着重要作用,但还面临一些挑战和限制。
其中之一是信号受到环境干扰的影响,例如建筑物和天气条件可能影响信号的传输和接收质量。
另外,无线电测向技术还需要大量的计算和处理数据,因此对处理能力要求较高。
无线电测向原理一、导言随着无线电技术的不断发展和应用的广泛推广,无线电测向原理作为无线通信领域的重要技术,已经在许多领域发挥了重要作用。
本文将围绕无线电测向原理展开全面、详细、完整且深入的探讨。
二、无线电测向原理概述无线电测向原理是通过测量和分析无线电信号的特性来判断信号源的方位和位置的技术。
它利用接收到的无线电信号的强度、到达时间差、多普勒效应等特征参数,运用三边测量、多边测量等方法进行位置定位。
无线电测向原理可以应用于通信系统的无线网络规划与优化、无线电频谱监测、无线电定位和导航等领域。
2.1 无线电测向原理的基本流程无线电测向原理的基本流程包括信号接收、信号测量和信号处理三个步骤。
首先,无线电接收器接收到信号源发出的无线电信号;然后,通过测量信号的强度、到达时间差和多普勒效应等参数,得到信号源的位置信息;最后,通过信号处理算法对测量得到的信号参数进行分析和处理,得出信号源的方位和位置。
2.2 无线电测向原理的关键技术在无线电测向原理中,有一些关键技术对于实现高精度的测向结果非常重要。
2.2.1 天线阵列技术天线阵列技术是无线电测向原理中常用的一种技术,它通过使用多个天线元件组成的阵列,来实现对信号的方向敏感性。
通过对不同天线元件接收到的信号进行加权、相位差分析等处理,可以较准确地确定信号的方向。
2.2.2 超宽带技术超宽带技术是一种通过在时间域上产生极短脉冲信号来实现测向的技术。
它具有带宽宽、抗干扰能力强的特点,可以实现对信号的高精度测向。
2.2.3 多传感器数据融合技术多传感器数据融合技术是指将来自多个不同传感器的数据进行集成和处理,以提高测向精度和鲁棒性。
通过利用不同传感器的特点和优势,可以更好地抑制噪声、提高信号检测和估计的性能。
三、无线电测向原理的应用领域无线电测向原理作为一项重要的技术,已经在许多领域得到了广泛的应用。
3.1 通信系统无线网络规划与优化在通信系统的无线网络规划与优化中,无线电测向原理可以用于确定基站的布设位置和方位,优化无线网络的覆盖范围和质量。
无线电测向在地质勘探中的应用无线电测向是一种通过测量电磁波的电场或磁场来确定无线电信号源方位的技术。
在地质勘探领域,无线电测向技术广泛应用于物探、地球物理勘探、矿产资源勘探等领域。
本文将介绍无线电测向在地质勘探中的应用,包括无线电测向技术的原理、常见的无线电测向仪器以及它们在地质勘探中的具体应用。
一、无线电测向技术原理无线电测向技术是基于电磁波的传播和辐射特性。
当无线电信号源发送信号时,这些信号会在空间中以一定的速度传播,并辐射出电场和磁场。
无线电测向技术通过测量电场或磁场的强度和方向来确定信号源的方位。
在地质勘探中,常用的无线电测向技术包括无线电方位角测向和无线电全向测向。
无线电方位角测向是指通过测量信号电场或磁场在水平面上的方向来确定信号源的方位。
无线电全向测向是指通过测量信号电场或磁场的强度和方向来确定信号源的方位。
二、常见的无线电测向仪器在地质勘探中,常见的无线电测向仪器包括无线电方位角测向仪和无线电全向测向仪。
无线电方位角测向仪主要包括定向天线和示向仪器。
定向天线是用来接收信号电场或磁场的天线,可以根据信号的方向调整天线的指向。
示向仪器是用来测量天线指向的仪器,可以根据天线接收到的信号来确定信号源的方位。
无线电全向测向仪主要包括接收天线、信号处理设备和示向仪器。
接收天线是用来接收信号电场或磁场的天线,它可以接收全方位的信号。
信号处理设备是用来测量电场或磁场的强度和方向的设备,可以将接收到的信号进行处理。
示向仪器是用来显示信号源方位的仪器。
三、无线电测向技术在地质勘探中具有重要的应用价值。
以下是无线电测向在地质勘探中的一些应用案例:1. 天然气勘探:无线电测向技术可以用于确定天然气井的位置。
通过测量天然气井周围的天然气泄漏产生的无线电信号的方位,可以确定天然气井的具体位置,为天然气勘探提供准确的方向指导。
2. 水资源勘探:无线电测向技术可以用于水资源的探测。
通过测量水源附近的水分子辐射出的无线电信号的方位,可以确定水资源的分布情况,帮助决策者做出科学的水资源管理决策。
无线电测向在无线通信中的应用无线电测向技术是指利用天线接收电磁波信号,通过分析和处理信号特征,确定信号源的位置和方向。
在无线通信中,无线电测向技术被广泛应用,为无线通信系统的优化和改进提供了重要的参考依据和技术支持。
一、测向原理及技术发展无线电测向的实现基于三角定位原理,即利用多个接收点接收到的信号到达时间或相位差异,通过计算和比较,确定信号源的位置。
最早的测向技术是利用单一接收点进行测向,通过变动接收点的方向和位置,利用信号强度的变化来确定信号源的方向。
随着技术的发展和应用的需求,无线电测向技术逐渐升级和改进,引入了多个接收点和天线阵列,通过接收到的信号相位差异等信息,利用复杂的算法来确定信号源的位置和方向。
目前,无线电测向技术已经非常成熟,可以实现高精度的测向效果。
二、无线电测向在无线通信系统中的应用1. 无线信号定位无线通信系统中,无线电测向技术可以用于定位无线信号的发送源。
通过对信号源的位置进行准确测量,并结合地理信息系统等相关数据,可以实现对无线信号的精确定位。
这对于无线通信系统的规划和管理非常重要,可以提高信号覆盖范围和质量,并优化无线网络资源的分配和利用。
2. 无线干扰源定位在无线通信中,由于信号干扰会导致通信质量下降,因此对干扰源进行准确定位和排查是非常重要的。
无线电测向技术可以帮助定位干扰源的位置,并采取相应的措施来降低干扰对通信系统的影响。
通过准确识别干扰源的位置,可以更加精确地部署无线基站和天线,优化无线通信网络的覆盖和容量,提高通信系统的稳定性和可靠性。
3. 无线电频谱监测在无线通信中,频谱资源是有限的,而且存在不同的使用者和干扰源。
为了充分利用频谱资源,需要对频谱进行有效的监测和管理。
无线电测向技术可以帮助监测无线电频谱的使用情况,识别和定位频谱的占用者和干扰源,从而实现对频谱资源的高效利用和优化管理。
三、无线电测向在无线通信中的挑战与发展尽管无线电测向技术在无线通信中的应用前景广阔,但仍然存在一些挑战和待解决的问题。
无线电测向原理无线电波在均匀介质 (如空气)中,具有直线传播的特点。
只要测出电波传播的方向,就可以确定出信号源(发射台)所在方向。
无线电测向是指通过无线电测向机测定发射台(或接收台)方位的过程,但是无线电测向运动中,要快速寻找隐蔽巧妙的信号源,必须掌握无线电波的传播规律。
一、无线电波的发射与传播无线电波既看不见,也摸不着,却充满了整个空间。
广播、移动通讯、电视等,已经是现代社会生活必不可少的一部分。
无线电波属于电磁波中频率较低的一种,它可直接在空间辐射传播。
无线电波的频率范围很宽,频段不同,特性也不尽相同。
我国目前开展的无线电测向运动涉及三个频段:频率为1.8—2兆赫的中波波段,波长为150—166.6米,称160米波段测向;频率为3.5—3.6兆赫的短波波段,波长为83.3—85.7米,称80米波段测向;频率为144—146兆赫的超短波段,波长为2.08—2.055米,称2米波段测向。
(一)无线电波的发射过程无线电波是通过天线发射到空间的。
当电流在天线中流动时,天线周围的空间不但产生电力线 (即电场),同时还产生磁力线。
其相互间的关系,如图2-1-1所示。
如果天线中电流改变方向,空间的电力线和磁力线方向随之改变。
如果加在天线上的是高频交流电,由于电流的方向变化极快,根据电磁感应的原理,在这些交替变化的电场和磁场的外层空间,又激起新的电磁场,不断地向外扩散,天线中的高频电能以变化的电磁场的形式,传向四面八方,这就是无线电波。
从图2-l可知,电力线 (即电场)方向与天线基本平行,磁力线 (磁场)的形状则是以天线为圆心,与天线相垂直的方向随之变化的无数同心圆。
图2-1-1 无线电波的发射(二)无线电波的特性l.无线电波的极化交变电磁场在其附近空间又激起新的电磁场的现象称无线电波的极化。
空间传播的无线电波都是极化波。
当天线垂直于地平面时,天线辐射的无线电波的电场垂直于地平面称垂直极化波。
天线平行于地平面时,天线辐射的无线电波的电场平行于地面称水平极化波。
无线电测向竞赛规则规定,160米波段和80米波段测向使用垂直极化波,2米波段测向使用水平极化波。
2.电场、磁场与电波传播方向之间的关系天线辐射的无线电波,电场方向与天线平行,磁场方向与天线垂直,电场与磁场相互垂直,又都垂直于电波传播的方向,并且电场和磁场同时出现最大值和最小值 (即相位)相同。
3.频率和波长的关系如果将空间视为均匀介质,无线电波在其中沿直线匀速传播,其速度与光速相同。
波长 (入)与频率 (f)成反比,其关系式为:入=V/f 其中:入——无线电波波长 (米);V——无线电波传播速度;F——无线电波频率 (赫兹)二、无线电波的传播无线电波在空间的传播情况十分复杂,既在媒介中传播,也沿各种媒介的交界面(如地面)传播。
在传播中,由于频率不同、介质不同、途径不同,其规律及产生的现象不尽相同。
无线电波的传播,按传播途径,大致可分为地波、天波、直接波、地面反射波四种 (见图2-1-2)。
沿地球表面传播的无线电波称地波;由电离层反射传播的无线电波叫天波,也称电离层反射波;从发射天线出发直接到达接收天线的无线电波叫直接波,也称直射波;从发射天线出发经地面反射后到达接收天线的无线电波,称地面反射波。
图2-1-2 无线电波的传播方式(一)地波传播无线电波沿地球表面传播有绕过突起障碍物的能力,这种现象称绕射。
绕射能力的强弱取决于无线电波频率的高低或波长的长短及障碍物的大小。
频率越低绕射能力越强;障碍物越大绕射越困难。
因此,160米波段绕射能力最强,80米波段绕射能力较强,除陡峭山峰对电波的传播影响较大外,一般的丘陵均可逾越,2米波段电波的绕射能力很弱。
由于地面情况稳定,地波在传播过程中又不与高空的电离层接触,通讯质量高而可靠,故被广泛应用于中波广播和通讯中,160米波段测向和80米波段测向,均采用地波。
(二)天波传播光的传播会产生反射和折射,无线电波遇到不同的介质,同样也具备这种特性。
早在1901年,英、美两国的业余无线电爱好者利用短波波段突然沟通了联络感到十分惊奇,因为在这之前已经证明了,采用地波传播的无线电波是无法跨越大西洋的。
这一重大发现得到当时整个无线电界的重视,后来终于发现,在离地面60—2000公里的高空,存在着电离层,此空间的气体,在太阳紫外线、太阳表面喷射出来的微粒流及其它射线的作用下,使原子中的电子离开气体原子而游离到空间,形成自由电子和正离子,这就是电离现象,产生大气电离的区域叫电离层。
短波波段的无线电波遇到电离层会产生反射 (或折射)回到地面,才实现了数千公里以至上万公里的无线电通讯。
实践还证明,超短波传至电离层时,不被反射而是穿过电离层向外层空间传播。
由于电离层不够稳定,致使天波通讯的质量较差,但它具有用不大的功率和较简单的设备来完成远距离通讯的突出优点。
由于无线电测向运动的距离仅为数百米至数公里,不采用天波传播方式。
(三)超短波传播30兆赫以上的无线电波称超短波 (包括微波)。
由于地球表面存在一定弧度,直线传播的视线距离取决于发射天线的架设高度和接收天线的架设高度。
当然实际的通讯距离还要由发射功率、接收机灵敏度和地面起伏情况等因素来确定。
2米波段测向属超短波传播,主要使用直射波和地面反射波,故一些高山、峭壁、高大建筑及其它地面物体,对超短波的传播产生较大影响,导致信号强度明显减弱或测向误差明显增大。
三、天线天线是一个能量转换器,可将发射机馈给的高频电能转换为向空间辐射的电磁能,也可将空间传播的电磁能转换为高频电能输送到接收机,前者称为发射天线,后者称为接收天线。
发射天线和接收天线的主要参数和特性都是相同。
例如,某根天线用作发射天线时,它向某一方向辐射的无线电波最强,而当用作接收天线时,同样也是对这个方向来的天线电波接收最强,说明发射天线和接收天线具有可逆性。
(一)天线的方向性天线的方向性是指天线向一定方向辐射或者接收来自某一方向无线电波的能力。
某一天线向空间辐射无线电波时,并不是向任何一个方同辐射的强度都一样。
不同的天线向各方向辐射的场强也不同,说明天线发射无线电波具有方向性。
为了表达天线的方向性,在离天线等距离的地方,不同的方向上测量天线辐射电波的电场强度,并将其值按比例标在以方向为坐标 (极坐标)的图上,得到了天线的方向图。
在绘制方向图时,一般是以最大辐射方向的场强作为l,其它方向的数值,是该方向场强与最大场强的比值。
方向图只表征天线的方向特性,并不表示某一点的具体场强数值,即与发射功率无关。
一个平面只能表示出天线在一个平面的方向图。
天线在空间的方向性,通常要用两个平面来表示。
对架设在地面上的天线来说,采用的是水平平面方向图(与大地平行)和垂直平面方向图 (与大地垂直)。
与测向运动结合较紧密的是水平平面方向图。
(二)常见的天线l.直立天线直立天线是指与地面垂直的天线。
它分对称和不对称两种,其形状如图2-1-3所示。
对称直立天线采用中心馈电。
不对称直立天线则在天线与地之间馈电,将对称直立天线的一个臂接地,也称垂直接地天线。
一般所指直立天线,通常指不对称直立天线,它是最常用的地波天线。
它的最大辐射方向集中于地面,它在水平平面辐射强度相同(图2-1-4)。
直立天线结构简单,容易架设,在长波、中波、短波和米波等很宽的频率范围内,均可使用。
将导线按实际情况,基本垂直于地面架设时,称软天线。
160米和80米波段发信机多采用这种天线。
它的优点是天线长,发射效率高,可按实际环境灵活架设,便于隐蔽。
图2-1-3 直立天线图2-1-4 直立天线方向图2.环形天线将导线绕成环形、框形、菱形等形状,并在两端馈电的天线称环形天线(图2-1-5)。
该天线尺寸很小,辐射效率低,通常只作接收用,并用于长波、中波和短波波段的测向,在测向运动发展的初期,被广泛应用在80米波段测向机上。
图2-1-5 环形天线3.磁性天线将线圈绕在铁氧体制成的磁棒上称磁性天线(图2-1-6)。
磁棒具有非常优良的导磁作用,使很小体积的天线可获得较高的效率。
在半导体收音机问世之后,磁性天线广泛用于便携式收音机中,160米和80米波段测向机也多采用这种天线。
图2-1-6 磁性天线4.八木天线随着电视广播的日益普及,室外架设的电视接收天线—八木天线 (或称波渠天线)己逐渐被人们所熟悉 (见图2-1-7)。
它制作简单,架设容易,也是目前2米波段测向较为理想的测向机天线。
八木天线是由一个有源半波振子 (直线振子或折合振子)和一个或若干个无源振子 (反射器和引向器)组成。
有源半波振子是指经馈线与发射机或接收机连接的振子。
无源振子有一个是反射器 (其臂长稍长于半波振子),其余都是引向器(其臂长稍短于半波振子)。
天线的最大接收方向是引向器所指方向,弓向器数目越多,方向越尖锐。
图2-1-7 八木天线(三)、磁性天线的工作原理小型晶体管收音机收听中波广播时,会出现收音机在某个方向时声音小,转动一个角度后,声音却变大的现象,其原因是收音机采用了具有方向性的天线——磁性天线。
测向时,运动员借助测向机的磁性天线 (或环形天线)以及与之相配合的直立天线来确定电台的方向。
磁性天线平行于地面放置,并接收垂直极化波;电波从左向右传播,其磁场方向(图中虚线所示)必定垂直于电波传播方向并与地面平行;磁棒轴线与电波传播方向的夹角为θ。
则磁性天线的输出感应电势E磁随θ的变化而变化。
当磁棒轴线对准电台,磁棒轴线与电波传播方向平行(θ=0°、θ=180°),磁场方向与磁棒轴线垂直,即磁力线与天线线圈截面平行,磁力线无法顺着磁棒穿过线圈,线圈中没有变化的磁力线,线圈感应电势为零,即e磁=0。
耳机声音最小,甚至完全没有声音,此时磁性天线正对着电台的那个面,称小音面或小音点、哑点;当磁棒轴线与电台的面成一定的角度,磁场方向也与磁棒成一定的角度,会有部分磁力线穿过线圈,线圈中有一定感应电势输出,即e磁为某一定值,耳机声音不是最小,音量会随着角度的变化而变化。
因此在测向过程中,只要旋转测向机的磁性天线,找出“哑点”(或小音点),发射台一定位于磁棒轴线所指的直线上,利用磁性天线可确定电台所在的直线,但不能确定在直线的哪一边,需要测“双向”确定电台的方位。
l.磁性天线的结构测向用的磁性天线由磁棒、绕在磁棒上的天线线圈、引线及屏蔽等组成。
如图2-1-8所示。
磁棒由软磁铁氧体材料制成。
具有较高的导磁率和电阻率。
在高频磁场中损耗较少。
磁棒的截面有扁形和圆形两种。
扁形的占用空间小,多用于小型收音机中;圆形的机械强度高,测向天线一般都选用直径为lOmm,长度为l00—12Omm的磁棒。
图2-1-8 磁性天线结构示意图2.磁性天线的工作原理 ("双向"测定)磁性天线的方向性,可利用磁棒聚集磁力线的特点来理解,图2-1-9 (俯视图)所示。