38
部分分式展开法(m<n)
1.第一种情况:单阶实数极点
F(s)
(s
p1 )(s
A( s ) p2 )(s
pn )
p1 , p2 , p3 pn为不同的实数根
F (s) k1 k2 kn
s p1 s p2
s pn
求出k1, k2 , k3 kn ,即可将F s展开为部分分式
2. 第二种情况:极点为共轭复数
第四章 拉普拉斯变换
u
1
•优点: 求解比较简单,特别是对系统的微分方程进
行变换时,初始条件被自动计入,因此应用更为 普遍。 •缺点: 物理概念不如傅氏变换那样清楚。
2
本章内容及学习方法
本章首先由傅氏变换引出拉氏变换,然后对拉氏正 变换、拉氏反变换及拉氏变换的性质进行讨论。
本章重点在于,以拉氏变换为工具对系统进行复频 域分析。
对于f te t 是F j 的傅里叶逆变换
f t e t 1 F j ej td
2π
两边同乘 以e t
f t 1 F j e j t d
2π
其中: s j ; 若取常数,则d s jd
积分限:对 : 对s : j
j
所以
f t 1
j
F
s
estd s
整理得:
Y (s)
2F (s) s2 5s
6
(s
5) y(0 ) y(0 ) s2 5s 6
26
电感元件的s域模型
iL(t) L vL(t)
vL(t)
L
d
iL(t) dt
设 LiL(t) IL(s), LvL(t) VL(s)
应用原函数微分性质
VL (s) LsI L (s) iL (0 ) sL I L (s) LiL (0 )