第一章晶体结构
- 格式:pdf
- 大小:879.27 KB
- 文档页数:11
第一章晶体结构1 布喇菲点阵和初基矢量晶体结构的特点在于原子排列的周期性质。
布喇菲点阵是平移操作112233R n a n a n a =++所联系的诸点的列阵。
布喇菲点阵是晶体结构周期性的数学抽象。
点阵矢量112233R n a n a n a =++,其中,1n ,2n 和3n 均为整数,1a ,2a 和3a 是不在同一平面内的三个矢量,叫做布喇菲点阵的初基矢量,简称基矢。
初基矢量所构成的平行六面体是布喇菲点阵的最小重复单元。
布喇菲点阵是一个无限的分立点的列阵,无论从这个列阵中的哪个点去观察,周围点的分布和排列方位都是完全相同的。
对一个给定的布喇菲点阵,初级矢量可以有多种取法。
2 初基晶胞(原胞)初基晶胞是布喇菲点阵的最小重复单元。
初基晶胞必定正好包含布喇菲点阵的一个阵点。
对于一个给定的布喇菲点阵,初基晶胞的选取方式可以不只一种,但不论初基晶胞的形状如何,初基晶胞的体积是唯一的,()123c V a a a =⋅⨯。
3 惯用晶胞(单饱)惯用晶胞是为了反映点阵的对称性而选用的晶胞。
惯用晶胞可以是初基的或非初基的。
惯用晶胞的体积是初基晶胞体积的整数倍,c V nV =。
其中,n 是惯用晶胞所包含的阵点数。
确定惯用晶胞几何尺寸的数字叫做点阵常数。
4 维格纳—赛兹晶胞(W-S 晶胞)维格纳—赛兹晶胞是另一种能够反映晶体宏观对称性的晶胞,它是某一阵点与相邻阵点连线的中垂面(或中垂线)所围成的最小体积。
维格纳—赛兹晶胞是初基晶胞。
5 晶体结构当我们强调一个实际的晶体与布喇菲点阵的抽象几何图案的区别时,我们用“晶体结构”这个名词[1]。
理想的晶体结构是由相同的物理单元放置在布喇菲点阵的阵点上构成的。
这些物理单元称为基元,它可以是原子、分子或分子团(有时也可以指一组抽象的几何点)。
将基元平移布喇菲点阵的所有点阵矢量,就得到晶体结构,或等价地表示为基元十点阵=晶体结构[2]当选用非初基的惯用晶胞时,一个布喇菲点阵可以用带有基元的点阵去描写。
第一章晶体结构1-1. 试述晶态、非晶态、准晶、多晶和单晶的特征性质。
解:晶态固体材料中的原子有规律的周期性排列,或称为长程有序。
非晶态固体材料中的原子不是长程有序地排列,但在几个原子的范围内保持着有序性,或称为短程有序。
准晶态是介于晶态和非晶态之间的固体材料,其特点是原子有序排列,但不具有平移周期性。
另外,晶体又分为单晶体和多晶体:整块晶体内原子排列的规律完全一致的晶体称为单晶体;而多晶体则是由许多取向不同的单晶体颗粒无规则堆积而成的。
1-2. 晶格点阵与实际晶体有何区别和联系?解:晶体点阵是一种数学抽象,其中的格点代表基元中某个原子的位置或基元质心的位置,也可以是基元中任意一个等价的点。
当晶格点阵中的格点被具体的基元代替后才形成实际的晶体结构。
晶格点阵与实际晶体结构的关系可总结为:晶格点阵+基元=晶体结构1-3. 晶体结构可分为Bravais格子和复式格子吗?解:晶体结构可以分为Bravais格子和复式格子,当基元只含一个原子时,每个原子的周围情况完全相同,格点就代表该原子,这种晶体结构就称为简单格子或Bravais格子;当基元包含2个或2个以上的原子时,各基元中相应的原子组成与格点相同的网格,这些格子相互错开一定距离套构在一起,这类晶体结构叫做复式格子。
心四方解:(a)“面心+体心”立方不是布喇菲格子。
从“面心+体心”立方体的任一顶角上的格点看,与它最邻近的有12个格点;从面心任一点看来,与它最邻近的也是12个格点;但是从体心那点来看,与它最邻近的有6个格点,所以顶角、面心的格点与体心的格点所处的几何环境不同,即不满足所有格点完全等价的条件,因此不是布喇菲格子,而是复式格子,此复式格子属于简立方布喇菲格子。
(b)“边心”立方不是布喇菲格子。
从“边心”立方体竖直边心任一点来看,与它最邻近的点子有8个;从“边心”立方体水平边心任一点来看,与它最邻近的点子也有8个。
虽然两者最邻近的点数相同,距离相等,但他们各自具有不同的排列。
第一章 晶体结构本章首先从晶体结构的周期性出发,来阐述完整晶体中离子、原子或分子的排列规律。
然后,简略的阐述一下晶体的对称性与晶面指数的特征,介绍一下倒格子的概念。
§1.1晶体的周期性一、晶体结构的周期性1.周期性的定义从X 射线研究的结果,我们知道晶体是由离子、原子或分子(统称为粒子)有规律地排列而成的。
晶体中微粒的排列按照一定的方式不断的做周期性重复,这样的性质成为晶体结构的周期性。
周期性:晶体中微粒的排列按照一定的方式不断的做周期性重复,这样的性质成为晶体结构的周期性。
晶体结构的周期性可由X-Ray 衍射直接证实,这种性质是晶体最基本或最本质的特征。
(非晶态固体不具备结构的周期性。
非晶态的定义等略),在其后的学习中可发现,这种基本性质对固体物理的学习具有重要的意义或是后续学习的重要基础。
2.晶格 格点和点阵晶格:晶体中微粒重心,做周期性的排列所组成的骨架,微粒重心所处的位置称为晶格的格点(或结点)。
格点的总体称为点阵。
整个晶体的结构,可看成是由格点沿空间三个不同方向, 各自按一定距离周期性平移而构成。
每个平移的距离称为周期。
在某一特定方向上有一定周期,在不同方向上周期不一定相同。
晶体通常被认为具有周期性和对称性,其中周期性最为本质。
对称性其实质是来源于周期性。
故周期性是最为基本的对称性,即“平移对称性”(当然,有更为复杂或多样的对称性,但周期性或平移对称性是共同的)。
3.平移矢量和晶胞据上所述,基本晶体的周期性,我们可以在晶体中选取一定的单元,只要将其不断地重复平移,其每次的位移为a 1,a 2,a 3,就可以得到整个晶格。
则→1a ,→2a ,→3a 就代表重复单元的三个棱边之长及其取向的矢量,称为平移矢量,这种重复单元称为晶胞,其基本特性为:⑴晶胞平行堆积在一起,可以充满整个晶体⑵任何两个晶胞的对应点上,晶体的物理性质相同,即:()⎪⎭⎫⎝⎛+++=→→→332211anananrQrQ其中→r为晶胞中任一点的位置矢量。