北京交通大学-2010-2011第一学期《概率论》期中试题答案
- 格式:doc
- 大小:572.50 KB
- 文档页数:14
北京交通大学概率论与数理统计期末考试试卷A 、B 及答案A 、BA 卷一.(本题满分8分)某中学学生期末考试中数学不及格的为%11,语文不及格的为%7,两门课程都不及格的为%2.⑴ 已知一学生数学考试不及格,求他语文考试也不及格的概率(4分);⑵ 已知一学生语文考试不及格,求他数学考试及格的概率(4分). 二.(本题满分8分)两台车床加工同样的零件,第一台车床加工出现不合格品的概率为0.03,第二台车床加工出现不合格品的概率为0.05;把两台车床加工的零件放在一起,已知第一台车床加工的零件数比第二台车床加工的零件多一倍.现从这两台车床加工的零件中随机地取出一件,发现是不合格品,求这个零件是第二台车床加工的概率.三.(本题满分8分)设随机变量X 的密度函数为()⎪⎩⎪⎨⎧≤≤=其它002cos πx x C x f . ⑴ 求常数C (3分);⑵ 现对X 独立重复地观察4次,用Y 表示观察值大于3π的次数,求()2Y E (5分). 四.(本题满分8分) 在正方形(){}1,1,≤≤=q p q p D :中任取一点()q p ,,求使得方程02=++q px x 有两个实根的概率. 五.(本题满分8分)一个工厂生产某种产品的寿命X (单位:年)的密度函数为()⎪⎩⎪⎨⎧≤>=-00414x x ex f x. 该工厂规定:该产品在售出的一年内可予以调换.若工厂售出一个该产品,赢利100元,而调换一个该产品,需花费300元.试求工厂售出一个该产品净赢利的数学期望. 六.(本题满分9分)设G 是由X 轴、Y 轴及直线022=-+y x 所围成的三角形区域,二维随机变量()Y X ,在G 内服从均匀分布.求X 与Y 的相关系数YX ,ρ.七.(本题满分9分)某餐厅每天接待400位顾客,假设每位顾客的消费额(单位:元)服从区间()100,20上的均匀分布,并且每位顾客的消费额是相互独立的.试求:⑴ 该餐厅每天的平均营业额(3分);⑵ 用中心极限定理计算,该餐厅每天的营业额在其平均营业额的760±元之间的概率(6分).(附:标准正态分布的分布函数()x Φ的某些取值:八.(本题满分8分)设总体X 服从参数为p 的几何分布,其分布律为{}1-==k pq k X P () ,3,2,1=k .其中10<<p 是未知参数,p q -=1.()n X X X ,,,21 是取自该总体中的一个样本.试求参数p 的极大似然估计量. 九.(本题满分8分)设总体X 存在二阶矩,记()μ=X E ,()2v a r σ=X ,()n X X X ,,,21 是从该总体中抽取的一个样本,X 是其样本均值.求()X E (4分)及()X D (4分).十.(本题满分9分)两台相同型号的自动记录仪,每台无故障工作的时间分别为X 和Y ,假设X 与Y 相互独立,都服从参数为5=λ的指数分布,其密度函数为()⎩⎨⎧≤>=-055x x e x f xX . 现首先开动其中一台,当其损坏停用时另一台自动开动,直至第二台记录仪损坏为止.令:T :从开始到第二台记录仪损坏时记录仪的总共工作时间,试求随机变量T 的概率密度函数. 十一.(本题满分9分)设总体X 服从指数分布,其概率密度函数为()⎪⎩⎪⎨⎧≤>=-001x x ex f xθθ,()nX X X ,,,21 是取自该总体中的一个样本.⑴ 求出统计量()i n i X X ≤≤=11min 的密度函数()()x f 1,并指出该分布是什么分布?⑵ 求常数a ,使得i ni X a T ≤≤=1min 为θ的无偏估计.十二.(本题满分8分)设随机变量X 与Y 相互独立,而且都服从正态分布()2,σμN.令aY X U +=,bY X V -=(a与b 都是常数),试给出随机变量U 与V 相互独立的充分必要条件.A 卷参考答案一.(本题满分8分)某中学学生期末考试中数学不及格的为%11,语文不及格的为%7,两门课程都不及格的为%2.⑴ 已知一学生数学考试不及格,求他语文考试也不及格的概率(4分);⑵ 已知一学生语文考试不及格,求他数学考试及格的概率(4分). 解:设=A “某学生数学考试不及格”,=B “某学生语文考试不及格”. 由题设,()11.0=A P ,()07.0=B P ,()02.0=AB P . ⑴ 所求概率为()()()11211.002.0===A P AB P A B P . ⑵ 所求概率为()()()()()()7507.002.007.0=-=-==B P AB P B P B P B A P B A P .二.(本题满分8分)两台车床加工同样的零件,第一台车床加工出现不合格品的概率为0.03,第二台车床加工出现不合格品的概率为0.05;把两台车床加工的零件放在一起,已知第一台车床加工的零件数比第二台车床加工的零件多一倍.现从这两台车床加工的零件中随机地取出一件,发现是不合格品,求这个零件是第二台车床加工的概率. 解:设=A “任取一个零件是不合格品”,=B “任取一个零件是第一台车床加工的”. 所求概率为()A B P .由Bayes 公式得()()()()()()()B A P B P B A P B P B A P B P A B P +=11503.03205.03105.031=⨯+⨯⨯=.三.(本题满分8分)设随机变量X 的密度函数为()⎪⎩⎪⎨⎧≤≤=其它002cos πx x C x f . ⑴ 求常数C (3分);⑵ 现对X 独立重复地观察4次,用Y 表示观察值大于3π的次数,求()2Y E (5分). 解:⑴ 由密度函数的性质,()1=⎰+∞∞-dx x f ,得()C xC dx x C dx x f 22sin22cos 100====⎰⎰+∞∞-ππ, 因此,21=C . ⑵ 由于()212112sin 2cos 213333=-====⎪⎭⎫ ⎝⎛>⎰⎰+∞ππππππx dx x dx x f X P .所以,随机变量Y 的分布列为()kk C k Y P ⎪⎭⎫ ⎝⎛⋅==214, ()4,3,2,1,0=k . 所以 ()()∑==⋅=422k k Y P k Y E51614164316621641161022222=⋅+⋅+⋅+⋅+⋅=. 四.(本题满分8分) 在正方形(){}1,1,≤≤=q p q p D :中任取一点()q p ,,求使得方程02=++q px x 有两个实根的概率. 解:设=A “方程02=++q px x 有两个实根”,所求概率为()A P . 设所取的两个数分别为p 与q ,则有11<<-p ,11<<-q . 因此该试验的样本空间与二维平面点集(){}11,11,<<-<<-=q p q p D :中的点一一对应.随机事件A 与二维平面点集(){}04,2≥-=q p q p D A :,即与点集()⎭⎬⎫⎩⎨⎧≥=q p q p D A 4,2:中的点一一对应.所以, ()241312412214113112=⎪⎪⎭⎫ ⎝⎛+=⨯⎪⎪⎭⎫⎝⎛+==--⎰p p dp p D D A P A 的面积的面积. 五.(本题满分8分)一个工厂生产某种产品的寿命X (单位:年)的密度函数为()⎪⎩⎪⎨⎧≤>=-000414x x ex f x. 该工厂规定:该产品在售出的一年内可予以调换.若工厂售出一个该产品,赢利100元,而调换一个该产品,需花费300元.试求工厂售出一个该产品净赢利的数学期望. 解:设Y 为工厂售出一个产品的净赢利,则⎩⎨⎧<-≥=13001100X X Y 所以,{}{}300300100100-=⋅-=⋅=Y P Y P EY {}{}13001100<⋅-≥⋅=X P X P⎰⎰-+∞-⋅-⋅=14144130041100dx e dx e xx5203.1113001004141=⎪⎪⎭⎫ ⎝⎛-⋅-⋅=--e e六.(本题满分9分)设G 是由X 轴、Y 轴及直线022=-+y x 所围成的三角形区域,二维随机变量()Y X ,在G 内服从均匀分布.求X 与Y 的相关系数YX ,ρ.解:由于区域G 的面积为1,因此()Y X ,的联合密度函数为()()()⎩⎨⎧∉∈=Gy x Gy x y x f ,0,1,. 当10<<x 时,()()()x dy dy y x f x f xX -===⎰⎰-+∞∞-12,220,所以,()()⎩⎨⎧<<-=其它01012x x x f X .当20<<y 时,()()21,210y dy dx y x f y f yY -===⎰⎰-∞+∞-, 所以,()⎪⎩⎪⎨⎧<<-=其它2021y yy f Y .()()()31312121210=⎪⎭⎫ ⎝⎛-=-⋅==⎰⎰+∞∞-dx x x dx x xf X E X , ()()32212=⎪⎭⎫ ⎝⎛-⋅==⎰⎰+∞∞-dy y y dy y yf Y E Y , ()()()6141312121222=⎪⎭⎫ ⎝⎛-=-⋅==⎰⎰+∞∞-dx x x dx x f x X E X , ()()32212222=⎪⎭⎫ ⎝⎛-⋅==⎰⎰+∞∞-dy y ydy y f y YE Y,所以,()()()()1813161var 222=⎪⎭⎫ ⎝⎛-=-=X E X E X ,()()()()923232v a r 222=⎪⎭⎫ ⎝⎛-=-=Y E Y E Y , ()()⎰⎰⎰⎰⎰--+∞∞-+∞∞-⋅===1220222012,dx y x xydy dxdxdy y x xyf XY E xx,()()6121324122212123102=⎪⎭⎫ ⎝⎛+-=+-=-=⎰⎰dx x x x dx x x ,所以,()()()()181323161,cov -=⨯-=-=Y E X E XY E Y X . ()()()2192181181var var ,cov ,-=-==Y X Y X YX ρ. 七.(本题满分9分)某餐厅每天接待400位顾客,假设每位顾客的消费额(单位:元)服从区间()100,20上的均匀分布,并且每位顾客的消费额是相互独立的.试求:⑴ 该餐厅每天的平均营业额(3分);⑵ 用中心极限定理计算,该餐厅每天的营业额在其平均营业额的760±元之间的概率(6分).(附:标准正态分布的分布函数()x Φ的某些取值:解:⑴ 设i X 表示第i 位顾客的消费额,()400,,2,1 =i .则有40021,,,X X X 相互独立,()100,20~U X i ,()400,,2,1 =i .所以,()60=i X E ,()316001280var 2==i X . 再设X 表示餐厅每天的营业额,则∑==4001i i X X .所以,()()240006040040014001=⨯==⎪⎭⎫ ⎝⎛=∑∑==i i i i X E X E X E (元).⑵ 由独立同分布场合下的中心极限定理,有{}⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧⨯≤⨯-≤⨯-=≤-≤-3160040076031600400240003160040076076024000760X P X P ()901.019505.021645.123160040076031600400760=-⨯=-Φ=⎪⎪⎪⎪⎭⎫⎝⎛⨯-Φ-⎪⎪⎪⎪⎭⎫ ⎝⎛⨯Φ≈. 八.(本题满分8分)设总体X 服从参数为p 的几何分布,其分布律为{}1-==k pq k X P () ,3,2,1=k .其中10<<p 是未知参数,p q -=1.()n X X X ,,,21 是取自该总体中的一个样本.试求参数p 的极大似然估计量. 解:似然函数为(){}{}{}{}n n n n x X P x X P x X P x X x X x X P p L ======== 22112211,,, ()()()()nx nx x x nk k n p p p p p p p p ----∑-=--⋅-==1211111111所以,()()p n x p n p L n k k -⎪⎭⎫⎝⎛-+=∑=1ln ln ln 1.所以,()01ln 1=---=∑=pnx p n p L dp d nk k ,解方程,得x p 1=.因此p 的极大似然估计量为ξ1ˆ=p . 九.(本题满分8分)设总体X 存在二阶矩,记()μ=X E ,()2v a r σ=X ,()n X X X ,,,21 是从该总体中抽取的一个样本,X 是其样本均值.求()X E (4分)及()X D (4分). 解:()()μμμ=⋅===⎪⎭⎫ ⎝⎛=∑∑∑===n n n X E n X n E X E n i ni i n i i 1111111,()()n n n n X n X n X n i n i i n i i 22212212111v a r 11v a r v a r σσσ=⋅===⎪⎭⎫ ⎝⎛=∑∑∑===.十.(本题满分9分)两台相同型号的自动记录仪,每台无故障工作的时间分别为X 和Y ,假设X 与Y 相互独立,都服从参数为5=λ的指数分布,其密度函数为()⎩⎨⎧≤>=-055x x e x f xX . 现首先开动其中一台,当其损坏停用时另一台自动开动,直至第二台记录仪损坏为止.令:T :从开始到第二台记录仪损坏时记录仪的总共工作时间,试求随机变量T 的概率密度函数. 解:X 的密度函数为()⎩⎨⎧≤>=-00055x x e x f xX , Y 的密度函数为()⎩⎨⎧≤>=-055y y e y f yY 由题意,知 Y X T +=,设T 的密度函数为()t f T ,则 ()()()()⎰⎰+∞-+∞∞--=-=55dx x t f edx x t f x f t f Y xYXT作变换 x t u -=,则 dx du -=,当0=x 时,t u = ;当+∞→x 时,-∞→u .代入上式,得 ()()()()⎰⎰∞---∞--=-=t Y utt Y u t T du u f eedu u f et f 55555当0≤t 时,由()0=y f Y ,知()0=t f T ; 当0>t 时, ()tt u u tT te du e e et f 55552555-∞---=⋅=⎰综上所述,可知随机变量T 的密度函数为 ()⎩⎨⎧≤>=-0255t t te t f tT . 十一.(本题满分9分)设总体X 服从指数分布,其概率密度函数为()⎪⎩⎪⎨⎧≤>=-001x x ex f xθθ,()nX X X ,,,21 是取自该总体中的一个样本.⑴ 求出统计量()i n i X X ≤≤=11min 的密度函数()()x f 1,并指出该分布是什么分布?⑵ 求常数a ,使得i ni X a T ≤≤=1min 为θ的无偏估计.解:① 由于总体X 的密度函数为()⎪⎩⎪⎨⎧≤>=-001x x ex f xθθ,因此其分布函数为 ()()⎪⎩⎪⎨⎧>-≤==-∞-⎰0100x ex dt t f x F x xθ .所以()i ni X X ≤≤=11min 的密度函数为()()()()()θθθθθnxx n x n e n e e n x f x F n x f -----=⋅⎪⎪⎭⎫ ⎝⎛=-=11111,()0>x . 即随机变量()i n i X X ≤≤=11min 服从参数为nθ的指数分布.② 由于随机变量()i n i X X ≤≤=11min 服从参数为nθ的指数分布,所以()()()n X E X E i n i θ==≤≤11min .所以,若使()()()θθ=⋅==≤≤na X aE X E i n i 11min ,只需取n a =即可.即若取n a =,即i ni X n T ≤≤=1min ,则T 是未知参数θ的无偏估计量.十二.(本题满分8分)设随机变量X 与Y 相互独立,而且都服从正态分布()2,σμN.令aY X U +=,bY X V -=(a与b 都是常数),试给出随机变量U 与V 相互独立的充分必要条件. 解:由于随机变量X 与Y 相互独立,而且都服从正态分布,又aY X U +=,bY X V -=,所以U 与V 也都是服从正态分布的随机变量.所以,U 与V 相互独立的充分必要条件是()0,cov =V U . 而 ()()bY X aY X V U -+=,cov ,cov()()()()Y Y ab X Y a Y X b X X ,cov ,cov ,cov ,cov -+-= ()()()21σab Y abD X D -=-=.因此,随机变量U 与V 相互独立的充分必要条件是01=-ab .B 卷一、填空题(每小题4分,共32分).1.设 A 、B 为随机事件, P (A ) = 0.3, P (B ) = 0.4, 若 P (A |B ) =0.5, 则 P (A ⋃B ) = _______; 若 A 与 B 相互独立, 则 P (A ⋃B ) = _________.2.设随机变量 X 在区间 [0, 10] 上服从均匀分布, 则 P { 1 < X < 6} = ______________.3.设随机变量 X 的分布函数为,4,1 42 ,7.021 ,2.01 ,0 )(⎪⎪⎩⎪⎪⎨⎧≥<≤<≤--<=x x x x x F 则 X 的分布律为 ___________________________ . 4.若离散型随机变量 X 的分布律为则常数 a = _________; 又 Y = 2X + 3, 则 P {Y > 5} = _________ .5.设随机变量 X 服从二项分布 b (100, 0.2), 则 E (X ) = ________, D (X ) = ___________. 6.设随机变量 X ~ N (0, 1), Y ~ N (1, 3), 且X 和 Y 相互独立, 则D (3X +2Y ) = _________. 7.设随机变量 X 的数学期望 E (X ) = μ, 方差 D (X ) = σ 2, 则由切比雪夫不等式有 P {|X - μ | <2σ } ≥ _________________.8.从正态总体 N (μ, σ 2)(σ 未知) 随机抽取的容量为 25的简单随机样本, 测得样本均值5=x ,样本的标准差s = 0.1,则未知参数 μ 的置信度为0.95的置信区间是____________________________. (用抽样分布的上侧分位点表示). 二、选择题(只有一个正确答案,每小题3分,共18分)1.设随机事件A 与B 互不相容,且0)(,0)(>>B P A P ,则 ( ).(A) )(1)(B P A P -= (B) )()()(B P A P AB P = (C) 1)(=B A P (D) 1)(=AB P2.设随机变量 X 的概率密度为)(x f X , 则随机变量X Y 2-=的概率密度为)(y f Y 为 ( ).(A) )2-(2y f X (B) )2(y f X - (C) )2(21y f X - (D) )2(21yf X --3.设随机变量 X 的概率密度为)(e21)(4)2(2+∞<<-∞=+-x x f x π,且b aX Y +=)1,0(~N ,则下列各组数中应取 ( ). (A)1,21==b a (B) 2,22==b a (C) 1,21-==b a (D) 2,22-==b a 4. 设两个相互独立的随机变量 X 和 Y 分别服从正态分布 ),(211σμN 和 ),(222σμN , 则Y X Z +=也服从正态分布,且 ( ).),(~ )A (22211σσμ+N Z ),(~ )B (2121σσμμ+N Z ),(~ )C (222121σσμμ+N Z ),(~ )D (222121σσμμ++N Z5.对任意两个相互独立的随机变量 X 和 Y , 下列选项中不成立的是 ( ). (A) D (X + Y ) = D (X ) + D (Y ) (B) E (X + Y ) = E (X ) + E (Y )(C) D (XY ) = D (X )D (Y ) (D) E (XY ) = E (X )E (Y )6.设 X 1, X 2为来自总体 N (μ, 1) 的一个简单随机样本, 则下列估计量中μ 的无偏估计量中最有效的是 ( ).(A) 212121X X +=μ (B) 213231X X +=μ (C) 214341X X +=μ (D) 215352X X +=μ 三、解答(本题 8 分)一个袋中共有10个球,其中黑球3个,白球7个,先从袋中先后任取一球(不放回)(1) 求第二次取到黑球的概率; (2) 若已知第二次取到的是黑球,试求第一次也取到黑球的概率?四、解答(本题8分)设连续型随机变量 X 的概率密度为,其他⎩⎨⎧≤≤+= ,0 20,1)(x ax x f 求: (1) 常数 a 的值; (2) 随机变量 X 的分布函数 F (x ); (3) }.21{<<X P 五、解答(本题10分)设二维随机变量 (X , Y ) 的联合概率密度为⎩⎨⎧<<=-其他,0,,0,e ),(x y y x f x求: (1) 求 X , Y 的边缘概率密度 f X (x ), f Y (y ), 并判断 X 与 Y 是否相互独立(说明原因)? (2) 求 P { X + Y ≤ 1}.六、解答(本题8分)已知随机变量 X 分布律为求 E (X ), D (X ).七、(本题6分)对敌人的防御阵地进行100次轰炸,每次轰炸命中目标的炸弹数目是一个随机变量,七期望值是2,方差是1.69。
北交《概率论与数理统计》复习题一一、 填空题1. 题在一次读书活动中,某同学从2本科技书和4本文艺书中任选2本,则选中的书都是科技书的概率为______ 1/15_____. 考核知识:古典概型。
2. 设随机事件A 与B 相互独立,且5.0)(=A P ,3.0)(=B A P ,则=)(B P ___0.4________.考核知识点:事件的独立性。
3. 设A ,B 为随机事件,5.0)(=A P ,4.0)(=B P ,8.0)|(=B A P ,则=)|(A B P __0.64_____.考核知识点:条件概率。
4. 设袋中有2个黑球、3个白球,有放回地连续取2次球,每次取一个,则至少取到一个黑球的概率是____16/25_______.5.考核知识点:古典概型。
6. 设随机变量X 的分布律为:则=≥}1{X P ___0.7________. 考核知识点:离散型随机变量。
7. 设二维随机变量),(Y X 在区域D 上服从均匀分布,其中20,20:≤≤≤≤y x D .记),(Y X 的概率密度为),(y x f ,则=)1,1(f ____1/4_______. 考核知识点:概率密度函数。
8. 设),(Y X 的分布律为X Y0 1 2 0 0.3 0.1 0.2 10.10.3则==}{Y X P ____0.4_______. 考核知识点:二维离散型随机变量。
9. 设二维随机变量),(Y X 的分布函数为⎪⎩⎪⎨⎧>>--=--其他,00,0),1)(1(),(y x e e y x F yx ,则=≤≤}1,1{Y X P ___________.考核知识点:二维连续型随机变量。
10. 设总体X ~)1,(μN ,21,x x 为来自总体X 的一个样本,估计量2112121ˆx x +=μ,2123231ˆx x +=μ,则方差较小的估计量是___________. 考核知识点:估计量的有效性。
北交《概率论与数理统计》在线作业一试卷总分:100 测试时间:-- 试卷得分:67.5一、单选题(共30道试题,共75分。
)得分:47.51.X服从[0,2]上的均匀分布,则DX=()A. 1/2B. 1/3C. 1/6D. 1/12正确答案:B满分:2.5分得分:2.52.相继掷硬币两次,则事件A={两次出现同一面}应该是A. Ω={(正面,反面),(正面,正面)}B. Ω={(正面,反面),(反面,正面)}C. {(反面,反面),(正面,正面)}D. {(反面,正面),(正面,正面)}正确答案:C满分:2.5分得分:2.53.不可能事件的概率应该是A. 1B. 0.5C. 2D. 1正确答案:D满分:2.5分得分:04.设随机变量X和Y的方差存在且不等于0,则D(X+Y)=D(X)+D(Y)是X和Y()A. 不相关的充分条件,但不是必要条件B. 独立的充分条件,但不是必要条件C. 不相关的充分必要条件D. 独立的充要条件正确答案:C满分:2.5分得分:2.55.电话交换台有10条外线,若干台分机,在一段时间内,每台分机使用外线的概率为10%,则最多可装()台分机才能以90%的把握使外线畅通A. 59B. 52C. 68D. 72正确答案:C满分:2.5分得分:2.56.在条件相同的一系列重复观察中,会时而出现时而不出现,呈现出不确定性,并且在每次观察之前不能确定预料其是否出现,这类现象我们称之为A. 确定现象B. 随机现象C. 自然现象D. 认为现象正确答案:B满分:2.5分得分:2.57.袋中有4个白球,7个黑球,从中不放回地取球,每次取一个球.则第二次取出白球的概率为 ( )A. 4/10B. 3/10C. 3/11D. 4/11正确答案:D满分:2.5分得分:2.58.设随机变量X服从正态分布,其数学期望为10,X在区间(10,20)发生的概率等于0.3。
则X在区间(0,10)的概率为()A. 0.3B. 0.4C. 0.5D. 0.6正确答案:A满分:2.5分得分:2.59.在1,2,3,4,5这5个数码中,每次取一个数码,不放回,连续取两次,求第1次取到偶数的概率()A. 3/5B. 2/5C. 3/4D. 1/4正确答案:B满分:2.5分得分:2.510.现有一批种子,其中良种占1/6,今任取6000粒种子,则以0.99的概率推断,在这6000粒种子中良种所占的比例与1/6的差是()A. 0.0124B. 0.0458C. 0.0769D. 0.0971正确答案:A满分:2.5分得分:2.511.两个互不相容事件A与B之和的概率为A. P(A)+P(B)B. P(A)+P(B)-P(AB)C. P(A)-P(B)D. P(A)+P(B)+P(AB)正确答案:A满分:2.5分得分:2.512.某市有50%住户订日报,有65%住户订晚报,有85%住户至少订这两种报纸中的一种,则同时订两种报纸的住户的百分比是A. 20%B. 30%C. 40%D. 15%正确答案:B满分:2.5分得分:2.513.一个工人照看三台机床,在一小时内,甲、乙、丙三台机床需要人看管的概率分别是0.8,0.9和0.85,求在一小时内没有一台机床需要照看的概率()A. 0.997B. 0.003C. 0.338D. 0.662正确答案:B满分:2.5分得分:014.10个产品中有7个正品,3个次品,按不放回抽样,依次抽取两个,已知第一个取到次品,则第二次取到次品的概率是()A. 1/15B. 1/10C. 2/9D. 1/20正确答案:C满分:2.5分得分:015.参数估计分为( )和区间估计A. 矩法估计B. 似然估计C. 点估计D. 总体估计正确答案:C满分:2.5分得分:2.516.事件A与B相互独立的充要条件为A. A+B=ΩB. P(AB)=P(A)P(B)C. AB=ФD. P(A+B)=P(A)+P(B)正确答案:B满分:2.5分得分:017.假设一厂家一条自动生产线上生产的每台仪器以概率0.8可以出厂,以概率0.2需进一步调试,经调试后,以概率0.75可以出厂,以概率0.25定为不合格品而不能出厂。
第 1 页共 6 页第 2 页 共 6 页4.一批产品的废品率为0.1,每次抽取1个,观察后放回去,下次再取一个,共重复3次,3次中恰有2次取到废品的概率为()。
(a) 027.0; (b) 243.0; (c) 27.0; (d) 0243.0.5.将3个不同的小球随机地放入4个杯子中去,则杯子中球的最大个数为1的概率为()。
(a)3344P ; (b)3344C ;(c) 4343P ; (d)4343C .二、计算题(共8题,第8题8分,其余每题各11分,共85分)。
1.某工厂的车床、钻床、磨床、刨床的台数之比为9:3:2:1,它们在一定时间内需修理的概率之比为1:2:3:1,当有一台机床需要修理时,求这台机床是车床的概率。
第 3 页 共 6 页2.设随机变量X 的概率密度为:⎩⎨⎧≤≤+=其他20)1()(x x k x f(1)确定k 的值;(2)求数学期望E (X )和方差D(X); (3)计算概率}10{<<X P3. 设二维随机变量(X,Y)的联合概率密度为,⎩⎨⎧<<=-其它,0,0,),(y x e y x f y求:(1) 关于X,Y 的边缘概率密度; (2) X,Y 是否相互独立; (3) 概率}1{≤+Y X P第 4 页 共 6 页4. 从大批发芽率为0.9的种子中随意抽取1000粒,试估计这1000粒种子中发芽的种子个数不低于880粒的概率(结果用)(x Φ表示)。
5.设总体X 的概率密度函数为⎩⎨⎧<<+=其他010)1()(x xx f ααn 21X ,......,X ,X 为总体X 的一个样本。
试求未知参数α的矩估计量和最大似然估计量。
第 5 页 共 6 页6.某手表厂生产的超薄女表,走时误差服从正态分布),(2σμN ,检验员随机从装配线上抽取9只进行检测,测得8.7,28.02==S x当取置信水平为95%时,求该种手表走时误差的方差2σ的置信区间。
北 京 交 通 大 学2009~2010学年第一学期概率论与数理统计期末考试试卷(A 卷)答案一.(本题满分8分)某城市有汽车100000辆,牌照编号从00000到99999.一人进城,偶然遇到一辆车,求该车牌照号中含有数字8的概率. 解:设事件{}8汽车牌照号中含有数字=A ,所求概率为()A P .…………….2分()()40951.01091155=-=-=A P A P .…………….6分二.(本题满分8分)设随机事件A ,B ,C 满足:()()()41===C P B P A P ,()0=AB P ,()()161==BC P AC P .求随机事件A ,B ,C 都不发生的概率. 解:由于AB ABC ⊂,所以由概率的非负性以及题设,得()()00=≤≤AB P ABC P ,因此有()0=ABC P .…………….2分所求概率为()C B A P .注意到C B A C B A ⋃⋃=,因此有…………….2分 ()()C B A P C B A P ⋃⋃-=1…………….2分()()()()()()()ABC P BC P AC P AB P C P B P A P -+++---=1 83016116104141411=-+++---=.…………….2分 三.(本题满分8分)某人向同一目标进行独立重复射击,每次射击时命中目标的概率均为p ,()10<<p .求此人第6次射击时恰好第2次命中目标的概率. 解:{}次命中目标次射击时恰好第第26P{}次射击时命中目标次目标,第次射击中命中前615P =…………….2分 {}{}次射击时命中目标第次目标次射击中命中前615P P ⋅=…………….2分()()424115151p p p p p C -=⋅-=.…………….4分四.(本题满分8分)某种型号的电子元件的使用寿命X (单位:小时)具有以下的密度函数:()⎪⎩⎪⎨⎧≤>=1000100010002x x x x p .⑴ 求某只电子元件的使用寿命大于1500小时的概率(4分);⑵ 已知某只电子元件的使用寿命大于1500小时,求该元件的使用寿命大于2000小时的概率(4分). 解:⑴ 设{}小时于电子元件的使用寿命大1500=A ,则(){}()321000100015001500150021500=-===>=+∞+∞+∞⎰⎰x dx x dx x p X P A P .…………….4分 ⑵ 设{}小时于电子元件的使用寿命大0002=B ,则所求概率为()A B P . ()()(){}(){}()A P X P A P X X P A P AB P A B P 20002000,1500>=>>==.…………….2分而 {}()211000100020002000200022000=-===>+∞+∞+∞⎰⎰x dx x dx x p X P , 所以, (){}()4332212000==>=A P X P A B P .…………….2分五.(本题满分8分)设随机变量X 服从区间[]2,1-上的均匀分布,而随机变量⎩⎨⎧≤->=0101X X Y . 求数学期望()Y E . 解:(){}(){}1111-=⨯-+=⨯=Y P Y P Y E …………….2分 {}(){}0101≤⨯-+>⨯=X P X P …………….2分()()⎰⎰⎰⎰-∞-+∞-=-=0120003131dx dx dx x p dx x p X X313132=-=.…………….4分 六.(本题满分8分)设在时间t (分钟)内,通过某路口的汽车数()t X 服从参数为t λ的Poisson (泊松)分布,其中0>λ为常数.已知在1分钟内没有汽车通过的概率为2.0,求在2分钟内至少有1辆汽车通过的概率. 解:()t X 的分布列为(){}()tk e k t k t X P λλ-==!,()Λ,2,1,0=k .…………….2分因此在1=t 分钟内,通过的汽车数为 (){}λλ-==e k k X P k!1,()Λ,2,1,0=k .由题设,(){}2.001===-λe X P ,所以5ln =λ.…………….3分因此,(){}(){}()252425111!0521021125ln 220=-=-=⋅-==-=≥--e e X P X P λ.…………….3分 七.(本题满分8分) 设二维随机变量()Y X ,的联合密度函数为()⎩⎨⎧<<<<=其它020,101,xy x y x f 求:⑴ 随机变量Y 边缘密度函数()y f Y (4分);⑵ 方差()Y D (4分). 解:⑴ ()()⎰+∞∞-=dx y x f y f Y ,.因此,当0≤y 或者2≥y 时,()0=y f Y .…………….1分 当20<<y 时,()()2,2y dx dx y x f y f y Y ===⎰⎰∞+∞-. 所以, ()⎪⎩⎪⎨⎧<<=其它202y y y f Y .…………….3分⑵ ()()34621203202====⎰⎰+∞∞-y dy y dy y yf Y E Y . ()()2821242322====⎰⎰∞+∞-ydy y dy y f y Y E Y …………….2分所以, ()()()()929162342222=-=⎪⎭⎫⎝⎛-=-=Y E Y E Y D .…………….2分八.(本题满分8分)现有奖券10000张,其中一等奖一张,奖金1000元;二等奖10张,每张奖金200元;三等奖100张,每张奖金10元;四等奖1000张,每张奖金2元.而购买每张奖券2元,试计算买一张奖券的平均收益. 解:设X :购买一张奖券所得的奖金. 则X 的分布律为所以,…………….2分 ()531000010002100001001010000102001000011000=⨯+⨯+⨯+⨯=X E …………….4分 再令Y 表示购买一张奖券的收益,则2-=X Y ,因此 ()()572532-=-=-=X E Y E (元).…………….2分 九.(本题满分8分)两家电影院竞争1000名观众,假设每位观众等可能地选择两个电影院中的一个,而且互不影响.试用中心极限定理近似计算:甲电影院应设多少个座位,才能保证“因缺少座位而使观众离去”的概率不超过1%?附:标准正态分布()1,0N 的分布函数()x Φ的某些数值表解:设甲电影院应设N 个座位才符合要求.设1000名观众中有X 名选择甲电影院,则⎪⎭⎫⎝⎛21,1000~B X .…………….1分 由题意,{}99.0≥≤N X P .而 ()500211000=⨯=X E ,()25021211000=⨯⨯=X D .…………….2分 所以,{}()()()()⎭⎬⎫⎩⎨⎧-≤-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-≤-=≤250500250500N X P X D X E N X D X E X P N X P99.0250500≥⎪⎭⎫⎝⎛-Φ≈N …………….3分查表得33.2250500≥-N ,所以有 84.53625033.2500=⨯+≥N . 所以,应至少设537个座位,才符合要求.…………….2分十.(本题满分8分) 设总体X 的密度函数为()⎩⎨⎧<<=其它0102x x x f , ()n X X X ,,,21Λ是从总体X 中抽取的一个简单随机样本.令()()n n X X X X ,,,max 21Λ=,试求()n X 的密度函数()()x f n . 解:总体X 的分布函数为()⎪⎩⎪⎨⎧≥<<≤=111002x x x x x F .…………….3分 因此()n X 的密度函数为()()()()()()⎪⎩⎪⎨⎧<<⋅==--其它102121x x x n x f x F n x f n n n …………….4分⎩⎨⎧<<=-其它010212x nx n .…………….1分十一.(本题满分12分) 设总体X 的密度函数为()⎪⎩⎪⎨⎧≤>=+ααβαβαββx x x x f 01,; ,其中1,0>>βα为参数,()n X X X ,,,21Λ是从总体X 中抽取的一个简单随机样本.⑴ 当1=α时,求未知参数β的矩估计量M βˆ(6分);⑵ 当1=α时,求未知参数β的最大似然估计量Lβˆ(6分). 解:⑴ 当1=α时,密度函数为()⎩⎨⎧≤>=--10111x x x x f βββ,; , 所以,()()1111-==⋅==⎰⎰⎰+∞-+∞--+∞∞-βββββαββdx x dx xx dx x xf X E ,; .…………….2分解方程:()1-=ββX E ,得解:()()1-=X E X E β.…………….2分 将()X E 替换成X ,得未知参数β的矩估计量为1ˆ-=X X Mβ.…………….2分 ⑵ 当1=α时,密度函数为()⎩⎨⎧≤>=--10111x x x x f βββ,; , 所以,似然函数为()()()111+-===∏ββββi n ni i x x f L ,;,()()n i x i ,,1,1Λ=>.…………….2分所以,()()()n x x x n L Λ21ln 1ln ln +-=βββ.对β求导,得()n x x x nL Λ21ln ln -=∂∂ββ.…………….2分 令0ln =∂∂βL ,得方程()0ln 21=-n x x x nΛβ. 解得 ()n x x x nΛ21ln =β.因此,β的最大似然估计量为 ()n X X X nΛ21ln ˆ=β.…………….2分十二.(本题满分8分) 设总体()2,~σμN X ,()n X X X ,,,21Λ是从总体X 中抽取的一个简单随机样本.X 与2S 分别表示样本均值与样本方差.令nS X T 22-=,求()T E ,并指出统计量T 是否为2μ的无偏估计量.解:()μ=X E ,()nX D 2σ=,…………….2分由 ()()()()22X E X E X D -=,得 ()()()()2222μσ+=+=nX E X D XE .…………….2分又 ()22σ=S E ,所以有…………….1分()()⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-=n S E X E n S X E T E 2222()2222μμσ=-⎪⎪⎭⎫ ⎝⎛+=n S E n .…………….2分 这表明nS X T 22-=是2μ的无偏估计量.…………….1分北 京 交 通 大 学2010~2011学年第二学期概率论与数理统计期末考试试卷(A 卷)参 考 答 案一.(本题满分8分) 在正方形(){}1,1,≤≤=q p q p D :中任取一点()q p ,,求使得方程02=++q px x 有两个实根的概率. 解:设=A “方程02=++q px x 有两个实根”,所求概率为()A P . 设所取的两个数分别为p 与q ,则有11<<-p ,11<<-q . 因此该试验的样本空间与二维平面点集(){}11,11,<<-<<-=q p q p D :中的点一一对应.…………………………………2分随机事件A 与二维平面点集(){}04,2≥-=q p q p D A :,即与点集()⎭⎬⎫⎩⎨⎧≥=q p q p D A 4,2:…………………2分中的点一一对应.所以, ()241312412214113112=⎪⎪⎭⎫ ⎝⎛+=⨯⎪⎪⎭⎫⎝⎛+==--⎰p p dp p D D A P A的面积的面积.…………………4分 二.(本题满分8分)从以往的资料分析得知,在出口罐头导致索赔的事件中,有%50是质量问题;有%30是数量短缺问题;有%20是产品包装问题.又知在质量问题的争议中,经过协商解决的占%40;在数量短缺问题的争议中,经过协商解决的占%60;在产品包装问题的争议中,经过协商解决的占%75.如果在发生的索赔事件中,经过协商解决了,问这一事件不属于质量问题的概率是多少?解:设=1A “事件属于质量问题”,=2A “事件属于数量短缺问题”, =3A “事件属于产品包装问题”.=B “事件经过协商解决”.所求概率为()B A P 1.…………………2分 由Bayes 公式,得 ()()()()()()()()()332211111A B P A P A B P A P A B P A P A B P A P B A P ++=…………………2分37735849.075.02.060.03.040.05.040.05.0=⨯+⨯+⨯⨯=.…………………2分所以,()()62264151.037735849.01111=-=-=B A P B A P .…………………2分三.(本题满分8分)设随机事件A 满足:()1=A P .证明:对任意随机事件B ,有()()B P AB P =. 解:因为()1=A P ,所以,()()0111=-=-=A P A P .…………………2分 所以,对任意的随机事件B ,由A B A ⊂,以及概率的单调性及非负性,有 ()()00=≤≤A P B A P , 因此有()0=B A P .…………………2分所以,对任意的随机事件B ,由B A AB B ⋃=,以及AB 与B A 的互不相容性,得 ()()()()()()AB P AB P B A P AB P B A AB P B P =+=+=⋃=0.………………4分四.(本题满分8分)设随机变量X 的密度函数为()⎩⎨⎧<<+=其它0102x bx ax x p ,并且已知()21=X E ,试求方差()X D . 解:由()1=⎰+∞∞-dx x p 及()()21==⎰+∞∞-dx x xp X E ,得()()32112ba dx bx ax dx x p +=+==⎰⎰+∞∞-,…………………2分 ()()432112ba dx bx ax x dx x xp +=+==⎰⎰+∞∞-.…………………2分由此得线性方程组 ⎪⎩⎪⎨⎧=+=+2143132b a ba .解此线性方程组,得6,6-==b a .…………………2分 所以,()()()1035164166612222=⋅-⋅=-==⎰⎰+∞∞-dx x x x dx x p x XE ,所以,()()()()20121103222=⎪⎭⎫ ⎝⎛-=-=X E X E X D .…………………2分 五.(本题满分8分)经验表明,预定餐厅座位而不来就餐的顾客比例为%20.某餐厅有50个座位,但预定给了52位顾客,问到时顾客来到该餐厅而没有座位的概率是多少? 解:设X 表示52位预订了座位的顾客中来就餐的顾客数,则()8.0,52~B X .…………1分 则所求概率为()50>X P .…………………2分 ()()()525150=+==>X P X P X P …………………2分052525215151522.08.02.08.0⋅⋅+⋅⋅=C C 9330001278813.0=.…………………3分六.(本题满分10分)将一颗均匀的骰子独立地掷10次,令X 表示这10次出现的点数之和,求()X E (5分)与()X D (5分). 解:设k X 表示第k 次出现的点数,()10,,2,1Λ=k . 则1021,,,X X X Λ相互独立,而且∑==101k k X X .而k X 的分布列为 ()61==j X P k ,()6,,2,1Λ=j .…………………2分 所以,()()∑∑==⋅==⋅=616161j j k k j j X P j X E2721616161=⨯==∑=j j , ()10,,2,1Λ=k .…………………2分所以,由数学期望的性质,得()()35102727101101101=⨯===⎪⎭⎫ ⎝⎛=∑∑∑===k k k k k X E X E X E .…………………2分()()∑∑==⋅==⋅=612612261j j k kj j X P jXE691916161612=⨯==∑=j j , ()10,,2,1Λ=k .…………………2分所以,由1021,,,X X X Λ的相互独立性,及数学期望的性质,得()()345510691691101101101=⨯===⎪⎭⎫ ⎝⎛=∑∑∑===k k k k k X D X D X D .…………………2分七.(本题满分10分)设随机变量()1,0~N X ,求随机变量122+=X Y 的密度函数.解:由题意,随机变量X 的密度函数为()2221x X e x p -=π,()+∞<<∞-x .………1分设随机变量122+=X Y 的分布函数为()y F Y ,则有()()()⎪⎭⎫ ⎝⎛-≤=≤+=≤=211222y X P y X P y Y P y F Y ,…………………2分所以,当1≤y 时,()0=y F Y ;…………………1分 当1>y 时,()⎪⎪⎭⎫⎝⎛-≤≤--=⎪⎭⎫⎝⎛-≤=2121212y X y P y X P y F Y⎰⎰------==210221212222221y x y y x dx edx eππ…………………2分因此有 ()⎪⎪⎩⎪⎪⎨⎧≤>=⎰--112221022y y dxey F y x Y π ,…………………2分 所以,随机变量122+=X Y 的密度函数为()()⎪⎪⎩⎪⎪⎨⎧≤>⎪⎭⎫⎝⎛-⋅='=-⎪⎪⎭⎫⎝⎛--1121212122212212y y y ey F y p y Y Y π ()⎪⎩⎪⎨⎧≤>-=--10112141y y e y y π .…………………2分八.(本题满分10分) 设二维随机变量()Y X ,的联合密度函数为()⎩⎨⎧<<<=其它0103,x y x y x p , 求X 与Y 的相关系数Y X ,ρ. 解:()()4333,13102====⎰⎰⎰⎰⎰+∞∞-+∞∞-dx x dy x dx dxdy y x xp X E x , ()()83233,103100====⎰⎰⎰⎰⎰+∞∞-+∞∞-dx x ydy xdx dxdy y x yp Y E x,…………………2分()()5333,141322====⎰⎰⎰⎰⎰+∞∞-+∞∞-dx x dy x dx dxdy y x p x X E x,()()513,1410222====⎰⎰⎰⎰⎰+∞∞-+∞∞-dx x dy y xdx dxdy y x p y Y E x ,…………………2分()()103233,1041002====⎰⎰⎰⎰⎰+∞∞-+∞∞-dx x ydy dx x dxdy y x xyp XY E x ,所以有 ()()()()16038343103,cov =⨯-=-=Y E X E XY E Y X ,…………………2分 ()()()()8034353222=⎪⎭⎫ ⎝⎛-=-=X E X E X D , ()()()()320198351222=⎪⎭⎫ ⎝⎛-=-=Y E Y E Y D ,…………………2分 因此,有()()()573320198031603,cov ,=⋅==Y D X D Y X Y X ρ.…………………2分 九.(本题满分10分)一生产线生产的产品成箱包装,假设每箱平均重kg 50,标准差为kg 5.若用最大载重量为kg 5000的汽车来承运,试用中心极限定理计算每辆车最多装多少箱,才能保证汽车不超载的概率大于977.0(设()977.02=Φ,其中()x Φ是标准正态分布()1,0N 的分布函数).解:若记i X 表示第i 箱的重量,()n i ,,2,1Λ=.则n X X X ,,,21Λ独立同分布,且()()25,50==i i X D X E , ()n i ,,2,1Λ=.…………………2分再设n Y 表示一辆汽车最多可装n 箱货物时的重量,则有 ∑==ni i n X Y 1.由题意,得 ()977.010100055050005505000>⎪⎭⎫ ⎝⎛-Φ≈⎪⎭⎫ ⎝⎛-≤-=≤n n n n n n Y P Y P n n .…………4分查正态分布表,得 2101000>-=nnx ,…………………2分 当99=n 时,2005.1<=x ;98=n 时,202.2>=x ,故取98=n ,即每辆汽车最多装98箱货物.…………………2分十.(本题满分8分)设总体()1,0~N X ,()621,,,X X X Λ是取自该总体中的一个样本.令()()26542321X X X X X X Y +++++=,试确定常数c ,使得随机变量cY 服从2χ分布. 解:因为()1,0~N X i ,()6,,1Λ=i ,而且61,,X X Λ相互独立,所以()3,0~321N X X X ++,()3,0~654N X X X ++.…………………2分因此()1,0~3321N X X X ++,()1,0~3654N X X X ++.…………………2分 而且3321X X X ++与3654X X X ++相互独立.因此由2χ分布的定义,知 ()2~33226542321χ⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛++X X X X X X ,…………………2分即()()()2~3226542321χX X X X X X +++++. 取31=c ,则有()2~2χcY .…………………2分十一.(本题满分12分) 设总体X 的密度函数为()⎪⎩⎪⎨⎧<<=-其它;0101x xx f θθθ ,其中0>θ为参数,()n X X X ,,,21Λ是从总体X 中抽取的一个简单随机样本.⑴ 求参数θ的矩估计量Mθˆ(6分);⑵ 求参数θ的最大似然估计量L θˆ(6分). 证明:⑴ ()()11101+==⋅==⎰⎰⎰-+∞∞-θθθθθθθdx x dx xx dx x xf X E ;,…………………3分因此,得方程 ()1+=θθX E ,解方程,得 ()()21⎪⎪⎭⎫⎝⎛-=X E X E θ,将()X E 替换成X ,得参数θ的矩估计量为21ˆ⎪⎪⎭⎫ ⎝⎛-=X X M θ.…………………3分 ⑵ 似然函数为 ()()∏∏=-===ni i n ni i x x f L 1121θθθθ;,…………………2分取对数,得 ()()∑=-+=ni ix nL 1ln 1ln 2ln θθθ,对θ求导,得 ()⎪⎭⎫⎝⎛+=+=∑∑==ni i ni i x n x n L d d 11ln 21ln 212ln θθθθθθ,所以,得似然方程 0ln 211=⎪⎭⎫⎝⎛+∑=ni i x n θθ,…………………2分 解似然方程,得21ln ⎪⎪⎪⎪⎭⎫ ⎝⎛=∑=ni i x n θ, 因此,参数θ的最大似然估计量为 21ln ˆ⎪⎪⎪⎪⎭⎫⎝⎛=∑=ni i L X n θ.…………………2分北 京 交 通 大 学2010~2011学年第一学期概率论与数理统计期末考试试卷(A 卷)答案一.(本题满分8分)一间宿舍内住有6位同学,求这6位同学中至少有2位的生日在同一个月份(不考虑出生所在的年份)的概率. 解:设=A “6位同学中至少有2位的生日在同一个月份”. 所求概率为()A P .…………………………..1分 考虑事件A 的逆事件:=A “6位同学的生日各在不同的月份”.…………………………..1分()()777199074.02985984665280112116612=-=-=-=P A P A P . ……..2分 …..2分 …………..2分二.(本题满分8分)有朋友自远方来访,他乘火车、轮船、汽车、飞机来的概率分别是3.0,1.0,4.0和2.0.如果他乘火车、轮船、汽车、飞机来的话,迟到的概率分别为31、72、52、61,结果他未迟到,试问他乘火车来的概率是多少? 解:设=B “朋友来访迟到”,=1A “朋友乘火车来访”, =2A “朋友乘轮船来访”,=3A “朋友乘汽车来访”, =4A “朋友乘飞机来访”.……..1分 所求概率为()B A P 1,由Bayes 公式得 ……..1分 ()()()()()()()()()()()44332211111A B P A P A B P A P A B P A P A B P A P A B P A P B A P +++=…..2分⎪⎭⎫ ⎝⎛-⨯+⎪⎭⎫ ⎝⎛-⨯+⎪⎭⎫ ⎝⎛-⨯+⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯=6112.05214.07211.03113.03113.0 ……..2分652.0534.0751.0323.0323.0⨯+⨯+⨯+⨯⨯=1050.29494382356==. ……………..2分三.(本题满分8分)设随机变量X 的密度函数为()⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤-<≤=其它010525525025x x x xx f试求随机变量X 的分布函数()x F . 解:当0<x 时, ()()00===⎰⎰∞-∞-xx dt dt t f x F ; …….1分当50<≤x 时,()()50250200x dt t dt dt t f x F xx=+==⎰⎰⎰∞-∞-;……..2分当105<≤x 时,()()255055015212552250x x dt t dt t dt dt t f x F xx -+-=⎪⎭⎫⎝⎛-++==⎰⎰⎰⎰∞-∞-;……..2分当10≥x 时,()()102552250105505=+⎪⎭⎫⎝⎛-++==⎰⎰⎰⎰⎰∞-∞-xx x dt dt t dt t dt dt t f x F .……..2分因此,随机变量X 的分布函数为()⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤-+-<≤<=10110550152150500022x x xx x x x x F .……..1分四.(本题满分8分)试决定常数C ,使得!k C p kk λ=,()Λ,2,1=k 为某一离散型随机变量X 的分布列,其中0>λ为参数. 解:若使!k Cp kk λ=,()Λ,2,1=k 是某一随机变量X 的分布列,当且仅当0!≥=k Cp kk λ,()Λ,2,1=k ,而且11=∑∞=k k p , ……..2分因此有()11111!!kkk k k k p CC C e k k λλλ∞∞∞=======-∑∑∑,……..4分所以有 11C e λ=-.……..2分 五.(本题满分8分)设U 与V 分别是掷一颗均匀的骰子两次先后出现的点数.试求一元二次方程02=++V Ux x有两个不相等的实数根的概率. 解:一元二次方程02=++V Ux x 有两个不相等的实数根的充分必要条件是042>-V U ,或者V U 42>.……..2分又()V U ,的联合分布列为()361,===j V i U P ,()6,,2,1,Λ=j i .……..2分 所以,一元二次方程02=++V Ux x 有两个不相等的实数根的充分必要条件是()V U ,的取值应为下列情形之一:()1,3,()2,3,()1,4,()2,4,()3,4,()1,5,()2,5,()3,5,()4,5,()5,5,()6,5,()1,6,()2,6,()3,6,()4,6,()5,6,()6,6.……..2分()361702==++有两个不相等的实数根一元二次方程V Ux x P .……..2分 六.(本题满分8分)设随机变量X 服从区间()1,2-上的均匀分布,试求随机变量2X Y =的密度函数()y f Y . 解:随机变量X 的密度函数为()⎪⎩⎪⎨⎧<<-=其它01231x x p X .……..1分设2X Y =的分布函数为()y F Y ,则有 ()()()y X P y Y P y F Y ≤=≤=2.……..1分 当0≤y 时,()0=y F Y ;当40≤<y 时,()()()()()y F y F y X y P y X P y F XX Y --=≤≤-=≤=2;当4>y 时,()1=y F Y .……..1分综上所述,得随机变量2X Y =的分布函数为()()()⎪⎩⎪⎨⎧≥<<--≤=11400y y y F y F y y F XXY .……..1分 因此,随机变量2X Y =的密度函数为()()()()()⎪⎩⎪⎨⎧<<-+='=其它04021y y p y p y y F y p XXY Y .……..1分当10<<y 时,10<<y ,01<-<-y ,于是有()31=y p X,()31=-y p X,因此有()()()()yy y p y p y y p XXY 3131312121=⎪⎭⎫ ⎝⎛+=-+=; 当41<<y 时,21<<y ,12-<-<-y ,于是有()0=y p X,()31=-y p X, 因此有()()()()yy y p y p y y p XXY 613102121=⎪⎭⎫ ⎝⎛+=-+=.……..2分 因此,随机变量2X Y =的密度函数为()⎪⎪⎪⎩⎪⎪⎪⎨⎧<<≤<=其它41611031y y y y y p Y .……..1分七.(本题满分8分)试解释“在大量独立重复试验中,小概率事件几乎必然发生”的确切意思. 解:设A 是一随机事件,其概率()10<<A P .……..1分现独立重复做试验,则在n 次独立重复试验中,事件A 至少发生一次的概率为()()nA P --11.……..2分令∞→n ,则有()()()()()11lim 111lim =--=--∞→∞→nn nn A P A P .……..2分这表明,只要试验次数n 充分大,不管随机事件A 的概率多么小,随机事件A 在n 次独立重复试验中至少发生一次的概率与1可以任意接近,即随机事件A 在n 次独立重复试验中至少发生一次是几乎必然的.……..3分八.(本题满分8分)一公寓有200户住户,一户住户拥有汽车辆数X 的分布列为试用中心极限定理近似计算,至少要设多少车位,才能使每辆汽车都具有一个车位的概率至少为95.0?(设:()95.0645.1=Φ,其中()x Φ是()1,0N 的分布函数.) 解:设需要的车位数为n ,i X 表示第i 个住户需要的车位数,()200,,2,1Λ=X .则随机变量20021,,,X X X Λ独立同分布,而且()2.13.026.011.00=⨯+⨯+⨯=i X E ,()8.13.026.011.002222=⨯+⨯+⨯=i X E ,……..2分 于是有()()()()36.02.18.1222=-=-=i i i X E X E X D .……..1分由题意,得⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-≤⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛≤∑∑∑∑∑∑======200120012001200120012001i i i i i i i i i i i i X D X E n X D X E X P n X P ⎪⎪⎪⎪⎪⎭⎫⎝⎛⨯⨯-≤⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=∑∑∑===36.02002.1200200120012001n X D X E X P i i i i i i⎪⎭⎫⎝⎛-Φ≈72240n .……..3分由题设,95.072240≥⎪⎭⎫⎝⎛-Φn ,因此得645.172240≥-n , 所以有 9583.25372645.1240=⨯+≥n .因此至少需要254个车位,才能满足题设要求.……..2分九.(本题满分8分)设随机变量X 与Y 相互独立,而且都服从参数为λ的指数分布,令Y X V Y X U +=-=3,34,试求二维随机变量()V U ,的相关系数V U ,ρ. 解:因为X 与Y 都服从参数为λ的指数分布,所以()()λ1==Y E X E ,()()21var var λ==Y X .……..1分于是有()()()()λλλ113143434=⋅-⋅=-=-=Y E X E Y X E U E ,()()()()λλλ411333=+⋅=+=+=Y E X E Y X E V E .再由X 与Y 的相互独立性,得()()()()2222519116var 9var 1634var var λλλ=⋅+⋅=+=-=Y X Y X U ,()()()()22210119var 93var var λλλ=+⋅=+=+=Y E X Y X V . ……..3分()()()[]()223512334Y XY X E Y X Y X E UV E --=+-= ()()()223512Y E XY E X E --=()()()()()()()()()()22var 35var 12Y E Y Y E X E X E X +⋅-⋅-+⋅=⎪⎭⎫⎝⎛+⋅-⋅⋅-⎪⎭⎫ ⎝⎛+⋅=22221131151112λλλλλλ2222136524λλλλ=--=.……..2分所以有()()()()2294113,cov λλλλ=⋅-=-=V E U E UV E V U .因此有()()()105910259var var ,cov 222,===λλλρV U V U VU .……..2分 十.(本题满分8分)设总体X 存在二阶矩,总体期望()μ=X E ,总体方差()2σ=X D ,()n X X X ,,,21Λ是从中抽取的一个样本,X 是样本均值,2S 是样本方差.⑴ 计算方差()X D (4分);⑵ 如果()2,~σμN X ,计算方差()2S D (4分).解:⑴ ()()n n n n X D n X n D X D n i n i i n i i 2221221211111σσσ=⋅===⎪⎭⎫ ⎝⎛=∑∑∑===.……..4分⑵ 因为总体()2,~σμN X ,()n X X X ,,,21Λ是取自总体X 中的一个样本,所以()()1~1222--n S n χσ.……..2分所以,()()()()()()12121111142422242222-=-⋅-=⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛-⋅-=n n n S n D n S n n D S D σσσσσσ.……..2分十一.(本题满分10分)设()10<<B P ,证明:随机事件A 与B 相互独立的充分必要条件是()()1=+B A P B A P .证明:必要性:设随机事件A 与B 相互独立,所以随机事件A 与B 也相互独立.因此有()()A P B A P =, ()()A P B A P =,……..3分因此有()()()()1=+=+A P A P B A P B A P .……..2分 充分性:由于 ()()1=+B A P B A P , 所以有 ()()()B A P B A P B A P =-=1.因此有()()()()()()()()()B P AB P A P B P AB A P B P B A P B P AB P --=--==11.……..3分 由()10<<B P ,得()01>-B P ,因此有 ()()()()()()()AB P A P B P B P AB P -=-1.整理,得 ()()()()()()()B P AB P B P A P AB P B P AB P -=-. 即得 ()()()B P A P AB P =.这表明随机事件A 与B 相互独立.……..2分十二.(本题满分10分)⑴ 设总体X 等可能地取值1,2,3,Λ,N ,其中N 是未知的正整数.()n X X X ,,,21Λ是取自该总体中的一个样本.试求N 的最大似然估计量.(7分)⑵ 某单位的自行车棚内存放了N 辆自行车,其编号分别为1,2,3,…,N ,假定职工从车棚中取出自行车是等可能的.某人连续12天记录下他观察到的取走的第一辆自行车的编号为12, 203, 23, 7, 239, 45, 73, 189, 95, 112, 73, 159,试求在上述样本观测值下,N 的最大似然估计值.(3分) 解:⑴ 总体X 的分布列为 {}Nx X P 1==, ()N x ,,2,1Λ=. 所以似然函数为 (){}nni i i N x X P N L 11===∏=, ()()n i N x i ,,2,1,1Λ=≤≤.……..3分当N 越小时,似然函数()N L 越大;另一方面,N 还要满足:()n i N x i ,,2,1,1Λ=≤≤,即{}()n n x x x x N =≥,,,max 21Λ.所以,N 的最大似然估计量为()n X N =ˆ.……..4分 ⑵ 由上面的所求,可知N 的最大似然估计值为()239ˆ==n x N .……..3分北 京 交 通 大 学2012~2013学年第一学期概率论与数理统计期末考试试卷(A 卷)参 考 答 案某些标准正态分布的数值其中()x Φ是标准正态分布的分布函数. 一.(本题满分5分)口袋中有10个球,分别标有号码1到10,从中任意取出4个球.求最小号码是5的概率. 解:设=A “取出4个球,最小号码是5”.10个球取出4个球,有取法410C 种.………….2分若最小号码是5,有取法35C 种,因此()2112101041035===C C A P .………….3分二.(本题满分5分)一间宿舍住有5位同学,求他们之中至少有两位的生日在同一个月份的概率. 解:设=A “5位同学至少有两位的生日在同一月份”.5位同学,每一位在12个月份中任意选择,共有512种可能.………….2分 考虑A 的逆事件A ,它表示5位同学中,没有两位的生日是同一月份的.则 ()()6181.012115512=-=-=PA P A P .………….3分三.(本题满分8分),已知男人中%5的是色盲患者,女人中色盲患者占%25.0,今从男女比例为21:22的人群中随机地挑选一人,发现是色盲患者,问此人是男性的概率是多少? 解:设=A “任选一人为男性”,=B “任选一人是色盲患者”. 所求概率为()B A P .由Bayes 公式,得 ()()()()()()()A B P A P A B P A P A B P A P B A P +=………….3分9544.00025.0432105.0432205.04322=⨯+⨯⨯=.………….5分 四.(本题满分8分)在一小时内,甲、乙、丙三台机床需要维修的概率分别是9.0,8.0和85.0,而且这三台机床是否需要维修是相互独立的.求在一小时内⑴ 至少有一台机床不需要维修的概率;(4分) ⑵ 至多只有一台机床需要维修的概率.(4分) 解:设{}甲机床需要维修=A ,{}乙机床需要维修=B ,{}丙机床需要维修=C .则 ⑴ {}()()C B A P C B A P P ⋃⋃-=⋃⋃=1维修至少有一台机床不需要…….2分 ()()()388.085.08.09.011=⨯⨯-=-=C P B P A P .………….2分⑵ {}()C B A C B A C B A C B A P P ⋃⋃⋃=修至多有一台机床需要维………….2分 ()()()()C B A P C B A P C B A P C B A P +++=()()()()()()()()()()()()C P B P A P C P B P A P C P B P A P C P B P A P +++=059.085.02.01.015.08.01.015.02.09.015.02.01.0=⨯⨯+⨯⨯+⨯⨯+⨯⨯=.…….2分五.(本题满分8分)试确定常数a ,b ,c ,d 的值,使得函数()⎪⎩⎪⎨⎧>≤≤++<=e x d e x d cx x bx x ax F 1ln 1为一连续型随机变量的分布函数. 解:因为连续型随机变量的分布函数()x F 是连续函数,因此函数()x F 在分段点1=x 及e x =处连续,所以有()()()10101F F F =+=-,即有d c a +=.………….2分 ()()()e F e F e F =+=-00,即有d d ce be =++.………….2分 又分布函数()x F 必须满足:()0lim =-∞→x F x ,()1lim =+∞→x F x .因而有()0lim ==-∞→x F a x ,()1lim ==+∞→x F d x .………….2分由此得方程组 ⎩⎨⎧=++=+1101ce be c ,解此方程组,得1,1,1,0=-===d c b a .………….2分六.(本题满分8分)某地区成年男子的体重X (以kg 计)服从正态分布()2,σμN .若已知()5.070=≤X P ,()25.060=≤X P ,⑴ 求μ与σ的值;⑵ 如果在该地区随机抽取5名成年男子,求至少有两个人的体重超过kg 65的概率. 解:⑴ 由已知()5.0707070=⎪⎭⎫⎝⎛-Φ=⎪⎭⎫ ⎝⎛-≤-=≤σμσμσμX P X P ,()25.0606060=⎪⎭⎫⎝⎛-Φ=⎪⎭⎫ ⎝⎛-≤-=≤σμσμσμX P X P ………….2分 得⎪⎪⎩⎪⎪⎨⎧=-=⎪⎭⎫ ⎝⎛-Φ-=⎪⎭⎫ ⎝⎛-Φ75.025.016015.070σμσμ .即⎪⎪⎩⎪⎪⎨⎧=⎪⎭⎫ ⎝⎛--Φ=⎪⎭⎫⎝⎛-Φ75.0605.070σμσμ ,查正态分布表,得⎪⎩⎪⎨⎧=--=-675.060070σμσμ ,解方程组,得70=μ,81.14=σ.………….2分⑵ 设=A “从该地区任意选取一名成年男子,其体重超过kg 65”.则()()⎪⎭⎫⎝⎛-≤--=⎪⎭⎫ ⎝⎛-≤--=≤-=>3376.081.1470181.14706581.1470165165X P X P X P X P ()()6631.03376.03376.01=Φ=-Φ-=.………….2分 设X :该地区随机抽取的5名成年男子中体重超过kg 65的人数. 则 ()6631.0,5~B X .设=B “5人中至少有两人的体重超过kg 65. 则 ()()()()()101112===-=≤-=≥=X P X P X P X P B P9530.03369.06631.03369.06631.0141155005=⨯⨯-⨯⨯-C C . (已知()75.0675.0=Φ,()6631.034.0=Φ)………….2分七.(本题满分8分) 设二维随机变量()Y X ,的联合密度函数为()()⎪⎩⎪⎨⎧-<<+=其它01045,22x y y x y x f求:随机变量Y 的边缘密度函数()y f Y . 解:当10<<y 时, ()()()()⎰⎰⎰----+∞∞-+=+==yyyY dx y xdx y x dx y x f y f 1021122545,………….3分()()()6211511312531252123103y y y y y xy x yx +-=⎪⎭⎫ ⎝⎛-+-⋅=⎪⎭⎫⎝⎛+⨯=-=.…….3分所以,随机变量Y 的边缘密度函数为()()⎪⎩⎪⎨⎧<<+-=其它01062115y y y y f Y .………….2分 八.(本题满分10分) 设n X X X ,,,21Λ是n 个独立同分布的随机变量,1X 服从参数为λ的指数分布.令{}n X X X T ,,,m in 21Λ=,求随机变量T 的密度函数. 解:对于任意的实数x ,随机变量T 的分布函数为 ()(){}()x X X X P x T P x F n T ≤=≤=,,,m in 21Λ{}()x X X X P n >-=,,,m in 121Λ()x X x X x X P n >>>-=,,,121Λ …………………….2分()()()x X P x X P x X P n >>>-=Λ211()()()()()()()()nX n x F x X P x X P x X P --=≤-≤-≤--=11111121Λ.………….3分所以,随机变量T 的密度函数为()()()()()x f x F n x F x f X n X T T 11--='=. ………….2分如果1X 服从参数为λ的指数分布,则1X 的密度函数为()⎩⎨⎧≤>=-0x x e x f xX λλ . 分布函数为()()⎩⎨⎧≤>-==-∞-⎰0001x x e dt t f x F xxX X λ .………….1分 因此此时{}n X X X T ,,,m in 21Λ=的密度函数为()()()()()x n x n xX n X T e n e e n x f x F n x f λλλλλ-----=⋅⋅=-=111,()0>x .………….2分九.(本题满分8分) 设随机向量()321,,X X X 间的相关系数分别为312312,,ρρρ,且,()()()0321===X E X E X E ,()()()02321>===σX D X D X D .令:211X X Y +=,322X X Y +=,133X X Y +=.证明:321,,Y Y Y 两两不相关的充要条件为1312312-=++ρρρ.证明:充分性:如果1312312-=++ρρρ,则有01312312=+++ρρρ.而 ()()322121,cov ,cov X X X X Y Y ++= ()()()()32223121,cov ,cov ,cov ,cov X X X X X X X X +++=()()()()()()()3223231132112var X D X D X X D X D X D X D ⋅++⋅+⋅=ρρρ ()0121323122232213212=+++=+++=σρρρσρσσρσρ………….3分 这说明随机变量1Y 与2Y 不相关.同理可得 ()0,cov 32=Y Y ,()0,cov 13=Y Y ,这就证明了随机变量321,,Y Y Y 两两不相关. ………….1分必要性:如果随机变量321,,Y Y Y 两两不相关,则有()0,cov 21=Y Y ,()0,cov 32=Y Y ,()0,cov 13=Y Y而由上面的计算,得()()01,cov 213231221=+++=σρρρY Y , ………….3分由于02>σ,所以1132312+++ρρρ,即1132312-=++ρρρ. ………….1分十.(本题满分8分) 设总体X 的密度函数为()⎩⎨⎧<<-=其它若011x xx f()5021,,,X X X Λ是从X 中抽取的一个样本,X 与2S 分别表示样本均值与样本方差.求()X E ,()X D ,()2S E .解:因为()()011=⋅==⎰⎰-+∞∞-dx x x dx x xf X E ,()()2121311222==⋅==⎰⎰⎰-+∞∞-dx x dx x xdx x f x XE , 所以,()()()()2122=-=X E X E X D . 所以,()()0==X E X E ,………….2分()()10015021===n X D X D ,………….3分 ()()212==X D S E .………….3分十一.(本题满分8分) 设总体()4,0~N X ,()921,,,X X X Λ是取自该总体中的一个样本.求系数a 、b 、c ,使得统计量()()()298762543221X X X X c X X X b X X a T ++++++++=服从2χ分布,并求出自由度. 解:因为()921,,,X X X Λ是取自总体()4,0N 中的简单随机样本,所以()4,0~N X i ,()9,,2,1Λ=i而且921,,,X X X Λ相互独立.所以()8,0~21N X X +,()12,0~543N X X X ++,()16,0~9876N X X X X +++.…….2分所以,()1,0~821N X X +,()1,0~12543N X X X ++,()1,0~169876N X X X X +++.…….2分 因此,()()()()3~161282298762543221χX X X X X X X X X ++++++++.…….2分因此,当161,121,81===c b a 时,统计量()()()()3~161282298762543221χX X X X X X X X X T ++++++++=,自由度为3.………….2分十二.(本题满分8分)一家有500间客房的旅馆的每间客房装有一台kW 2(千瓦)的空调机,该旅馆的开房率为%80.求需要多少电力,才能有%99的可能性保证有足够的电力使用空调机. 解:设X :该旅馆开房数目,则()8.0,500~B X .………….2分a :向该旅馆供应的电力.则若电力足够使用空调机,当且仅当a X ≤2.因此()⎪⎪⎪⎪⎭⎫⎝⎛⨯⨯⨯-Φ≈⎪⎪⎪⎪⎭⎫⎝⎛⨯⨯⨯-≤⨯⨯⨯-=⎪⎭⎫ ⎝⎛≤=≤2.08.05008.050022.08.05008.050022.08.05008.050022a a X P a X P a X P . 由题设,99.02.08.05008.05002≥⎪⎪⎪⎪⎭⎫⎝⎛⨯⨯⨯-Φa ,………….3分 查表,得33.22.08.05008.05002≥⨯⨯⨯-a,………….1分 所以有 ()68.8412.08.050033.28.05002=⨯⨯⨯+⨯⨯≥a .即至少向该旅馆供电842千瓦,才能保证该旅馆的空调机正常使用.………….2分十三.(本题满分8分) 设总体X 的密度函数为()()⎩⎨⎧≤>=+-cx cx x c x f 01θθθ. 其中0>c 是已知常数,而1>θ是未知参数.()n X X X ,,,21Λ是从该总体中抽取的一个样本,试求参数θ的最大似然估计量. 解:似然函数为()()()()()121111+-=+-====∏∏θθθθθθθn n n ni i n i i x x x c x c x f L Λ………….2分所以,()()∑=+-+=ni i x c n n L 1ln 1ln ln ln θθθθ.所以,()∑=-+=ni i x c n nL d d 1ln ln ln θθθ.………….2分 令:()0ln =θθL d d,即0ln ln 1=-+∑=ni i x c n n θ,………….2分得到似然函数的唯一驻点cn x nni iln ln 1-=∑=θ.所以参数θ的最大似然估计量为cn Xnni iln ln ˆ1-=∑=θ.………….2分。
北 京 交 通 大 学2010-2011学年第一学期随机过程期末考试试卷(A 卷)学院___________ 专业___________________ 班级____________学号___________ 姓名__________一.(本题满分8分) 一.(本题满分20分)请写出下列概念的定义(每道小题4分): ⑴ 计数过程(){}t N 的平稳增量性;⑵ T 是随机序列{}n X 的停时;⑶ 更新函数;⑷ 马氏链的正常返状态;⑸ 马氏链的遍历状态二.(本题满分12分)如果计数过程(){}t N 满足:⑴ ()00=N ;⑵ (){}t N 具有独立增量性和平稳增量性;⑶ (){}t N 具有普通性:即对于任何0≥t ,当0+→h 时,有()()()h o h t N P +==λ1,()()()h o t N P =≥2,其中0>λ为常数.证明:(){}t N 是强度为λ的Poisson 过程.探险家不幸落入漆黑的溶洞,有两条路供随机选择:沿第一条路摸索2小时可以走出溶洞,沿第二条路摸索1小时返回原地.回到原地后只能再次进行随机选择.用T表示他走出溶洞所用的时间,使用更新间隔和停时描述T,并计算他走出溶洞平均需要的时间.设(){}t N 是更新过程,{}n X 是其更新间隔,若以()1+t N S 是t 以后的第一个更新时刻.证明:⑴ 对于任何t ,()1+=t N T 是随机序列{}n X 的停时;⑵ 当()+∞<=1X E μ时,有()()()()11+=+t m S E t N μ,其中()t m 是更新函数.设{}n X 是马氏链,证明:⑴ i 是常返状态的充要条件是()+∞=∑∞=0n n ii p ;⑵ 如果i 是常返状态,j i →,则j i ↔,且j 也是常返状态.对于马氏链{}n X ,如果j 不是正常返状态,则对任何状态i ,有()0l i m =∞→n ij n p .。
《概率论与数理统计》期中考试试题(一)一、选择题(本题共6小题,每小题2分,共12分)1.某射手向一目标射击两次,A i 表示事件“第i 次射击命中目标”,i =1,2,B 表示事件“仅第一次射击命中目标”,则B =( ) A .A 1A 2 B .21A A C .21A A D .21A A2.某人每次射击命中目标的概率为p (0<p <1),他向目标连续射击,则第一次未中第二次命中的概率为( )A .p 2B .(1-p )2C .1-2pD .p (1-p )3.已知P (A )=0.4,P (B )=0.5,且A ⊂B ,则P (A |B )=( ) A .0 B .0.4 C .0.8D .14.一批产品中有5%不合格品,而合格品中一等品占60%,从这批产品中任取一件,则该件产品是一等品的概率为( ) A .0.2 B .0.30 C .0.38 D .0.575.下列选项正确的是( ) A .互为对立事件一定是互不相容的 B .互为独立的事件一定是互不相容的C .互为独立的随机变量一定是不相关的D .不相关的随机变量不一定是独立的6.设随机变量X 与Y 相互独立,X 服从参数2为的指数分布,Y ~B (6,21),则D(X-Y)=( )A .1-B .74 C .54- D .12-二、填空题(本题共9小题,每小题2分,共18分)7.同时扔3枚均匀硬币,则至多有一枚硬币正面向上的概率为________. 8.将3个球放入5个盒子中,则3个盒子中各有一球的概率为= _______ _. 9.从a 个白球和b 个黑球中不放回的任取k 次球,第k 次取的黑球的概率是= .10.设随机变量X ~U (0,5),且21Y X =-,则Y 的概率密度f Y (y )=________.11.设二维随机变量(X ,Y )的概率密度f (x ,y )=⎩⎨⎧≤≤≤≤,y x ,其他,0,10,101则P {X +Y ≤1}=________.12.设二维随机变量(,)X Y 的协方差矩阵是40.50.59⎛⎫⎪⎝⎭,则相关系数,X Y ρ= ________.13. 二维随机变量(X ,Y )(1,3,16,25,0.5)N -,则X ;Z X Y =-+ .14. 随机变量X 的概率密度函数为51,0()50,0xX e x f x x -⎧>⎪=⎨⎪≤⎩,Y 的概率密度函数为1,11()20,Y y f y others⎧-<<⎪=⎨⎪⎩,(,)X Y 相互独立,且Z X Y =+的概率密度函数为()z f z =15. 设随机变量X , 1()3,()3E X D X ==,则应用切比雪夫不等式估计得{|3|1}P X -≥≤三、计算题(本题共5小题,共70分)16.(8分)某物品成箱出售,每箱20件,假设各箱含0,1和2件次品的概率分别是0.7,0.2和0.1,顾客在购买时,售货员随机取出一箱,顾客开箱任取4件检查,若无次品,顾客则买下该箱物品,否则退货.试求:(1) 顾客买下该箱物品的概率;(2) 现顾客买下该箱物品,问该箱物品确实没有次品的概率.17.(20分) 设二维随机变量(X ,Y )只能取下列点:(0,0),(-1,1),(-1,31),(2,0),且取这些值的概率依次为61,a ,121,125. 求(1)a =?并写出(X ,Y )的分布律;(2) (X ,Y )关于X ,Y 的边缘分布律;问X ,Y 是否独立; (3){0}P X Y +<; (4) 1X Y =的条件分布律;(5)相关系数,X Y ρ18.(8分) 设测量距离时产生的随机误差X ~N (0,102)(单位:m),现作三次独立测量,记Y 为三次测量中误差绝对值大于19.6的次数,已知Φ(1.96)=0.975.(1)求每次测量中误差绝对值大于19.6的概率p ; (2)问Y 服从何种分布,并写出其分布律;求E (Y ).19.(24分)设二维随机变量(,)X Y 的联合密度函数为2,0,0(,)0,x y ke x y p x y others --⎧>>=⎨⎩ 求: (1) 常数k 的值;(2) 分布函数(,)F x y ;(3) 边缘密度函数()X p x 及()Y p y ,X 与Y 是否独立;(4) 概率{}P Y X ≤, (5)求Z X Y =+的概率密度; (6)相关系数,X Y ρ20.(10分)假定暑假市场上对冰淇淋的需求量是随机变量X 盒,它服从区间[200,400]上的均匀分布,设每售出一盒冰淇淋可为小店挣得1元,但假如销售不出而屯积于冰箱,则每盒赔3元。
北 京 交 通 大 学2009~2010学年第一学期概率论与数理统计期末考试试卷(A 卷)答案一.(本题满分8分)某城市有汽车100000辆,牌照编号从00000到99999.一人进城,偶然遇到一辆车,求该车牌照号中含有数字8的概率. 解:设事件{}8汽车牌照号中含有数字=A ,所求概率为()A P .…………….2分()()40951.01091155=-=-=A P A P .…………….6分二.(本题满分8分)设随机事件A ,B ,C 满足:()()()41===C P B P A P ,()0=AB P ,()()161==BC P AC P .求随机事件A ,B ,C 都不发生的概率. 解:由于AB ABC ⊂,所以由概率的非负性以及题设,得()()00=≤≤AB P ABC P ,因此有()0=ABC P .…………….2分所求概率为()C B A P .注意到C B A C B A ⋃⋃=,因此有…………….2分 ()()C B A P C B A P ⋃⋃-=1…………….2分()()()()()()()ABC P BC P AC P AB P C P B P A P -+++---=1 83016116104141411=-+++---=.…………….2分 三.(本题满分8分)某人向同一目标进行独立重复射击,每次射击时命中目标的概率均为p ,()10<<p .求此人第6次射击时恰好第2次命中目标的概率. 解:{}次命中目标次射击时恰好第第26P{}次射击时命中目标次目标,第次射击中命中前615P =…………….2分 {}{}次射击时命中目标第次目标次射击中命中前615P P ⋅=…………….2分()()424115151p p p p p C -=⋅-=.…………….4分四.(本题满分8分)某种型号的电子元件的使用寿命X (单位:小时)具有以下的密度函数:()⎪⎩⎪⎨⎧≤>=1000100010002x x x x p .⑴ 求某只电子元件的使用寿命大于1500小时的概率(4分);⑵ 已知某只电子元件的使用寿命大于1500小时,求该元件的使用寿命大于2000小时的概率(4分). 解:⑴ 设{}小时于电子元件的使用寿命大1500=A ,则(){}()321000100015001500150021500=-===>=+∞+∞+∞⎰⎰x dx x dx x p X P A P .…………….4分 ⑵ 设{}小时于电子元件的使用寿命大0002=B ,则所求概率为()A B P . ()()(){}(){}()A P X P A P X X P A P AB P A B P 20002000,1500>=>>==.…………….2分而 {}()211000100020002000200022000=-===>+∞+∞+∞⎰⎰x dx x dx x p X P , 所以, (){}()4332212000==>=A P X P A B P .…………….2分五.(本题满分8分)设随机变量X 服从区间[]2,1-上的均匀分布,而随机变量⎩⎨⎧≤->=0101X X Y . 求数学期望()Y E . 解:(){}(){}1111-=⨯-+=⨯=Y P Y P Y E …………….2分 {}(){}0101≤⨯-+>⨯=X P X P …………….2分()()⎰⎰⎰⎰-∞-+∞-=-=0120003131dx dx dx x p dx x p X X313132=-=.…………….4分 六.(本题满分8分)设在时间t (分钟)内,通过某路口的汽车数()t X 服从参数为t λ的Poisson (泊松)分布,其中0>λ为常数.已知在1分钟内没有汽车通过的概率为2.0,求在2分钟内至少有1辆汽车通过的概率. 解:()t X 的分布列为(){}()tk e k t k t X P λλ-==!,()Λ,2,1,0=k .…………….2分因此在1=t 分钟内,通过的汽车数为 (){}λλ-==e k k X P k!1,()Λ,2,1,0=k .由题设,(){}2.001===-λe X P ,所以5ln =λ.…………….3分因此,(){}(){}()252425111!0521021125ln 220=-=-=⋅-==-=≥--e e X P X P λ.…………….3分 七.(本题满分8分) 设二维随机变量()Y X ,的联合密度函数为()⎩⎨⎧<<<<=其它020,101,xy x y x f 求:⑴ 随机变量Y 边缘密度函数()y f Y (4分);⑵ 方差()Y D (4分). 解:⑴ ()()⎰+∞∞-=dx y x f y f Y ,.因此,当0≤y 或者2≥y 时,()0=y f Y .…………….1分 当20<<y 时,()()2,2y dx dx y x f y f y Y ===⎰⎰∞+∞-. 所以, ()⎪⎩⎪⎨⎧<<=其它202y y y f Y .…………….3分⑵ ()()34621203202====⎰⎰+∞∞-y dy y dy y yf Y E Y . ()()2821242322====⎰⎰∞+∞-ydy y dy y f y Y E Y …………….2分所以, ()()()()929162342222=-=⎪⎭⎫⎝⎛-=-=Y E Y E Y D .…………….2分八.(本题满分8分)现有奖券10000张,其中一等奖一张,奖金1000元;二等奖10张,每张奖金200元;三等奖100张,每张奖金10元;四等奖1000张,每张奖金2元.而购买每张奖券2元,试计算买一张奖券的平均收益. 解:设X :购买一张奖券所得的奖金. 则X 的分布律为所以,…………….2分 ()531000010002100001001010000102001000011000=⨯+⨯+⨯+⨯=X E …………….4分 再令Y 表示购买一张奖券的收益,则2-=X Y ,因此 ()()572532-=-=-=X E Y E (元).…………….2分 九.(本题满分8分)两家电影院竞争1000名观众,假设每位观众等可能地选择两个电影院中的一个,而且互不影响.试用中心极限定理近似计算:甲电影院应设多少个座位,才能保证“因缺少座位而使观众离去”的概率不超过1%?附:标准正态分布()1,0N 的分布函数()x Φ的某些数值表解:设甲电影院应设N 个座位才符合要求.设1000名观众中有X 名选择甲电影院,则⎪⎭⎫⎝⎛21,1000~B X .…………….1分 由题意,{}99.0≥≤N X P .而 ()500211000=⨯=X E ,()25021211000=⨯⨯=X D .…………….2分 所以,{}()()()()⎭⎬⎫⎩⎨⎧-≤-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-≤-=≤250500250500N X P X D X E N X D X E X P N X P99.0250500≥⎪⎭⎫⎝⎛-Φ≈N …………….3分查表得33.2250500≥-N ,所以有 84.53625033.2500=⨯+≥N . 所以,应至少设537个座位,才符合要求.…………….2分十.(本题满分8分) 设总体X 的密度函数为()⎩⎨⎧<<=其它0102x x x f , ()n X X X ,,,21Λ是从总体X 中抽取的一个简单随机样本.令()()n n X X X X ,,,max 21Λ=,试求()n X 的密度函数()()x f n . 解:总体X 的分布函数为()⎪⎩⎪⎨⎧≥<<≤=111002x x x x x F .…………….3分 因此()n X 的密度函数为()()()()()()⎪⎩⎪⎨⎧<<⋅==--其它102121x x x n x f x F n x f n n n …………….4分⎩⎨⎧<<=-其它010212x nx n .…………….1分十一.(本题满分12分) 设总体X 的密度函数为()⎪⎩⎪⎨⎧≤>=+ααβαβαββx x x x f 01,; ,其中1,0>>βα为参数,()n X X X ,,,21Λ是从总体X 中抽取的一个简单随机样本.⑴ 当1=α时,求未知参数β的矩估计量M βˆ(6分);⑵ 当1=α时,求未知参数β的最大似然估计量Lβˆ(6分). 解:⑴ 当1=α时,密度函数为()⎩⎨⎧≤>=--10111x x x x f βββ,; , 所以,()()1111-==⋅==⎰⎰⎰+∞-+∞--+∞∞-βββββαββdx x dx xx dx x xf X E ,; .…………….2分解方程:()1-=ββX E ,得解:()()1-=X E X E β.…………….2分 将()X E 替换成X ,得未知参数β的矩估计量为1ˆ-=X X Mβ.…………….2分 ⑵ 当1=α时,密度函数为()⎩⎨⎧≤>=--10111x x x x f βββ,; , 所以,似然函数为()()()111+-===∏ββββi n ni i x x f L ,;,()()n i x i ,,1,1Λ=>.…………….2分所以,()()()n x x x n L Λ21ln 1ln ln +-=βββ.对β求导,得()n x x x nL Λ21ln ln -=∂∂ββ.…………….2分 令0ln =∂∂βL ,得方程()0ln 21=-n x x x nΛβ. 解得 ()n x x x nΛ21ln =β.因此,β的最大似然估计量为 ()n X X X nΛ21ln ˆ=β.…………….2分十二.(本题满分8分) 设总体()2,~σμN X ,()n X X X ,,,21Λ是从总体X 中抽取的一个简单随机样本.X 与2S 分别表示样本均值与样本方差.令nS X T 22-=,求()T E ,并指出统计量T 是否为2μ的无偏估计量.解:()μ=X E ,()nX D 2σ=,…………….2分由 ()()()()22X E X E X D -=,得 ()()()()2222μσ+=+=nX E X D XE .…………….2分又 ()22σ=S E ,所以有…………….1分()()⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-=n S E X E n S X E T E 2222()2222μμσ=-⎪⎪⎭⎫ ⎝⎛+=n S E n .…………….2分 这表明nS X T 22-=是2μ的无偏估计量.…………….1分北 京 交 通 大 学2010~2011学年第二学期概率论与数理统计期末考试试卷(A 卷)参 考 答 案一.(本题满分8分) 在正方形(){}1,1,≤≤=q p q p D :中任取一点()q p ,,求使得方程02=++q px x 有两个实根的概率. 解:设=A “方程02=++q px x 有两个实根”,所求概率为()A P . 设所取的两个数分别为p 与q ,则有11<<-p ,11<<-q . 因此该试验的样本空间与二维平面点集(){}11,11,<<-<<-=q p q p D :中的点一一对应.…………………………………2分随机事件A 与二维平面点集(){}04,2≥-=q p q p D A :,即与点集()⎭⎬⎫⎩⎨⎧≥=q p q p D A 4,2:…………………2分中的点一一对应.所以, ()241312412214113112=⎪⎪⎭⎫ ⎝⎛+=⨯⎪⎪⎭⎫⎝⎛+==--⎰p p dp p D D A P A的面积的面积.…………………4分 二.(本题满分8分)从以往的资料分析得知,在出口罐头导致索赔的事件中,有%50是质量问题;有%30是数量短缺问题;有%20是产品包装问题.又知在质量问题的争议中,经过协商解决的占%40;在数量短缺问题的争议中,经过协商解决的占%60;在产品包装问题的争议中,经过协商解决的占%75.如果在发生的索赔事件中,经过协商解决了,问这一事件不属于质量问题的概率是多少?解:设=1A “事件属于质量问题”,=2A “事件属于数量短缺问题”, =3A “事件属于产品包装问题”.=B “事件经过协商解决”.所求概率为()B A P 1.…………………2分 由Bayes 公式,得 ()()()()()()()()()332211111A B P A P A B P A P A B P A P A B P A P B A P ++=…………………2分37735849.075.02.060.03.040.05.040.05.0=⨯+⨯+⨯⨯=.…………………2分所以,()()62264151.037735849.01111=-=-=B A P B A P .…………………2分三.(本题满分8分)设随机事件A 满足:()1=A P .证明:对任意随机事件B ,有()()B P AB P =. 解:因为()1=A P ,所以,()()0111=-=-=A P A P .…………………2分 所以,对任意的随机事件B ,由A B A ⊂,以及概率的单调性及非负性,有 ()()00=≤≤A P B A P , 因此有()0=B A P .…………………2分所以,对任意的随机事件B ,由B A AB B ⋃=,以及AB 与B A 的互不相容性,得 ()()()()()()AB P AB P B A P AB P B A AB P B P =+=+=⋃=0.………………4分四.(本题满分8分)设随机变量X 的密度函数为()⎩⎨⎧<<+=其它0102x bx ax x p ,并且已知()21=X E ,试求方差()X D . 解:由()1=⎰+∞∞-dx x p 及()()21==⎰+∞∞-dx x xp X E ,得()()32112ba dx bx ax dx x p +=+==⎰⎰+∞∞-,…………………2分 ()()432112ba dx bx ax x dx x xp +=+==⎰⎰+∞∞-.…………………2分由此得线性方程组 ⎪⎩⎪⎨⎧=+=+2143132b a ba .解此线性方程组,得6,6-==b a .…………………2分 所以,()()()1035164166612222=⋅-⋅=-==⎰⎰+∞∞-dx x x x dx x p x XE ,所以,()()()()20121103222=⎪⎭⎫ ⎝⎛-=-=X E X E X D .…………………2分 五.(本题满分8分)经验表明,预定餐厅座位而不来就餐的顾客比例为%20.某餐厅有50个座位,但预定给了52位顾客,问到时顾客来到该餐厅而没有座位的概率是多少? 解:设X 表示52位预订了座位的顾客中来就餐的顾客数,则()8.0,52~B X .…………1分 则所求概率为()50>X P .…………………2分 ()()()525150=+==>X P X P X P …………………2分052525215151522.08.02.08.0⋅⋅+⋅⋅=C C 9330001278813.0=.…………………3分六.(本题满分10分)将一颗均匀的骰子独立地掷10次,令X 表示这10次出现的点数之和,求()X E (5分)与()X D (5分). 解:设k X 表示第k 次出现的点数,()10,,2,1Λ=k . 则1021,,,X X X Λ相互独立,而且∑==101k k X X .而k X 的分布列为 ()61==j X P k ,()6,,2,1Λ=j .…………………2分 所以,()()∑∑==⋅==⋅=616161j j k k j j X P j X E2721616161=⨯==∑=j j , ()10,,2,1Λ=k .…………………2分所以,由数学期望的性质,得()()35102727101101101=⨯===⎪⎭⎫ ⎝⎛=∑∑∑===k k k k k X E X E X E .…………………2分()()∑∑==⋅==⋅=612612261j j k kj j X P jXE691916161612=⨯==∑=j j , ()10,,2,1Λ=k .…………………2分所以,由1021,,,X X X Λ的相互独立性,及数学期望的性质,得()()345510691691101101101=⨯===⎪⎭⎫ ⎝⎛=∑∑∑===k k k k k X D X D X D .…………………2分七.(本题满分10分)设随机变量()1,0~N X ,求随机变量122+=X Y 的密度函数.解:由题意,随机变量X 的密度函数为()2221x X e x p -=π,()+∞<<∞-x .………1分设随机变量122+=X Y 的分布函数为()y F Y ,则有()()()⎪⎭⎫ ⎝⎛-≤=≤+=≤=211222y X P y X P y Y P y F Y ,…………………2分所以,当1≤y 时,()0=y F Y ;…………………1分 当1>y 时,()⎪⎪⎭⎫⎝⎛-≤≤--=⎪⎭⎫⎝⎛-≤=2121212y X y P y X P y F Y⎰⎰------==210221212222221y x y y x dx edx eππ…………………2分因此有 ()⎪⎪⎩⎪⎪⎨⎧≤>=⎰--112221022y y dxey F y x Y π ,…………………2分 所以,随机变量122+=X Y 的密度函数为()()⎪⎪⎩⎪⎪⎨⎧≤>⎪⎭⎫⎝⎛-⋅='=-⎪⎪⎭⎫⎝⎛--1121212122212212y y y ey F y p y Y Y π ()⎪⎩⎪⎨⎧≤>-=--10112141y y e y y π .…………………2分八.(本题满分10分) 设二维随机变量()Y X ,的联合密度函数为()⎩⎨⎧<<<=其它0103,x y x y x p , 求X 与Y 的相关系数Y X ,ρ. 解:()()4333,13102====⎰⎰⎰⎰⎰+∞∞-+∞∞-dx x dy x dx dxdy y x xp X E x , ()()83233,103100====⎰⎰⎰⎰⎰+∞∞-+∞∞-dx x ydy xdx dxdy y x yp Y E x,…………………2分()()5333,141322====⎰⎰⎰⎰⎰+∞∞-+∞∞-dx x dy x dx dxdy y x p x X E x,()()513,1410222====⎰⎰⎰⎰⎰+∞∞-+∞∞-dx x dy y xdx dxdy y x p y Y E x ,…………………2分()()103233,1041002====⎰⎰⎰⎰⎰+∞∞-+∞∞-dx x ydy dx x dxdy y x xyp XY E x ,所以有 ()()()()16038343103,cov =⨯-=-=Y E X E XY E Y X ,…………………2分 ()()()()8034353222=⎪⎭⎫ ⎝⎛-=-=X E X E X D , ()()()()320198351222=⎪⎭⎫ ⎝⎛-=-=Y E Y E Y D ,…………………2分 因此,有()()()573320198031603,cov ,=⋅==Y D X D Y X Y X ρ.…………………2分 九.(本题满分10分)一生产线生产的产品成箱包装,假设每箱平均重kg 50,标准差为kg 5.若用最大载重量为kg 5000的汽车来承运,试用中心极限定理计算每辆车最多装多少箱,才能保证汽车不超载的概率大于977.0(设()977.02=Φ,其中()x Φ是标准正态分布()1,0N 的分布函数).解:若记i X 表示第i 箱的重量,()n i ,,2,1Λ=.则n X X X ,,,21Λ独立同分布,且()()25,50==i i X D X E , ()n i ,,2,1Λ=.…………………2分再设n Y 表示一辆汽车最多可装n 箱货物时的重量,则有 ∑==ni i n X Y 1.由题意,得 ()977.010100055050005505000>⎪⎭⎫ ⎝⎛-Φ≈⎪⎭⎫ ⎝⎛-≤-=≤n n n n n n Y P Y P n n .…………4分查正态分布表,得 2101000>-=nnx ,…………………2分 当99=n 时,2005.1<=x ;98=n 时,202.2>=x ,故取98=n ,即每辆汽车最多装98箱货物.…………………2分十.(本题满分8分)设总体()1,0~N X ,()621,,,X X X Λ是取自该总体中的一个样本.令()()26542321X X X X X X Y +++++=,试确定常数c ,使得随机变量cY 服从2χ分布. 解:因为()1,0~N X i ,()6,,1Λ=i ,而且61,,X X Λ相互独立,所以()3,0~321N X X X ++,()3,0~654N X X X ++.…………………2分因此()1,0~3321N X X X ++,()1,0~3654N X X X ++.…………………2分 而且3321X X X ++与3654X X X ++相互独立.因此由2χ分布的定义,知 ()2~33226542321χ⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛++X X X X X X ,…………………2分即()()()2~3226542321χX X X X X X +++++. 取31=c ,则有()2~2χcY .…………………2分十一.(本题满分12分) 设总体X 的密度函数为()⎪⎩⎪⎨⎧<<=-其它;0101x xx f θθθ ,其中0>θ为参数,()n X X X ,,,21Λ是从总体X 中抽取的一个简单随机样本.⑴ 求参数θ的矩估计量Mθˆ(6分);⑵ 求参数θ的最大似然估计量L θˆ(6分). 证明:⑴ ()()11101+==⋅==⎰⎰⎰-+∞∞-θθθθθθθdx x dx xx dx x xf X E ;,…………………3分因此,得方程 ()1+=θθX E ,解方程,得 ()()21⎪⎪⎭⎫⎝⎛-=X E X E θ,将()X E 替换成X ,得参数θ的矩估计量为21ˆ⎪⎪⎭⎫ ⎝⎛-=X X M θ.…………………3分 ⑵ 似然函数为 ()()∏∏=-===ni i n ni i x x f L 1121θθθθ;,…………………2分取对数,得 ()()∑=-+=ni ix nL 1ln 1ln 2ln θθθ,对θ求导,得 ()⎪⎭⎫⎝⎛+=+=∑∑==ni i ni i x n x n L d d 11ln 21ln 212ln θθθθθθ,所以,得似然方程 0ln 211=⎪⎭⎫⎝⎛+∑=ni i x n θθ,…………………2分 解似然方程,得21ln ⎪⎪⎪⎪⎭⎫ ⎝⎛=∑=ni i x n θ, 因此,参数θ的最大似然估计量为 21ln ˆ⎪⎪⎪⎪⎭⎫⎝⎛=∑=ni i L X n θ.…………………2分北 京 交 通 大 学2010~2011学年第一学期概率论与数理统计期末考试试卷(A 卷)答案一.(本题满分8分)一间宿舍内住有6位同学,求这6位同学中至少有2位的生日在同一个月份(不考虑出生所在的年份)的概率. 解:设=A “6位同学中至少有2位的生日在同一个月份”. 所求概率为()A P .…………………………..1分 考虑事件A 的逆事件:=A “6位同学的生日各在不同的月份”.…………………………..1分()()777199074.02985984665280112116612=-=-=-=P A P A P . ……..2分 …..2分 …………..2分二.(本题满分8分)有朋友自远方来访,他乘火车、轮船、汽车、飞机来的概率分别是3.0,1.0,4.0和2.0.如果他乘火车、轮船、汽车、飞机来的话,迟到的概率分别为31、72、52、61,结果他未迟到,试问他乘火车来的概率是多少? 解:设=B “朋友来访迟到”,=1A “朋友乘火车来访”, =2A “朋友乘轮船来访”,=3A “朋友乘汽车来访”, =4A “朋友乘飞机来访”.……..1分 所求概率为()B A P 1,由Bayes 公式得 ……..1分 ()()()()()()()()()()()44332211111A B P A P A B P A P A B P A P A B P A P A B P A P B A P +++=…..2分⎪⎭⎫ ⎝⎛-⨯+⎪⎭⎫ ⎝⎛-⨯+⎪⎭⎫ ⎝⎛-⨯+⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯=6112.05214.07211.03113.03113.0 ……..2分652.0534.0751.0323.0323.0⨯+⨯+⨯+⨯⨯=1050.29494382356==. ……………..2分三.(本题满分8分)设随机变量X 的密度函数为()⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤-<≤=其它010525525025x x x xx f试求随机变量X 的分布函数()x F . 解:当0<x 时, ()()00===⎰⎰∞-∞-xx dt dt t f x F ; …….1分当50<≤x 时,()()50250200x dt t dt dt t f x F xx=+==⎰⎰⎰∞-∞-;……..2分当105<≤x 时,()()255055015212552250x x dt t dt t dt dt t f x F xx -+-=⎪⎭⎫⎝⎛-++==⎰⎰⎰⎰∞-∞-;……..2分当10≥x 时,()()102552250105505=+⎪⎭⎫⎝⎛-++==⎰⎰⎰⎰⎰∞-∞-xx x dt dt t dt t dt dt t f x F .……..2分因此,随机变量X 的分布函数为()⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤-+-<≤<=10110550152150500022x x xx x x x x F .……..1分四.(本题满分8分)试决定常数C ,使得!k C p kk λ=,()Λ,2,1=k 为某一离散型随机变量X 的分布列,其中0>λ为参数. 解:若使!k Cp kk λ=,()Λ,2,1=k 是某一随机变量X 的分布列,当且仅当0!≥=k Cp kk λ,()Λ,2,1=k ,而且11=∑∞=k k p , ……..2分因此有()11111!!kkk k k k p CC C e k k λλλ∞∞∞=======-∑∑∑,……..4分所以有 11C e λ=-.……..2分 五.(本题满分8分)设U 与V 分别是掷一颗均匀的骰子两次先后出现的点数.试求一元二次方程02=++V Ux x有两个不相等的实数根的概率. 解:一元二次方程02=++V Ux x 有两个不相等的实数根的充分必要条件是042>-V U ,或者V U 42>.……..2分又()V U ,的联合分布列为()361,===j V i U P ,()6,,2,1,Λ=j i .……..2分 所以,一元二次方程02=++V Ux x 有两个不相等的实数根的充分必要条件是()V U ,的取值应为下列情形之一:()1,3,()2,3,()1,4,()2,4,()3,4,()1,5,()2,5,()3,5,()4,5,()5,5,()6,5,()1,6,()2,6,()3,6,()4,6,()5,6,()6,6.……..2分()361702==++有两个不相等的实数根一元二次方程V Ux x P .……..2分 六.(本题满分8分)设随机变量X 服从区间()1,2-上的均匀分布,试求随机变量2X Y =的密度函数()y f Y . 解:随机变量X 的密度函数为()⎪⎩⎪⎨⎧<<-=其它01231x x p X .……..1分设2X Y =的分布函数为()y F Y ,则有 ()()()y X P y Y P y F Y ≤=≤=2.……..1分 当0≤y 时,()0=y F Y ;当40≤<y 时,()()()()()y F y F y X y P y X P y F XX Y --=≤≤-=≤=2;当4>y 时,()1=y F Y .……..1分综上所述,得随机变量2X Y =的分布函数为()()()⎪⎩⎪⎨⎧≥<<--≤=11400y y y F y F y y F XXY .……..1分 因此,随机变量2X Y =的密度函数为()()()()()⎪⎩⎪⎨⎧<<-+='=其它04021y y p y p y y F y p XXY Y .……..1分当10<<y 时,10<<y ,01<-<-y ,于是有()31=y p X,()31=-y p X,因此有()()()()yy y p y p y y p XXY 3131312121=⎪⎭⎫ ⎝⎛+=-+=; 当41<<y 时,21<<y ,12-<-<-y ,于是有()0=y p X,()31=-y p X, 因此有()()()()yy y p y p y y p XXY 613102121=⎪⎭⎫ ⎝⎛+=-+=.……..2分 因此,随机变量2X Y =的密度函数为()⎪⎪⎪⎩⎪⎪⎪⎨⎧<<≤<=其它41611031y y y y y p Y .……..1分七.(本题满分8分)试解释“在大量独立重复试验中,小概率事件几乎必然发生”的确切意思. 解:设A 是一随机事件,其概率()10<<A P .……..1分现独立重复做试验,则在n 次独立重复试验中,事件A 至少发生一次的概率为()()nA P --11.……..2分令∞→n ,则有()()()()()11lim 111lim =--=--∞→∞→nn nn A P A P .……..2分这表明,只要试验次数n 充分大,不管随机事件A 的概率多么小,随机事件A 在n 次独立重复试验中至少发生一次的概率与1可以任意接近,即随机事件A 在n 次独立重复试验中至少发生一次是几乎必然的.……..3分八.(本题满分8分)一公寓有200户住户,一户住户拥有汽车辆数X 的分布列为试用中心极限定理近似计算,至少要设多少车位,才能使每辆汽车都具有一个车位的概率至少为95.0?(设:()95.0645.1=Φ,其中()x Φ是()1,0N 的分布函数.) 解:设需要的车位数为n ,i X 表示第i 个住户需要的车位数,()200,,2,1Λ=X .则随机变量20021,,,X X X Λ独立同分布,而且()2.13.026.011.00=⨯+⨯+⨯=i X E ,()8.13.026.011.002222=⨯+⨯+⨯=i X E ,……..2分 于是有()()()()36.02.18.1222=-=-=i i i X E X E X D .……..1分由题意,得⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-≤⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛≤∑∑∑∑∑∑======200120012001200120012001i i i i i i i i i i i i X D X E n X D X E X P n X P ⎪⎪⎪⎪⎪⎭⎫⎝⎛⨯⨯-≤⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=∑∑∑===36.02002.1200200120012001n X D X E X P i i i i i i⎪⎭⎫⎝⎛-Φ≈72240n .……..3分由题设,95.072240≥⎪⎭⎫⎝⎛-Φn ,因此得645.172240≥-n , 所以有 9583.25372645.1240=⨯+≥n .因此至少需要254个车位,才能满足题设要求.……..2分九.(本题满分8分)设随机变量X 与Y 相互独立,而且都服从参数为λ的指数分布,令Y X V Y X U +=-=3,34,试求二维随机变量()V U ,的相关系数V U ,ρ. 解:因为X 与Y 都服从参数为λ的指数分布,所以()()λ1==Y E X E ,()()21var var λ==Y X .……..1分于是有()()()()λλλ113143434=⋅-⋅=-=-=Y E X E Y X E U E ,()()()()λλλ411333=+⋅=+=+=Y E X E Y X E V E .再由X 与Y 的相互独立性,得()()()()2222519116var 9var 1634var var λλλ=⋅+⋅=+=-=Y X Y X U ,()()()()22210119var 93var var λλλ=+⋅=+=+=Y E X Y X V . ……..3分()()()[]()223512334Y XY X E Y X Y X E UV E --=+-= ()()()223512Y E XY E X E --=()()()()()()()()()()22var 35var 12Y E Y Y E X E X E X +⋅-⋅-+⋅=⎪⎭⎫⎝⎛+⋅-⋅⋅-⎪⎭⎫ ⎝⎛+⋅=22221131151112λλλλλλ2222136524λλλλ=--=.……..2分所以有()()()()2294113,cov λλλλ=⋅-=-=V E U E UV E V U .因此有()()()105910259var var ,cov 222,===λλλρV U V U VU .……..2分 十.(本题满分8分)设总体X 存在二阶矩,总体期望()μ=X E ,总体方差()2σ=X D ,()n X X X ,,,21Λ是从中抽取的一个样本,X 是样本均值,2S 是样本方差.⑴ 计算方差()X D (4分);⑵ 如果()2,~σμN X ,计算方差()2S D (4分).解:⑴ ()()n n n n X D n X n D X D n i n i i n i i 2221221211111σσσ=⋅===⎪⎭⎫ ⎝⎛=∑∑∑===.……..4分⑵ 因为总体()2,~σμN X ,()n X X X ,,,21Λ是取自总体X 中的一个样本,所以()()1~1222--n S n χσ.……..2分所以,()()()()()()12121111142422242222-=-⋅-=⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛-⋅-=n n n S n D n S n n D S D σσσσσσ.……..2分十一.(本题满分10分)设()10<<B P ,证明:随机事件A 与B 相互独立的充分必要条件是()()1=+B A P B A P .证明:必要性:设随机事件A 与B 相互独立,所以随机事件A 与B 也相互独立.因此有()()A P B A P =, ()()A P B A P =,……..3分因此有()()()()1=+=+A P A P B A P B A P .……..2分 充分性:由于 ()()1=+B A P B A P , 所以有 ()()()B A P B A P B A P =-=1.因此有()()()()()()()()()B P AB P A P B P AB A P B P B A P B P AB P --=--==11.……..3分 由()10<<B P ,得()01>-B P ,因此有 ()()()()()()()AB P A P B P B P AB P -=-1.整理,得 ()()()()()()()B P AB P B P A P AB P B P AB P -=-. 即得 ()()()B P A P AB P =.这表明随机事件A 与B 相互独立.……..2分十二.(本题满分10分)⑴ 设总体X 等可能地取值1,2,3,Λ,N ,其中N 是未知的正整数.()n X X X ,,,21Λ是取自该总体中的一个样本.试求N 的最大似然估计量.(7分)⑵ 某单位的自行车棚内存放了N 辆自行车,其编号分别为1,2,3,…,N ,假定职工从车棚中取出自行车是等可能的.某人连续12天记录下他观察到的取走的第一辆自行车的编号为12, 203, 23, 7, 239, 45, 73, 189, 95, 112, 73, 159,试求在上述样本观测值下,N 的最大似然估计值.(3分) 解:⑴ 总体X 的分布列为 {}Nx X P 1==, ()N x ,,2,1Λ=. 所以似然函数为 (){}nni i i N x X P N L 11===∏=, ()()n i N x i ,,2,1,1Λ=≤≤.……..3分当N 越小时,似然函数()N L 越大;另一方面,N 还要满足:()n i N x i ,,2,1,1Λ=≤≤,即{}()n n x x x x N =≥,,,max 21Λ.所以,N 的最大似然估计量为()n X N =ˆ.……..4分 ⑵ 由上面的所求,可知N 的最大似然估计值为()239ˆ==n x N .……..3分北 京 交 通 大 学2012~2013学年第一学期概率论与数理统计期末考试试卷(A 卷)参 考 答 案某些标准正态分布的数值其中()x Φ是标准正态分布的分布函数. 一.(本题满分5分)口袋中有10个球,分别标有号码1到10,从中任意取出4个球.求最小号码是5的概率. 解:设=A “取出4个球,最小号码是5”.10个球取出4个球,有取法410C 种.………….2分若最小号码是5,有取法35C 种,因此()2112101041035===C C A P .………….3分二.(本题满分5分)一间宿舍住有5位同学,求他们之中至少有两位的生日在同一个月份的概率. 解:设=A “5位同学至少有两位的生日在同一月份”.5位同学,每一位在12个月份中任意选择,共有512种可能.………….2分 考虑A 的逆事件A ,它表示5位同学中,没有两位的生日是同一月份的.则 ()()6181.012115512=-=-=PA P A P .………….3分三.(本题满分8分),已知男人中%5的是色盲患者,女人中色盲患者占%25.0,今从男女比例为21:22的人群中随机地挑选一人,发现是色盲患者,问此人是男性的概率是多少? 解:设=A “任选一人为男性”,=B “任选一人是色盲患者”. 所求概率为()B A P .由Bayes 公式,得 ()()()()()()()A B P A P A B P A P A B P A P B A P +=………….3分9544.00025.0432105.0432205.04322=⨯+⨯⨯=.………….5分 四.(本题满分8分)在一小时内,甲、乙、丙三台机床需要维修的概率分别是9.0,8.0和85.0,而且这三台机床是否需要维修是相互独立的.求在一小时内⑴ 至少有一台机床不需要维修的概率;(4分) ⑵ 至多只有一台机床需要维修的概率.(4分) 解:设{}甲机床需要维修=A ,{}乙机床需要维修=B ,{}丙机床需要维修=C .则 ⑴ {}()()C B A P C B A P P ⋃⋃-=⋃⋃=1维修至少有一台机床不需要…….2分 ()()()388.085.08.09.011=⨯⨯-=-=C P B P A P .………….2分⑵ {}()C B A C B A C B A C B A P P ⋃⋃⋃=修至多有一台机床需要维………….2分 ()()()()C B A P C B A P C B A P C B A P +++=()()()()()()()()()()()()C P B P A P C P B P A P C P B P A P C P B P A P +++=059.085.02.01.015.08.01.015.02.09.015.02.01.0=⨯⨯+⨯⨯+⨯⨯+⨯⨯=.…….2分五.(本题满分8分)试确定常数a ,b ,c ,d 的值,使得函数()⎪⎩⎪⎨⎧>≤≤++<=e x d e x d cx x bx x ax F 1ln 1为一连续型随机变量的分布函数. 解:因为连续型随机变量的分布函数()x F 是连续函数,因此函数()x F 在分段点1=x 及e x =处连续,所以有()()()10101F F F =+=-,即有d c a +=.………….2分 ()()()e F e F e F =+=-00,即有d d ce be =++.………….2分 又分布函数()x F 必须满足:()0lim =-∞→x F x ,()1lim =+∞→x F x .因而有()0lim ==-∞→x F a x ,()1lim ==+∞→x F d x .………….2分由此得方程组 ⎩⎨⎧=++=+1101ce be c ,解此方程组,得1,1,1,0=-===d c b a .………….2分六.(本题满分8分)某地区成年男子的体重X (以kg 计)服从正态分布()2,σμN .若已知()5.070=≤X P ,()25.060=≤X P ,⑴ 求μ与σ的值;⑵ 如果在该地区随机抽取5名成年男子,求至少有两个人的体重超过kg 65的概率. 解:⑴ 由已知()5.0707070=⎪⎭⎫⎝⎛-Φ=⎪⎭⎫ ⎝⎛-≤-=≤σμσμσμX P X P ,()25.0606060=⎪⎭⎫⎝⎛-Φ=⎪⎭⎫ ⎝⎛-≤-=≤σμσμσμX P X P ………….2分 得⎪⎪⎩⎪⎪⎨⎧=-=⎪⎭⎫ ⎝⎛-Φ-=⎪⎭⎫ ⎝⎛-Φ75.025.016015.070σμσμ .即⎪⎪⎩⎪⎪⎨⎧=⎪⎭⎫ ⎝⎛--Φ=⎪⎭⎫⎝⎛-Φ75.0605.070σμσμ ,查正态分布表,得⎪⎩⎪⎨⎧=--=-675.060070σμσμ ,解方程组,得70=μ,81.14=σ.………….2分⑵ 设=A “从该地区任意选取一名成年男子,其体重超过kg 65”.则()()⎪⎭⎫⎝⎛-≤--=⎪⎭⎫ ⎝⎛-≤--=≤-=>3376.081.1470181.14706581.1470165165X P X P X P X P ()()6631.03376.03376.01=Φ=-Φ-=.………….2分 设X :该地区随机抽取的5名成年男子中体重超过kg 65的人数. 则 ()6631.0,5~B X .设=B “5人中至少有两人的体重超过kg 65. 则 ()()()()()101112===-=≤-=≥=X P X P X P X P B P9530.03369.06631.03369.06631.0141155005=⨯⨯-⨯⨯-C C . (已知()75.0675.0=Φ,()6631.034.0=Φ)………….2分七.(本题满分8分) 设二维随机变量()Y X ,的联合密度函数为()()⎪⎩⎪⎨⎧-<<+=其它01045,22x y y x y x f求:随机变量Y 的边缘密度函数()y f Y . 解:当10<<y 时, ()()()()⎰⎰⎰----+∞∞-+=+==yyyY dx y xdx y x dx y x f y f 1021122545,………….3分()()()6211511312531252123103y y y y y xy x yx +-=⎪⎭⎫ ⎝⎛-+-⋅=⎪⎭⎫⎝⎛+⨯=-=.…….3分所以,随机变量Y 的边缘密度函数为()()⎪⎩⎪⎨⎧<<+-=其它01062115y y y y f Y .………….2分 八.(本题满分10分) 设n X X X ,,,21Λ是n 个独立同分布的随机变量,1X 服从参数为λ的指数分布.令{}n X X X T ,,,m in 21Λ=,求随机变量T 的密度函数. 解:对于任意的实数x ,随机变量T 的分布函数为 ()(){}()x X X X P x T P x F n T ≤=≤=,,,m in 21Λ{}()x X X X P n >-=,,,m in 121Λ()x X x X x X P n >>>-=,,,121Λ …………………….2分()()()x X P x X P x X P n >>>-=Λ211()()()()()()()()nX n x F x X P x X P x X P --=≤-≤-≤--=11111121Λ.………….3分所以,随机变量T 的密度函数为()()()()()x f x F n x F x f X n X T T 11--='=. ………….2分如果1X 服从参数为λ的指数分布,则1X 的密度函数为()⎩⎨⎧≤>=-0x x e x f xX λλ . 分布函数为()()⎩⎨⎧≤>-==-∞-⎰0001x x e dt t f x F xxX X λ .………….1分 因此此时{}n X X X T ,,,m in 21Λ=的密度函数为()()()()()x n x n xX n X T e n e e n x f x F n x f λλλλλ-----=⋅⋅=-=111,()0>x .………….2分九.(本题满分8分) 设随机向量()321,,X X X 间的相关系数分别为312312,,ρρρ,且,()()()0321===X E X E X E ,()()()02321>===σX D X D X D .令:211X X Y +=,322X X Y +=,133X X Y +=.证明:321,,Y Y Y 两两不相关的充要条件为1312312-=++ρρρ.证明:充分性:如果1312312-=++ρρρ,则有01312312=+++ρρρ.而 ()()322121,cov ,cov X X X X Y Y ++= ()()()()32223121,cov ,cov ,cov ,cov X X X X X X X X +++=()()()()()()()3223231132112var X D X D X X D X D X D X D ⋅++⋅+⋅=ρρρ ()0121323122232213212=+++=+++=σρρρσρσσρσρ………….3分 这说明随机变量1Y 与2Y 不相关.同理可得 ()0,cov 32=Y Y ,()0,cov 13=Y Y ,这就证明了随机变量321,,Y Y Y 两两不相关. ………….1分必要性:如果随机变量321,,Y Y Y 两两不相关,则有()0,cov 21=Y Y ,()0,cov 32=Y Y ,()0,cov 13=Y Y而由上面的计算,得()()01,cov 213231221=+++=σρρρY Y , ………….3分由于02>σ,所以1132312+++ρρρ,即1132312-=++ρρρ. ………….1分十.(本题满分8分) 设总体X 的密度函数为()⎩⎨⎧<<-=其它若011x xx f()5021,,,X X X Λ是从X 中抽取的一个样本,X 与2S 分别表示样本均值与样本方差.求()X E ,()X D ,()2S E .解:因为()()011=⋅==⎰⎰-+∞∞-dx x x dx x xf X E ,()()2121311222==⋅==⎰⎰⎰-+∞∞-dx x dx x xdx x f x XE , 所以,()()()()2122=-=X E X E X D . 所以,()()0==X E X E ,………….2分()()10015021===n X D X D ,………….3分 ()()212==X D S E .………….3分十一.(本题满分8分) 设总体()4,0~N X ,()921,,,X X X Λ是取自该总体中的一个样本.求系数a 、b 、c ,使得统计量()()()298762543221X X X X c X X X b X X a T ++++++++=服从2χ分布,并求出自由度. 解:因为()921,,,X X X Λ是取自总体()4,0N 中的简单随机样本,所以()4,0~N X i ,()9,,2,1Λ=i而且921,,,X X X Λ相互独立.所以()8,0~21N X X +,()12,0~543N X X X ++,()16,0~9876N X X X X +++.…….2分所以,()1,0~821N X X +,()1,0~12543N X X X ++,()1,0~169876N X X X X +++.…….2分 因此,()()()()3~161282298762543221χX X X X X X X X X ++++++++.…….2分因此,当161,121,81===c b a 时,统计量()()()()3~161282298762543221χX X X X X X X X X T ++++++++=,自由度为3.………….2分十二.(本题满分8分)一家有500间客房的旅馆的每间客房装有一台kW 2(千瓦)的空调机,该旅馆的开房率为%80.求需要多少电力,才能有%99的可能性保证有足够的电力使用空调机. 解:设X :该旅馆开房数目,则()8.0,500~B X .………….2分a :向该旅馆供应的电力.则若电力足够使用空调机,当且仅当a X ≤2.因此()⎪⎪⎪⎪⎭⎫⎝⎛⨯⨯⨯-Φ≈⎪⎪⎪⎪⎭⎫⎝⎛⨯⨯⨯-≤⨯⨯⨯-=⎪⎭⎫ ⎝⎛≤=≤2.08.05008.050022.08.05008.050022.08.05008.050022a a X P a X P a X P . 由题设,99.02.08.05008.05002≥⎪⎪⎪⎪⎭⎫⎝⎛⨯⨯⨯-Φa ,………….3分 查表,得33.22.08.05008.05002≥⨯⨯⨯-a,………….1分 所以有 ()68.8412.08.050033.28.05002=⨯⨯⨯+⨯⨯≥a .即至少向该旅馆供电842千瓦,才能保证该旅馆的空调机正常使用.………….2分十三.(本题满分8分) 设总体X 的密度函数为()()⎩⎨⎧≤>=+-cx cx x c x f 01θθθ. 其中0>c 是已知常数,而1>θ是未知参数.()n X X X ,,,21Λ是从该总体中抽取的一个样本,试求参数θ的最大似然估计量. 解:似然函数为()()()()()121111+-=+-====∏∏θθθθθθθn n n ni i n i i x x x c x c x f L Λ………….2分所以,()()∑=+-+=ni i x c n n L 1ln 1ln ln ln θθθθ.所以,()∑=-+=ni i x c n nL d d 1ln ln ln θθθ.………….2分 令:()0ln =θθL d d,即0ln ln 1=-+∑=ni i x c n n θ,………….2分得到似然函数的唯一驻点cn x nni iln ln 1-=∑=θ.所以参数θ的最大似然估计量为cn Xnni iln ln ˆ1-=∑=θ.………….2分。
北 京 交 通 大 学2010-2011学年第一学期《概率论与数理统计(B )》期中考试试卷(A )学院_____________ 专业___________________ 班级____________学号_______________ 姓名_____________请注意:本卷共十三大题,如有不对,请与监考老师调换试卷! 一.(满分6分)已知()P A =14,()P B A 13=,()P A B 13=,求()P A B ⋃。
解: 由概率加法公式()P ()()()A B P A P B P AB ⋃=+-由概率乘法公式()P ()()112AB P A P B A ==----2分 ()()P ()P AB B P A B 14==()P ()()()A B P A P B P AB 1115441212⋃=+-=+-= ----4分二. (满分8分)甲乙二人轮流掷一骰子,每轮掷一次,谁先掷得6点谁得胜,从甲开始掷,问甲、乙得胜的概率各为多少?解 以i A 表示事件“第i 次投掷时投掷者才得6点”.事件i A 发生,表示在前1-i 次甲或乙均未得6点,而在第i 次投掷甲或乙得6点.因各次投掷相互独立,故有.6165)(1-⎪⎭⎫⎝⎛=i i A P 因甲为首掷,故甲掷奇数轮次,从而甲胜的概率为 }{}{531ΛY Y Y A A A P P =甲胜 Λ+++=)()()(531A P A P A P ),(21两两不相容因ΛA A⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+=Λ426565161.116)6/5(11612=-=--------4分同样,乙胜的概率为}{}{642ΛY Y Y A A A P P =乙胜 Λ+++=)()()(642A P A P A P.1156565656153=⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+=Λ.--------4分三. (满分12分)(1)已知随机变量X 的概率密度为,,21)(+∞<<-∞=-x e x f xX求X 的分布函数.(2)已知随机变量X 的分布函数为),(x F X 另外有随机变量⎩⎨⎧≤->=,0,1,0,1X X Y 试求Y 的分布律和分布函数.解 (1)由于⎪⎪⎩⎪⎪⎨⎧+∞<≤<<∞-=-.0,21,0,21)(x e x e x f x xX当0<x 时,分布函数,212121)()(|x x x xx x X X e e dx e dx x f x F ====∞-∞-∞-⎰⎰当0≥x 时,分布函数.2112121212121)()(00xx xx x x X X e e dx e dx e dx x f x F ---∞-∞--=-+=+==⎰⎰⎰故所求分布函数为⎪⎪⎩⎪⎪⎨⎧≥-<=-.0,211,021)(x e x e x F x xX ———5分(2),21)0(}0{}1{==≤=-=X F X P Y P .21211}1{1}1{=-=-=-==Y P Y P分布律为Y -1 1k p 21 21——4分分布函数为⎪⎪⎩⎪⎪⎨⎧≥<≤--<=.1,1,11,21,10)(y y y y F Y ———3分四(满分10分) 投掷一硬币直至正面出现为止,引入随机变量 =X 投掷总次数. ⎩⎨⎧=.,0,1若首次投掷得到反面若首次投掷得到正面,Y(1)求X 和Y 的联合分布律及边缘分布律. (2)求条件概率}.1|2{},1|1{====X Y P Y X P解 (1)Y 的可能值是0,1,X 的可能值是.,3,2,1Λ }1{}1|1{}1,1{======X P X Y P Y X P .2/12/11=⨯= (因1=X 必定首次得正面,故).1}1|1{===X Y P 若1>k ,}{}|1{}1,{k X P k X Y P Y k X P ====== .0)2/1(0=⨯=k(因,1>=k X 首次得正面是不可能的,故).,3,2,0}|1{Λ====k k X Y P }1{}1|0{}0,1{======X P X Y P Y X P 0)2/1(0=⨯=(因1=X 必须首次得正面,故).0}1|0{===X Y P 当1>k}{}|0{}0,{k X P k X Y P Y k X P ====== Λ,3,2),2/1(1=⨯=k k (因,1>=k X 必定首次得反面,故).1}|0{===k X Y P 综上,得),(Y X 的分布律及边缘分布律如下:XY 1 2 3 4 … }{j Y P =0 0221 321 421 (21)121 0 0 0 … 21 }{i X P = 21 221 321 42… 1 ———6分(2).12/12/1}1{}1,1{}1|1{========Y P Y X P Y X P.0}1{}2,1{}1|2{=======X P Y X P X Y P ———4分五(满分10分) 一等边三角形ROT (如下图)的边长为1,在三角形内随机地取点),(Y X Q (意指随机点),(Y X 在三角形ROT 内均匀分布).(1) 写出随机变量),(Y X 的概率密度. (2) 求点Q 的底边OT 的距离的分布密度.解 (1)因三角形ROT 的面积为4/3,故),(Y X 的概率密度为 ⎩⎨⎧--≤≤≤≤=.,0),1(30,30,3/4),(其他x y x y y x f ——3分(2)点),(Y X Q 到底边OT 的距离就是Y ,因而求Q 到OT 的距离的分布函数,就是求),(Y X 关于Y 的边缘分布函数,现在 ,230,32134),()(3.13/<<⎪⎪⎭⎫ ⎝⎛-==⎰-y y dx y x f y f y y Y从而⎪⎩⎪⎨⎧<<⎪⎪⎭⎫ ⎝⎛-=.,0,230,32134)(其他y y y f Y ——4分 Y 的分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤-<=.23,1,230,3434,0,0)(2y y y y y y F Y ——3分六(满分8分)设随机变量),(Y X 具有概率密度⎩⎨⎧>>=+-.,0,0,0,),()1(其他y x xe y x f y x(1) 求边缘概率密度).(),(y f x f Y X (2) 求条件概率密度).|(),|(||x y f y x f X Y Y X 解 (1)当0>x 时, ,)()(0)1(x y y xy x y x X e e e dy xe x f -∞==--∞+-===⎰当0>y 时,dx xe y y xe dx xey f y x x x y x y x Y ⎰⎰∞+-∞==+-∞+-+++-==)1(0)1(0)1(111)(.)1(1)1(22)1(+=+-=∞==+-y y xe x x y x 故边缘概率密度分别是⎩⎨⎧>=-.,0,0,)(其他x e x f x X ⎪⎩⎪⎨⎧>+=.,0,0,)1(1)(2其他y y y f Y ——4分(2)条件概率密度: 当0>x 时,⎪⎩⎪⎨⎧>=-+-.,0,0,)|()1(|取其他值y y e xe x y f xy x X Y⎩⎨⎧>=-.,0,0,取其他值y y xe xy当0>y 时,⎪⎩⎪⎨⎧>+=+-.,0,0,)1/(1)|(2)1(|取其他值x x y xe y x f y x Y X⎩⎨⎧>+=+-.,0,0,)1()1(2取其他值x x e y x y x ——4分七.(满分8分)设有随机变量U 和V ,它们都仅取1,1-两个值.已知 ,2/1}1{==U P}.1|1{3/1}1|1{-=-=====U V P U V P (1)求U 和V 的联合分布密度.(2)求x 的方程02=++V Ux x 至少有一个实根的概率. (3)求x 的方程2()0xU V x U V ++++=至少有一个实根的概率.解 (1).6/1)2/1)(3/1(}1{}1|1{}1,1{========U P U V P V U P }1{}1|1{}1,1{-=-=-==-=-=U P U V P V U P.6/1)2/1)(3/1(}]1{1[)3/1(===-⨯=U P}1{}1|1{}1,1{==-==-==U P U V P V U P.3/1)2/1)(3/2(}1{}]1|1{1[=====-=U P U V P }1{}1|1{}1,1{-=⋅-====-=U P U V P V U P.3/1)2/1()3/2(}1{}]1|1{1[=⨯=-=-=-=-=U P U V PV U ,的联合分布密度为UV -1 1-1 1/6 2/6 ——4分 1 2/6 1/6(2) 方程02=++V Ux x 当且仅当在042≥-=∆V U 时至少有一实根,因而所求的概率为 .2/1}1{}04{}0{2=-==≥-=≥∆V P V U P P ——2分(3) 方程0)(2=+++++V U x V U x 当且仅当在0)(4)(2≥+-+=∆V U V U 时至少有一实根,因而所求的概率为.6/5}1,1{}1,1{}1,1{}0{=-==+=-=+-=-==≥∆V U P V U P V U P P ——2分八.(满分6分)某图书馆一天的读者人数)(~λπX ,任一读者借书的概率为p ,各读者借书与否相互独立.记一天读者借书的人数为Y ,求X 与Y 的联合分布律. 解 读者借书人数的可能值为}{}|{},{,,,2,1,0k X P k X i Y P i Y k X P X Y Y ======≤=Λ=.,,2,1,2,1,!)1(k i k k e p p i k k i k i ΛΛ==-⎪⎪⎭⎫ ⎝⎛--λλ九.(满分8分)将一颗骰子掷两次,考虑事件=A “第一次掷得点数2或5”,=B “两次点数之和至少为7”,求),(),(B P A P 并问事件B A ,是否相互独立.解 将骰子掷一次共有6种等可能结果,故.3/16/2)(==A P 设以i X 表示第i 次掷出骰子的点数,则}).6({1})7({)(2121≤+-=≥+=X X P X X P B P因将骰子掷两次共有36个样本点,其中621≤+X X 有6,5,4,3,221=+X X 共5种情况,这5种情况分别含有1,2,3,4,5个样本点,故.12/712/5136/)54321(1)(=-=++++-=B P ----4分以),(21X X 记两次投掷的结果,则AB 共有(2,5),(2,6),(5,2),(5,3)(5,4),(5,5),(5,6)这7个样本点.故.36/7)(=AB P 今有).(36/7)12/7)(3/1()()(AB P B P A P ===按定义B A ,相互独立. ----4分十(满分10分) 产品的某种性能指标的测量值X 是随机变量,设X 的概率密度为⎪⎩⎪⎨⎧>=-其他.,0,0,)(221x xe x f x X 测量误差Y~U (εε,-),X ,Y 相互独立,求Z=X+Y 的概率密度)(z f Z ,并验证du e Z P u ⎰-=>εεε202/221}{解 (1)Y 的概率密度为 其他.,εεε<<-⎪⎩⎪⎨⎧=y y f Y ,0,21)( 故Z =X+Y 的概率密度为⎰+∞∞--=dx x z f x f z f Y X Z )()()( ——2分仅当⎩⎨⎧<-<->εεx z x 0即⎩⎨⎧+<<->εεz x z x 0时上述积分的 xx=z+εO yx=z+ε图4被积函数不等于零,参考图4,即得⎪⎪⎩⎪⎪⎨⎧≥<<-=⎰⎰+--+-其他,,,,0,21,21)(2212210εεεεεεεεz dx xe z dx xe z f z z x z x Z =⎪⎪⎪⎩⎪⎪⎪⎨⎧≥-<<--+---+-其他,,,,0],[21],1[21221221221)()()(εεεεεεεεz e e z e z z z ——4分 (2)⎰∞=>εεdz z f Z P Z )(}{=][21221221)()(⎰⎰∞+-∞---εεεεεdz e dz e z zε21记成[Ⅰ+Ⅱ]其中Ⅰ=⎰⎰∞-∞--=-0)(,221221du e uz e u dz z εεε令Ⅱ=⎰⎰∞-∞+--=+-εεεε2)(221221du e u z dz e u z 令 于是εε21}{=>Z P [Ⅰ+Ⅱ]=⎰-εε2022121du e u——4分1ˆx x θ=-十一.(满分6分) 解:----4分----2分2,0,1357,,,,{20}.248X P X X a a a a-≤≥已知离散型随机变量的可能取值为相应的概率依次为试求概率=352224.35729248a a a a a +==++十二(满分8分)解:-----2分-----4分 -----2分 ,,,.:.A B C C AB C AB AC C B AB ⊃⊃=U 设随机事件满足证明,C AB ⊃由于,C A B ⊂U 故()CB A B B ⊂U 从而,AB =,CB =,ACB C AB AB ==I ()AC AC B B =U 故ACB ACB=U .CB AB =U。