超声波气体流量计与孔板流量计的深度对比
- 格式:docx
- 大小:67.63 KB
- 文档页数:4
常用流量计的优点缺点比较.1 什么是孔板流量计?充满管道的流体,当它流经管道内的节流件孔板时,流速将在孔板处形成局部收缩,因而流速增加,静压降低,于是在孔板前后便产生了差压。
流量愈大,则差压愈大,这样可以根据差压来衡量流量的大小。
这种测量方法是以流体连续性方程(质量守恒定律)和伯努利方程(能量守恒定律)为基础的。
差压的大小不仅与流量还与节流装置形式、流体的密度、粘度等许多因素有关。
2 孔板流量计的优点.标准节流件是全世界通用的,并得到了国际标准组织的认可,无需实流校准,即可投用,在流量计中亦是唯一的。
结构易于复制,简单、牢固、性能稳定可靠、价格低廉;应用范围广,包括全部单相流体(液、气、蒸汽)、部分混相流,一般生产过程的管径、工作状态(温度、压力)皆有产品。
检测件和差压显示仪表可分开不同厂家生产,便与专业化规模生产.3 孔板流量计的缺点.测量的重复性、精确度在流量计中属于中等水平,由于众多因素的影响错综复杂,精确度难于提高。
范围度窄,由于流量系数与雷诺数有关,一般范围度仅3∶1 ~4∶1有较长的直管段长度要求,一般难于满足。
尤其对较大管径,问题更加突出;压力损失大,详见附表;孔板以内孔锐角线来保证精度,因此对腐蚀、磨损、结垢、脏污敏感,长期使用精度难以保证,需每年拆下强检一次。
采用法兰连接,易产生跑、冒、滴、漏问题,大大增加了维护工作量。
3.1 孔板流量计压损通常为维持一台孔板流量计正常运行,水泵需要附加动力克服孔板的压力损失。
该附加耗电量可直接由压力损失和流量计算确定。
一年约需多耗电数万度,折合人民币数万元。
下表中列出了孔板在正常压力损失情况下的能耗计算结果。
其中运行天数按三百五十天计算,电价按0.35元/度计算。
由表中计算电耗数据可见,孔板的附加运行费用是极高的,而采用弯管流量计该运行费用为零!1 什么是涡街流量计?在特定的流动条件下,一部分流体动能转化为流体振动,其振动频率与流速(流量)有确定的比例关系,依据这种原理工作的流量计称为流体振动流量计。
各种流量计的优缺点及适合的介质流量计是用来测量介质(液体或气体)流动速度或流量的仪器。
根据其原理和工作方式的不同,可以分为多种不同类型的流量计。
下面将介绍一些常见的流量计,包括其优缺点以及适合的介质类型。
1.管式流量计:管式流量计适用于大流量和腐蚀性介质。
它的优点是结构简单,使用方便,且测量准确。
然而,该类型的流量计容易受到尺寸和形状限制,不适用于需要高精度测量的环境。
2.涡街流量计:涡街流量计适用于液体和气体介质。
它的优点是可测量低于或大于管道直径的流量,且具有较高的精度。
然而,该类型的流量计对介质的粘度和密度变化敏感,容易受到污染和腐蚀的影响。
3.转子流量计:转子流量计适用于中小流量以及液体介质。
它的优点是结构简单,使用方便,且适用于高温和高压环境。
然而,该类型的流量计对介质的粘度和密度变化较为敏感,对流体的脉动和振动也比较敏感。
4.浮子流量计:浮子流量计适用于小流量、低压和液体介质。
它的优点是结构简单,价格低廉,并且适用于粘度较高的流体。
然而,该类型的流量计对流体的侵蚀和污染较敏感,不适用于精度要求较高的场合。
5.磁流量计:磁流量计适用于导电液体介质。
它的优点是非侵入式的设计,不会对流体产生阻力,能够实现较高的精度和范围。
然而,该类型的流量计对介质的电导率敏感,且价格较高。
6.超声波流量计:超声波流量计适用于液体和气体介质。
它的优点是非侵入式的设计,不会对流体产生阻力,且不受介质密度和粘度的影响。
然而,该类型的流量计对管道内部有较强的要求,且价格较高。
总结起来,不同类型的流量计适用于不同的介质和环境条件。
在选择流量计时,需要考虑介质性质、流量范围、精度要求以及成本等因素。
同时,还需要考虑维护和校准流量计的难易程度。
综合考虑这些因素,选择适合的流量计可以确保测量过程的准确性和可靠性。
各种流量计工作原理及优缺点流量计是一种用于测量流体流量的设备,广泛应用于工业领域中的流体控制和监测过程中。
不同类型的流量计采用不同的工作原理,每种流量计都有其独特的优点和缺点。
下面将详细介绍几种常见的流量计及其工作原理、优缺点。
1. 质量流量计(Mass Flow Meter)质量流量计是通过测量流体通过流量计的质量来确定流量的一种流量计。
它通常使用热敏电阻或热电偶来测量流体的温度,并通过测量热量传递来计算质量流量。
质量流量计的优点是能够准确测量各种气体和液体的质量流量,不受流体密度、压力和温度的影响。
然而,质量流量计的缺点是成本较高,且对流体的物理性质要求较高。
2. 体积流量计(Volumetric Flow Meter)体积流量计是通过测量流体通过流量计的体积来确定流量的一种流量计。
常见的体积流量计包括涡轮流量计、液体顶管流量计和正交流量计等。
涡轮流量计通过测量流体通过涡轮的旋转来计算体积流量。
液体顶管流量计通过测量流体通过顶管的时间来计算体积流量。
正交流量计则通过测量流体通过正交管道的压力差来计算体积流量。
体积流量计的优点是结构简单、价格较低,但缺点是对流体的物理性质要求较高,且精度较低。
3.差压流量计(Differential Pressure Flow Meter)差压流量计是通过测量流体通过管道时产生的压力差来计算流量的一种流量计。
常见的差压流量计包括孔板流量计、喷嘴流量计和流体测速仪等。
孔板流量计通过在管道中设置孔板来产生压力差,并通过测量压力差来计算流量。
喷嘴流量计则通过流体通过喷嘴时产生的压力差来计算流量。
流体测速仪则通过测量流体通过测速仪时的速度来计算流量。
差压流量计的优点是结构简单、价格较低,适用于大流量的测量。
但缺点是对流体的物理性质要求较高,且存在一定的压力损失。
4. 超声波流量计(Ultrasonic Flow Meter)超声波流量计是通过测量超声波在流体中传播的速度来计算流量的一种流量计。
孔板流量计与气体超声流量计在天然气中的应用摘要在能源领域中,天然气的流量计量十分重要,因为精准的流量计量能够使天然气生产和利用更加高效和安全。
孔板流量计和气体超声流量计在天然气领域中被广泛使用,本文将探讨这两种流量计在天然气中的应用。
孔板流量计孔板流量计是一种基于缩流原理设计的流量计,其结构简单、价格低廉、适用性广泛、准确可靠,特别适用于测量低、中速气体流量(速度范围一般在 5~60m/s)。
一般采用的是圆环孔板,其直径为流道直径的 0.4 左右,而长方孔板和三角孔板的使用率非常少。
孔板流量计可分为标准孔板和压差式孔板两种。
1. 标准孔板标准孔板是孔板流量计的基本结构。
标准孔板的孔口为圆孔,直径随孔板厚度增大而减小,来实现流量测量的精度。
标准孔板的优点是结构简单,易于安装和维护,且测量范围较宽,适用于各种低速流体介质的流量测量。
但受孔口对流体的扰动影响较大,精度较低,一般只可达到±5%。
2. 压差式孔板压差式孔板是一种根据液体和气体在狭窄通道内产生的压差,计算出液体和气体流量的流量计。
与标准孔板相比,压差式孔板的测量精度更高,可达到±1%。
具体来说,压差式孔板将孔板两侧流体的压力差值通过传感器尺寸转化为电信号,再通过数字计算器计算出流量大小,具有高精度、宽测量范围、结构简单和价格低廉等优点。
气体超声流量计气体超声流量计是一种基于超声波传输原理设计的流量计,主要用于测量气体的流量,具有非接触测量、精度高、稳定性好、测量范围广等特点,是替代孔板流量计的一种重要手段。
1. 工作原理气体超声流量计主要利用超声波在流体介质中的传播速度来测量流量。
当超声波经过流体时,会在介质中发生折射、反射和散射,根据超声波从源头发出到接收器返回的时间及其信号波形来计算流量。
2. 特点气体超声流量计具有精度高、稳定性好、非接触测量、测量范围广等优点,能够实时监控天然气的流量,确保天然气的准确计量和高效利用。
各种流量计的优缺点及适合的介质一、电磁流量计1、优点(1)电磁流量计可用来测量工业导电液体或浆液。
(2)无压力损失。
(3)测量范围大,电磁流量变送器的口径从2.5mm到2.6m。
(4)电磁流量计测量被测流体工作状态下的体积流量,测量原理中不涉及流体的温度、压力、密度和粘度的影响。
2、缺点(1)电磁流量计的应用有一定的局限性,它只能测量导电介质的液体流量,不能测量非导电介质的流量,例如气体和水处理较好的供热用水。
另外在高温条件下其衬里需考虑。
(2)电磁流量计是通过测量导电液体的速度确定工作状态下的体积流量。
按照计量要求,对于液态介质,应测量质量流量,测量介质流量应涉及到流体的密度,不同流体介质具有不同的密度,而且随温度变化。
如果电磁流量计转换器不考虑流体密度,仅给出常温状态下的体积流量是不合适的。
(3)电磁流量计的安装与调试比其它流量计复杂,且要求更严格。
变送器和转换器必须配套使用,两者之间不能用两种不同型号的仪表配用。
在安装变送器时,从安装地点的选择到具体的安装调试,必须严格按照产品说明书要求进行。
安装地点不能有振动,不能有强磁场。
在安装时必须使变送器和管道有良好的接触及良好的接地。
变送器的电位与被测流体等电位。
在使用时,必须排尽测量管中存留的气体,否则会造成较大的测量误差。
(4)电磁流量计用来测量带有污垢的粘性液体时,粘性物或沉淀物附着在测量管内壁或电极上,使变送器输出电势变化,带来测量误差,电极上污垢物达到一定厚度,可能导致仪表无法测量。
(5)供水管道结垢或磨损改变内径尺寸,将影响原定的流量值,造成测量误差。
如100mm口径仪表内径变化1mm会带来约2%附加误差。
(6)变送器的测量信号为很小的毫伏级电势信号,除流量信号外,还夹杂一些与流量无关的信号,如同相电压、正交电压及共模电压等。
为了准确测量流量,必须消除各种干扰信号,有效放大流量信号。
应该提高流量转换器的性能,最好采用微处理机型的转换器,用它来控制励磁电压,按被测流体性质选择励磁方式和频率,可以排除同相干扰和正交干扰。
超声波流量计在气体计量中的应用探究摘要:本文提出了超声波流量计在气体计量中的应用的意义,然后对其在天然气计量中的应用进行了探讨,提出了一些看法,希望能够对天然气体积流量计量方法的研究提供一些参考,进而促进我国天然气的发展。
关键词:超声波流量计;气体;计量;应用1、引言随着石油、天然气等能源在我国社会经济发展中的地位日益突出,天然气等能源的计量越来越受到人们的重视。
目前,我国已建成了天然气输配管网,并将逐步扩大到城市配电网。
气体计量是保障国家能源安全、能源管理的重要手段,其准确与否关系到国家的能源政策和宏观经济决策。
因此,气体计量装置在天然气、石油等能源供应领域发挥着越来越重要的作用。
2、超声波流量计在气体计量中的应用的意义天然气具有气体密度较小、气体流动速度较低、气体密度与温度有密切关系等特点,是一种特殊的流体。
目前,在天然气计量过程中,仍以体积法和质量法为主,对天然气体积流量的计量有一定的误差。
在实际工作中,采用体积法和质量法进行测量时,往往会受到外界因素的影响,如管道中有大量的杂质、温度、压力等不稳定因素,而且在实际应用中,还会受到环境条件的影响。
在进行气体计量时,由于存在气体密度与温度等方面的差异,所以当气体流速过低或过高时,都会使气体流量计流速和体积产生较大差异,进而影响到气体流量测量的准确性。
3、超声波流量计在气体计量中的应用分析3.1噪声在采用超声流量计进行天然气计量的过程中,因为所处的环境不同,最后的计量结果也会有一些差别,所发射出来的超声会针对管内气体的特定条件,产生一种超声束的反射效应,因此需要对这种影响进行进一步的分析,以获得流量计所显示的有关数据,从而获得流量计的最终测量结果。
特别是,在进行气体流量检测时,超声波会通过阀门、弯头等管件,这就导致了在测量过程中,超声会有一些噪声,这会导致超声波所接收到的数据出现错误,从而降低了流量计的测量精度。
针对这种情况,在正式进行超声流量测量时,必须把噪声因素纳入到测量过程中,并据此对测量结果进行分析。
常用流量计的选型与比拟由于商业用户的种类庞杂,不同企业的燃气用量都大小不一,因此需要根据企业的不同的情况合理的选用燃气计量表,以到达准确计量和节约本钱的目的.目前计量燃气用户的燃气计量表主要包括涡轮流量计、超声波流量计、腰轮〔罗茨〕流量计、膜式流量计这4种,下面从这4种计量表各自的特点分析商业用户燃气计量表的选用.一.涡轮流量计涡轮流量计属于间接式体积流量计,当气体流过管道式,依靠气体的动能推动透平叶轮作旋转运动,其转动速度与管道的流量成正比,是一种速度式流量计.涡轮流量计由涡轮流量变速器〔传感器〕、前置放大器、流量显示积算仪组成,并可将数据远传到上位流量计算机.气体涡轮流量计具有结构紧凑、精度高、重复性好、量程比宽、反响迅速、压力损失小等优点,但轴承耐磨性及其安装要求较高.涡轮流量计始动流量比拟大,在一些单一的用气设备如燃气锅炉、燃气空调等大流量用气设备中.涡轮流量计有着量程范围大、计量精度很高、可以计量大流量燃气〔可以到达6000m3/h 以上〕等优点,国产的涡轮流量计价格也比拟合理.但是在使用涡轮流量计的时候必须要求始动流量也要大,当用气设备小流量的使用燃气对其精度有很大的影响.且涡轮流量计必须有足够长度的前后直管段,以及带温压补偿的体积修正仪.主要适用于液化石油气及天然气的计量上,因此,大多运用在工矿企业的炉、窑等热负荷相对恒定的用气设备上.二.超声波流量计超声波流量计是通过检测流体流动对超声束〔或超声脉冲〕的作用,测量体积流量的速度式测量仪表,天然气超声波流量计的测量原理是传播时间差法.在测量管内安装一组超声波传感器;同时测量彼此之间的声波到达时间.由于是全电子式,无机械局部,不受机械磨损、故障影响,产品的可靠性和精度进步很多.体积小、重量轻,重复性好,压损小,不易老化,使用寿命长;智能化,全电子式的结构,可以扩展为预支费表或无线抄表功能.特殊功能是微小流量可测,有管道泄漏感知功能,压力损失为零.主要特点:1.能实现双向流束的测量;2.过程参数〔压力,温度等〕不影响测量结果;3.无接触测量系统,流量计量过程无压力损失;4.可精确测量脉动流;5.重复性好,速度误差45mm/s;6.量程比很宽,qmin/qmax=1/40〜1/60;7.可不考虑整流,只在上游100mm,下游50mm余留安装间隙即可;8.传感器可实现不停气更换,操作维修方便.影响超声波测量因素:超声波测量的不确定来源有以下三种因素:1.机械方面,与管段的几何尺寸有关;2.物理方面,与流体的速度分布有关;3.电子方面,与传播时间测量有关.影响超声波信号的主要原因:1.严重的电子噪音;2.超声声学噪音;3.严重的信号衰减;4.测量段内出现的多向流动;5.换能器受到污染;6.测量段内出现严重的测量梯度;7.严重的紊流.总体来说:超声波流量计相比于传统的孔板、涡轮流量计,在结构、计量精度、压力损失、量程比等指标上都具有较大的优势.超声波流量计在应用上的主要问题在于气体输送过程中存在很多对提升信噪比不利的因素,特别是由于压力调节装置带来的噪音影响,超声波在气体中的快速衰减和安装效应等.超声波流量计的适用范围很广,但由于经济性性价比和使用环境的影响, 更适用于大口径,高压力,输送距离长的主干道管网.三.罗茨流量计罗茨流量计是一种结构十分紧凑的容积式流量计.容积式流量计结构简单、性能稳定、精度高、易于直观维护治理,并且价格低廉.当燃气通过时,计量表的出口和入口之间存在的差压能驱动腰轮旋转,使得充满计量室内的燃气能够定量排出,通过机械传动机构与积算器相连接,最终实现燃气体积计量以及数据的转换.相比拟而言,罗茨流量计的精度高,起始流量低,量程比拟宽,在安装、维护以及清理上都比拟方便,能够实现在线温、压智能补偿,在高、中压计量中适用较广泛.其测量燃气流量的量程十分宽广,上下流量同样适用,主要参数如下;公称流量:16,25,40,65,100,160,250,400,650,1000,1600,2500,4000,6500,100,16000,25000 m3/h;公称压力:1.6,2.5,6.4MPa;累计流量精度:±1%, 士1.5%, ±2.5%;量程比(qmin/qmax):1/10~1/20.罗茨流量计一般是适于燃气流量大于25m3/h中低压的用气设备中,并且其始动流量小,测量范围较大,适用于大型的商业用户.当用气设备的最大流量大于30m3/h时,建议采用罗茨流量计.另外,气体压缩会影响罗茨流量计计量的准确,计算结果见表压力/PA3000400050006000气量损失/%8.99.8107116气量损失是随着额定压力的升高而增大的,所以采用流量补偿仪也有必要;但另一个角度来说,增加流量补偿仪会对市场开发有一定影响.经过权衡分析,我们确定如果商业用户的用气设备额定使用压力超过5 000 Pa时,必须采用流量补偿仪.另外,罗茨流量计属于精密仪器,因此其价格也相当昂贵. 同时由于罗茨流量计受燃气洁净程度的影响,必须安装过滤器.四.膜式流量计膜式燃气表属于容积式流量计,结构比拟简单,测量原理是:通过测量组件隔膜在进出口燃气压力差的作用下产生交替运动,将充满计量室内的燃气分隔成单个的计量体积并排向出口,通过机械传动机构与计数器相连接,实现对单个计量体积的统计与运算传递,最终测得计量流通的燃气总量.主要参数:公称流量:1.625,4,6,10,16,25,40,65,100,250,400,650m3/h;公称压力:3,5,10KPa;量程比(qmin/qmax):1/30~1/60.膜式燃气表一般最正确运行工况为额定流量计量范围的20%~80%,膜式燃气表在使用的工程中对燃气的物理性质影响较小,可以实现IC卡预付功能,始动流量较小.膜式燃气表的量程比拟宽,安装相比照拟方便,由于其量程小,体积大,很容易受腐蚀,从而导致计量不准或泄漏等,日常维修很不方便,只能对工况流量进行计量,不容易实行智能温、压补偿,一般仅适用在低压计量中.而且其外表的膜比拟容易老化使得计量的结果误差大,使用的寿命也因此而大大的缩短.由于价格比拟廉价、体积较小,一直是普通居民用户和小型商业用户的首选燃气计量表.因膜式燃气表计量的是工况流量,与贸易标况流量结算存在量差,一般规定在用气设备的燃气流量在25m3/h,燃气的使用压力小于3KPa的小型商业用户建议采用精度为1.5级及以上的膜式燃气表.五.流量计的比拟流量计的主要性能的比拟:工程量程比计量精度始动流量压力损失智能温压补偿涡轮流量计超声波流量计罗茨流量计膜式流量计1/10~1/20 高大较小有1/40-1/60高较小无无1/10〜1/20高较小大有1/30-1/60 一般较小无对流速分布敏感较敏感气质要求及影响高安装要求不敏感高很敏感中很敏感低前后直管段一般有要求,管道吹扫,装过滤器管道吹扫,一般装过滤器维护与检修清理过滤可现场检修器,现场拆卸与检修清理过滤现场无法维器,现场拆护与检修卸与检修价格使用寿命较贵高很贵高较廉价中廉价低六.流量计的选型1.罗茨燃气流量计、膜式燃气表和涡轮燃气流量计三种计量计的相对误差都是±2%,被测燃气流量值在流量计的测量量程范围内才能够被准确测量,用户的正常用气量最好在在流量计量程的20%〜85%之间.在保证测量精度的条件下,需结合被测燃气的真实流量范围,合理地选择相适应的流量计规格与型号,特别是对于燃气流量的下限需要重点关注.2.正常工作条件下,用气设备的用气负荷是燃气流量计选型的主要参考依据.极端使用状态情况下,燃气负荷在燃气流量计选型上仅作为参考依据.所谓极端使用状态,就是指燃气设备较少出现的使用状态.3.燃气流量计的测量精度是一个很重要的参考因素,但它不是燃气流量计选型的唯一条件,实际的选型过程中,要结合燃气设备的具体运行工况,综考量燃气流量计的价格,在安装、使用和维护上的本钱,综合考虑燃气流量计的性能价格比,科学合理进行选型.4.对于餐饮行业的用户〔食堂、饭店等〕,通常会优先选用罗茨燃气流量计和膜式燃气表.如果燃气设备的用气最大流量范围在65〜650立方米每小时时,适宜选用罗茨燃气流量计,假设燃气设备的用气最大流量小于等于65立方米每小时时,适合选择膜式燃气表.5.对于类似锅炉和热水茶炉的使用用户,通常可以选择智能罗茨燃气流量计,并要求带温、压补偿装置.6.对于大型锅炉、工业炉窑、以及化工用气设备等大用户,但燃气流量大于650立方米每小时时,通常会选用涡轮燃气流量计,并尽量在各个燃气设备上单独安装流量计,对智能化程度要求较高,可以实现远程化和自动化,从而方便对用户的实际用户状况进行在线监测等.7.对于管径较大,压力较高,需要对流量进行精确测量的,适合使用超声波流量计.。
孔板流量计、质量流量计与涡街流量计等的区别是什么00[转载]孔板流量计、质量流量计与涡街流量计等的区别是什么?在所庸凝程参数测量中,流量的测量是最复杂的。
就今朝常见的测量方式如孔板、热式、涡街、尉芍、超声波、电磁等做简要介绍及选型区分。
涡街流量计是在流体中拔出一个圆柱体或角柱体,则会从其双侧交替地孕育发生旋涡。
在一定的条件下,这些个旋涡的发生频率取流速度完成正比。
本流量计就是应用这个原理,通过实验旋涡的频率,实现流量测量的。
涡街流量计是基于卡门涡街原理而研制成功的一种旧型流量计。
自七十年月以来得到了快速发展,据有关资料显示,此刻日本、欧美等发达国度使用涡街流量计的比例大幅度上升,己广泛应用于各个领域,将在未来流量仪表中占从导地位,由于它具有其它流量计弗成兼得的劣点,是孔板流量计最理想的替代产品。
流量计有把转换器和传感器装在一起的组合型、辨别放置的分离型两种类型。
特点:用途广泛,既可测量液体,也可测量气体或蒸汽;·准确度高,规模度大;·检测元件不接触媒质,结构简略,无运动件,靠得住性高,易于安装及维修;从要技术指标1.无可动部件,运行靠得住,性能较好,使用寿命长。
2.测量被测流体,不直接接触传感器,性能稳定。
3.输出信号是取流量成正比的电子脉冲信号或输出4~20mA标准电流信号。
4.压力益掉较少,故比差压流量计具有节能特点。
5.测量量程比大,可达1:10。
而差压式只有1:3。
6.结构简略而安稳,安装方便,维修费用极少。
质量流量计:热式气体质量流量计采用热扩散原理,热扩散技术是一种在苛刻条件下性能劣良、靠得住性高的技术,其典型传感元件包括两个热电阻(铂RTD),一个是速度传感器,一个是从动补偿气体温度变化的温度传感器。
当这两个RTD被置于媒质中时,此中速度传感器被加热到环境温度以上的一个恒定的温差,另一个温度传感器用于感应媒质温度。
流经速度传感器的气体质量流量是通过传感元件的热传递量来计算的。
各种流量计的优缺点及适合的介质一、电磁流量计1、优点(1)电磁流量计可用来测量工业导电液体或浆液。
(2)无压力损失。
(3)测量范围大,电磁流量变送器的口径从2.5mm到2.6m。
(4)电磁流量计测量被测流体工作状态下的体积流量,测量原理中不涉及流体的温度、压力、密度和粘度的影响。
2、缺点(1)电磁流量计的应用有一定的局限性,它只能测量导电介质的液体流量,不能测量非导电介质的流量,例如气体和水处理较好的供热用水。
另外在高温条件下其衬里需考虑。
(2)电磁流量计是通过测量导电液体的速度确定工作状态下的体积流量。
按照计量要求,对于液态介质,应测量质量流量,测量介质流量应涉及到流体的密度,不同流体介质具有不同的密度,而且随温度变化。
如果电磁流量计转换器不考虑流体密度,仅给出常温状态下的体积流量是不合适的。
(3)电磁流量计的安装与调试比其它流量计复杂,且要求更严格。
变送器和转换器必须配套使用,两者之间不能用两种不同型号的仪表配用。
在安装变送器时,从安装地点的选择到具体的安装调试,必须严格按照产品说明书要求进行。
安装地点不能有振动,不能有强磁场。
在安装时必须使变送器和管道有良好的接触及良好的接地。
变送器的电位与被测流体等电位。
在使用时,必须排尽测量管中存留的气体,否则会造成较大的测量误差。
(4)电磁流量计用来测量带有污垢的粘性液体时,粘性物或沉淀物附着在测量管内壁或电极上,使变送器输出电势变化,带来测量误差,电极上污垢物达到一定厚度,可能导致仪表无法测量。
(5)供水管道结垢或磨损改变内径尺寸,将影响原定的流量值,造成测量误差。
如100mm口径仪表内径变化1mm会带来约2%附加误差。
(6)变送器的测量信号为很小的毫伏级电势信号,除流量信号外,还夹杂一些与流量无关的信号,如同相电压、正交电压及共模电压等。
为了准确测量流量,必须消除各种干扰信号,有效放大流量信号。
应该提高流量转换器的性能,最好采用微处理机型的转换器,用它来控制励磁电压,按被测流体性质选择励磁方式和频率,可以排除同相干扰和正交干扰。
电磁、孔板、涡轮、涡街、超声波流量计性能对比目前,我国应用于流体测量领域的流量计种类有很多,依据流量计测量原理的不同,可以将其分为:转子流量计、电磁流量计、涡轮流量计、差压流量计、质量流量计、涡街流量计、超声波流量计等。
其中占市场主要份额的有电磁流量计、孔板流量计、涡轮流量计、涡街流量计、超声波流量计等。
孔板流量计属于小量程比差压式流量计,可用作气、液流体的流量测量,被广泛的应用于水利、液化、石油、化工、天然气、供暖、供水等生产生活领域,具有价格低廉,架构简单、应用范围广的优点。
流体流动时,流速的变化是整体且连续的。
根据已知被测流体的性质,可以推导出流体速度与压差之间的联系,进而演算出流量的数值。
孔板流量计的实现的略显复杂,且内部包含一定的机械结构,存在测试重复性一般、适应性低、量程小等缺陷,无法满足实际应用中对测量精度的要求。
当流体在不同表面特征的物体上流过时,会产生漩涡流且具备特定的频率,这些漩涡流的频率与流体流速间存在着对应关系。
根据这个现象,在流体中固定一个非流线型漩涡产生体,然后根据测量所得的漩涡的生成频率与流体流速的对应关系,就可以推导出出被测流体的流量,这就是涡街流量计测量原理。
涡街流量计具有重复性好、测量范围广、压损小、产品构造简单等优点。
但是为了保证测量的漩涡频率稳定,流量测量点的上下游都需要有足够长的直管段,对安装条件要求比较高。
涡轮流量计本质上是一种磁生电装置,测量流量时需要将涡轮放置在被测流体中,在流体的冲击下,涡轮会发生转动进而做切割磁感线运动并产生相当的电量。
因为产生电量与涡轮转动速度成正比,根据相关计算公式就可以求出流体的流速并转化成流量的测量。
涡轮流量计具有测量精度高、结果重复性好、构造简单等优点。
但其现场安装时需要进行损管操作,维护难度高,流体流速需保持平稳,而且流体中的杂质也会对其测量精度产生影响,环境适用性低。
电磁流量计的测量原理是法拉第电磁感应定律,通过测量导电流体中的电动势变化间接测出所测流体的流量。
天然气场站常用流量计-全球百科当前,天然气长输管道和场站的贸易计量主要采用超声波流量计、普通孔板流量计、涡轮流量计。
1、超声波流量计传播时间差法是国内外超声波流量计的主要检测方法。
该方法是用一对传感器相向收发超声波,当一个传感器发射声波脉冲时,另外一个传感器以一定的角度接收声波脉冲信号,这对传感器交替收发脉冲,通过检测并计算该脉冲在介质中顺流和逆流的传播时间差来测量管道介质的流速,从而计算出介质的流量。
目前国内外的超声波流量计多采用4、6或8声道传感器,即2对、3对或4对传感器进行工作,以提高测量的准确性。
超声波流量计虽然具有测量管径大、测量范围宽,支持双向计量等特性。
但因其工作中收发声波的原理,使其容易受到周边噪声和其它环境的干扰,影响计量的精度。
2、涡轮流量计涡轮流量计是一种流量计量器具,具有温度和压力补偿功能,属于速度式流量计。
其工作原理为:具有一定压力的天然气沿流动方向驱动涡轮流量计内的叶片旋转,通过电涡流传感器检测叶片的旋转速度,旋转速度与体积流量成正比,即可计算出通过流量计的天然气体积流量。
涡轮流量计具有稳定性高、量程范围宽、对流量变化反应迅速、抗干扰能力强、信号便于传输等特点,广泛应用于石油、化工、电力、城市燃气管网等领域的贸易结算,特别是在欧美等国家应用也极为普遍。
涡轮流量计具有较高的精度和量程比,有着较好的重复性。
但由于其自身的旋转机构长时间运转,会出现连杆断裂、或旋转异常等现象。
3、涡街流量计“卡门涡街”原理是涡街流量计的核心理论。
测量前在管道中垂直插入一段非流线型阻流体(旋涡发生体),当介质流动,管道内雷诺数达到一定值时,在发生体下游两侧会交替分离出规则排列的旋涡。
当发生体两侧产生旋涡时,流体对旋涡发生体会产生一个周期性的交变横向作用力,压电传感器将作用力的变化转换为可以测量的频率信号,通过信号放大和整形,得出流速和流量,并进行累积计算。
4、孔板流量计孔板流量计是基于差压测量的方法,以流动连续性定律和能量守衡定律为基准的,以AGA3或GB/T21446为计算依据。
15种流量计及各种压力、温度、流量、液位、控制原理动态图!1. 孔板流量计孔板流量计工作原理:流体充满管道,流经管道内的节流装置时,流束会出现局部收缩,从而使流速增加,静压力低,于是在节流件前后便产生了压力降,即压差,介质流动的流量越大,在节流件前后产生的压差就越大,所以孔板流量计可以通过测量压差来衡量流体流量的大小。
这种测量方法是以能量守衡定律和流动连续性定律为基准的。
工作特点:①节流装置结构简单、牢固,性能稳定可靠,使用期限长,价格低廉;②应用范围广,全部单相流皆可测量,部分混相流亦可应用;③标准型节流装置无须实流校准,即可投用;④一体型孔板安装更简单,无须引压管,可直接接差压变送器和压力变送器。
2. 电磁流量计电磁流量计工作原理:基于法拉第电磁感应定律。
在电磁流量计中,测量管内的导电介质相当于法拉第试验中的导电金属杆,上下两端的两个电磁线圈产生恒定磁常当有导电介质流过时,则会产生感应电压。
管道内部的两个电极测量产生的感应电压。
测量管道通过不导电的内衬(橡胶,特氟隆等)实现与流体和测量电极的电磁隔离。
工作特点:①具有双向测量系统;②传感器所需的直管段较短,长度为5倍的管道直径。
③压力损失小④测量不受流体密度、粘度、温度、压力和电导率变化的影响⑤主要应用于污水处理方面。
3. 涡轮流量计涡轮流量计工作原理:在一定的流量范围内,涡轮的转速与流体的流速成正比。
流体流动带动涡轮转动,涡轮的转速转换成电脉冲,用二次表显示出数据,反应流体流速。
工作特点:①抗杂质能力强;②抗电磁干扰和抗振能力强;③其结构与原理简单,便于维修;④几乎无压力损失,节省动力消耗。
4. 文丘里流量计工作原理:当流体流经文丘里流量计管道内的节流件时,流速在文丘里节流件出形成局部搜索,导致流速增加,静压差下降,文丘里流量计前后便产生了静压差,流体流量越大,静压差就越大,根据压差来衡量流量。
工作特点:无磨蚀与积污的问题,同时可以有一定的整流的作用,测量精度和稳定性高。
工业生产和贸易计算中常用的气体流量计类型气体流量测量是气体流体供需双方进行贸易结算的重要依据,也是企业生产经营中的关键技术和产能指标。
准确的气体计量结果可以保证贸易结算的公平性。
由于超声波流量计具有测量精度高、抗干扰能力强、对外界要求相对较低、流量计本身压力损失相对较小、测量范围宽等优点,超声波测量在气体贸易结算计量中的应用也变得越来越广泛。
测量差值管理是气体流体计算中的一项重要工作。
首先介绍了超声波流量计的测量原理,对超声波流量计的测量范围、安装要求和故障检测进行了描述和研究。
同时,为了获得更好的流量计整体维护和使用效果,在实际使用过程中,全面了解相关问题,为其在行业中的应用提供一定的参考。
目前,工业生产和贸易计算中常用的气体流量计包括三种类型,分别是超声波流量计、涡轮流量计、孔板流量计,三种产品的具体介绍如下所示。
1、涡轮流量计涡轮流量计的旋转速率随着流量的变化而改变。
一般在流速越大时,动能越大,涡轮转速也越高,因此实际上属于一种速度差原理流量计。
在应用过程中需要先将流速转换成涡轮转速,在此基础上得到对应的电磁脉冲。
最后基于得到的脉冲数能够得到流量信息。
该气体流量计的应用优势体现在流量大,准确性高等方面。
但是容易受到杂质的影响,降低其应用的可靠性。
2、孔板流量计从结构上来看,孔板流量计主要划分为流量显示器以及节流装置等部分。
该流量计的具体原理是:气体流量和压差存在正比关系,只要测量节流孔前后的压差,即可对介质流动信息进行分析。
该流量计的应用优势体现在性价比高、使用年限久以及操作简单等方面,广泛应用到了实际生产领域中。
但其缺点也较多,例如其重复性不高、量程窄、压力损失大等。
在使用过程中,会有较大因腐蚀、磨损、油污和压力损失等情况造成的测量误差。
3、超声波流量计超声波流量计是根据时差法原理设计的一种流体流量测量仪器,采用先进的多脉冲技术和信号数字处理技术。
超声波流量计的安装方式采用非接触式安装测量,具有无需与被测流体接触,产生明火的可能性低的优点,再加上它对各种工业场所的环境适应能力强,所以这种流量计成为目前气体流量测量中最合适、普及性最强的测量仪表。
天然气质量计量的三种方式天然气计量包括体积计量、质量计量和能量计量3种方式。
国际天然气贸易和欧美日韩等工业发达国家广泛采用能量计量,而我国及周边俄罗斯、中亚地区天然气资源国家仍以体积计量为主,天然气质量计量应用相对较少。
1.体积计量天然气体积计量仪表包括孔板流量计、涡轮流量计、超声波流量计、腰轮流量计、涡街流量计、旋进旋涡流量计等。
1.1孔板流量计孔板流量计为压差式流量计,主要应用于较早投产的天然气管道,近年来,正陆续升级改造为涡轮流量计或超声波流量计。
优点:价格较低;结构简单,便于安装;性能稳定;投用前无需实流校核。
缺点:测量精度一般,且精度难以提高;测量范围较窄,满足计量精度的前提下一般为3:1~5:1,采用双量程压差计可达10:1;对上下游直管段长度要求较高,一般要求上游直管段长度为30D(D为流量计内径),下游直管段长度为7D;通过节流装置,压力损失较大;由于孔板流量计由法兰连接,易产生漏气问题,维护工作量较大。
1.2涡轮流量计涡轮流量计属于速度式仪表,在长输天然气管道分输站场较为常见。
优点:结构简单而牢固,可靠性高;安装方便,便于维修;精度高,重复性好;测量范围较大,可达25:1,在高压输气情况下,还可进一步增大。
缺点:涡轮高速转动引起机械摩擦,需注意润滑;需在流量计上游配套过滤器,避免较大固体颗粒损坏涡轮叶片;对上下游直管段长度有一定要求,一般要求上游10D,下游5D;上限流速受“气蚀”现象限制,一般为10m/s。
1.3超声波流量计超声波流量计属于速差式流量计,是继孔板流量计、涡轮流量计之后的第三类适用于高压力、大口径、高精度的天然气流量计。
优点:测量精度高;测量范围大,可达100:1;能实现双向流量计量;无可动部件;无压损;不受气体压力、温度、组分变化的影响;有强大的自检测与自诊断功能;全数字式计量系统,易于实现数字化通信;维护简单,可带压更换超声换能器。
缺点:目前多为进口设备,价格昂贵,只适用于大、中口径;对上下游直管段长度有一定要求,一般要求上游10D,下游5D;不适用于较小口径(管径小于100mm)天然气计量。
常见流量计选型对比测量特点质量流量计直接测量通过流量计的介质的质量流量,还可测量介质的密度及间接测量介质的温度。
LG型孔板流量计又称为差压式流量计,是由一次检测件(节流件)和二次装置(差压变送器和流量显示仪)组成。
采用均压环、一体型结构。
式流量计的一种。
在一根由下向上扩大的垂直锥管中, 圆形横截面的浮子的重力是由液体动力承受的, 浮子可以在锥管自由地上升和下降。
在流速和浮力作用下上下运动,与浮子重量平衡后,通过磁耦合传到与刻度盘指示流量。
金属管浮子流量计主要由三大部分组成a、指示器(智能型指示器,就地指示器)b、浮子c、锥形测量室无强腐蚀性、食品、油,柴油等液体。
液体涡轮流量计由涡轮和装于外部的检脉冲器构成,液体流进涡轮,引起转子旋转,特定的径使转子转速直接与流量成比例。
缺点介绍:蒸气等多种介质。
涡街流量计是应用流体振荡原理来测量流量的,流体在管道中经过涡街流量变送器时,在三角柱的旋涡发生体后上下交替产生正比于流速的两列旋涡,旋涡的释放频率与流过旋涡发生体的流体平均速度及旋涡发生体特征宽度有关。
在流体中设置三角柱型旋涡发生体,则从旋涡发生体两侧交替地产生有规则的旋涡,这种旋涡称为卡门旋涡煤水浆、双氧水、(一体)式电磁流量计由传感器和转换器两部分构成。
它是基于法拉第电磁感应定律工作日的用来测量导电率大于5μS/cm导电液体的体积流量,是一种测量导电介质体积流量的感应式仪表。
除可测量一般导电液体的体积流量外,还可用于测量强酸强碱等强腐蚀液体和泥浆、矿浆、纸浆等均匀的液固两相悬浮液体的体积流量。
超声波流量计采用时差式测量原理:一个探头发射信收到,同时,第二个探头同样发射信号被第一个探头接收到,由于受到介质流速的影响,二者存在时间差Δt,根据推算可以得出流速V和时间差Δt之间的换算关系V=(C2/2L)×Δt,进而可以得到流量值Q。
空气流量计是根据法拉第电磁感应定律进行流量测量的流量计矿浆的流体流量。
超声波气体流量计与孔板流量计的深度对比
石油和天然气在我国能源构成中,始终处于主导地位,其运输方式仍然离不开长输和集输管道工程。
在石油和天然气采集与运输过程中,孔板流量计,特别是高级孔板阀在其中处于绝对的统治地位。
随着国内石油天然气事业的大规模发展,对于高压、大流量的计量的需求也旺盛起来,孔板流量计由于自身结构的限制其局限性就很明显了。
近来以来,一些新型的流量计也在国内市场崭露头角,并取得一系列成功经验。
最值得一提的是超声波流量计在高压、大流量场合具有明显优势,大有取代高级孔板阀之势。
下面,对比一下孔板流量计与超声气体波流量计之间的区别,一起来看看吧!
一、技术性能的比较
1.量程比
由于结构特点,孔板流量计是通过节流件来完成测量的,所以其量程比通常只有1:3,最高可达1:10,而超声波流量计没有任何阻流件,其量程比可达1:200。
这两个数据表明:如果实现一种测量方案,假定其流量范围是从1m³/h~40m³/h,使用超声波气体流量计只需要一路工艺计量回路就可以实现,如果采用孔板流量计,需要多路才能实现。
2.压损
由于孔板流量计的结构有阻流件,超声波气体流量计没有阻流件,那么显而易见:孔板流量计的压损很大,超声波流气体量计压损实际可以忽略不计。
节流装置能耗计算如下:
以下以1个典型用户用气参数进行能耗计算:用气量160×104m³/d,用气压力0.6MPa。
节流装置压力损失计算式:(最大刻度差压50kPa、β=0.68)
δP=(1-0.24β-0.52β2-0.16β3)ΔP
=0.5486×50
=27.43kPa
节流装置能耗计算式:(压缩机效率η=0.8)
W=δp×QV/η
=27430×18.5185/0.8
=634953W
计算耗能费:能源价0.4元/kWh
耗能费(年)=(W/1000)×(运行时数/年)×(元/kWh)
=(634953/1000)×365×24×0.4
=2224876(元/年)
该计算仅只是能耗损失,不包括压缩机运行等费用。
3.精度
孔板流量计的计量精度理论上可以达到1%,但是通过大量的实践证明,由于孔板流量计抗干扰能力较差,现场精度最高能达到2%,一般情况下在3%左右。
超声气体波流量计的精度则可以达到0.5%甚至更高。
由此可见选择两种不同的计量仪表,对于测量的影响会有多大。
4.测脉动流
由于孔板流量计是靠孔板前后的差压信号来实现流量测量的,脉动流会使孔板前后的差压不准,所以孔板流量计不适合测脉动流,而超声波气体流量计可以测量脉动流的强度并消除其干扰,所以它适合测脉动流。
5.测双向流
孔板流量计依据一个节流元件来实现测量目的,这个节流元件具有严格的方向性,因此孔板流量计无法测双向流。
超声波气体流量计只与超声信号在流体中的传播时间有关,因此可以测双向流。
6.测湿气体
孔板流量计不适合测量湿气体;若被测气体为湿气体,那么在孔板流量计的前端容易积液,使得上下游差压产生变化,而孔板流量计正是根据上下游的压差来测量流量的,如果差压产生变化,则孔板流量计不可能准确测量气体的流量。
超声波气体流量计具有自检测功能,如果所测量气体为湿气体,对超声波气体流量计产生影响时,仪表本身可以修正,因此超声波气体流量计适用于湿气体的测量(湿气体体积组分含量低于5%)。
7.清洗计量管路
孔板流量计本身有阻流件,清洗球无法通过,因此孔板流量计安装在管线上时无法在线清洗计量管路,只有拆除孔板流量计才能清洗管路。
而对超声波气体流量计来说,不存在这样的问题。
8.涡流影响
孔板流量计采用差压法测量气体的流量,涡流直接影响孔板两端的差压,因此孔板流量计对涡流很敏感,要求有很长的直管段才能满足测量精度的要求。
9.流速分布的影响
孔板流量计由于结构原理的限制,要求测量时流速分布均匀,但是由于现场计量管路的复杂性,气体在管路的流速分布是不可能均匀对称的,因此孔板流量计对流速分布不对称非常敏感。
超声波气体流量计可以修正流速分布不对称的现象。
10.重复性
对于孔板流量计而言,随着使用过程中孔板边缘的磨损,孔板流量计的精度和重复性都会下降,而
超声波气体流量计无压损、无示值漂移现象,重复性高。
11.工艺管路复杂性
对于孔板流量计,由于量程比窄,计量管路多,而且上、下游直管段长,现场工艺管路复杂。
超声波气体流量计量程比宽,上、下游直管段短,工艺管路简单。
12.维修维护率
孔板流量计有阻流件,上游易积液、对高含硫的天然气,其孔板磨损快,维修维护率高。
超声波气体流量计无可动部件,特殊材料的超声探头可以抗H₂S的腐蚀,维护简单。
13.一次性投资
孔板流量计由于量程比窄,对于相同的流量计量要求,其计量管路多,虽然直接的计量仪表投资少,但是相关的阀门、温度变送器、压力变送器、直管段、汇管等一次性投资多。
超声波气体流量计单表价格高于孔板流量计,但是由于量程比宽,整个计量回路少,实际站场一次性投资少。
二、长期使用的比较
1.精度变化
孔板流量计由于长期使用,孔板入口边缘磨损,孔板弯曲变形,都会使精度丧失。
超声波气体流量计由于无磨损、无示值漂移现象,可以长期保持较高的精度。
2.脏污的影响
由于孔板流量计由节流件,长期使用时,脏污物将堆积在孔板的上游,造成差压信号不准,直接影响计量精度。
脏污和孔板钝化可造成计量偏差2%~10%以上。
超声波气体流量计为中空管段,探头在仪表上部,脏污不易影响探头工作,不会影响计量精度,而且流量计可以检测脏污情况并修正和报警提示、及时进行清洗。
3.故障排除
由于孔板流量计的仪表特性取决于节流件的几何形状和尺寸,需要经常检查节流件,一旦节流件发生变化就必须更换,节流件的寿命取决于气体的组分、流量及压力。
超声波气体流量计本身具有很强的自诊断功能,一旦不在正常状况就会报警,并自动记录报警期间的数据,超声探头的使用寿命至少为8年,并可在线更换。
4.备品备件
孔板流量计由于节流件经常磨损、变形,因此需要备多套节流件;超声波气体流量计只需要备一套探头,可替换使用。
5.日常维护
孔板流量计需要经常维护,并检查节流件的几何尺寸等参数。
在线更换孔板后很难保证不泄漏,使压差不准,难以保证计量精度。
超声波流量计则可免维护,自检功能强大。
6.强检周期
孔板流量计一年一检,一般采用几何检定法。
超声波气体流量计三年一检,可以实现在线标定。
综上所述,使用超声波气体流量计比使用孔板流量计无论从安全性能、技术性能还是从一次性投资以及长期运行费用上都有很大的优势。
由于说明问题的需要,本文中计算和实例均选用较大用气量进行比较,实际通过比较计算一般DN200口径以上流量计选用超声波气体流量计具有较大优势,DN150特别是以下流量计的选取由于气体超声波流量计本身价格因素使用孔板流量计更为经济,但从保证计量精度出发也推荐选用更精确的计量仪表。