第三章 晶格振动和晶体的热学性质(题目)
- 格式:doc
- 大小:39.50 KB
- 文档页数:1
第三章晶格振动与晶体热学性质习题解答1.相距为不是晶格常数倍数的两个同种原子,其最大振幅是否相同?[解答]以同种原子构成的一维双原子分子链为例,相距为不是晶格常数倍数的两个同种原子, 设一个原子的振幅A,另一个原子振幅B,由本教科书的(3.16)可得两原子振幅之比(1)其中m原子的质量.由本教科书的(3.20)和(3.21)两式可得声学波和光学波的频率分别为, (2). (3)将(2)(3)两式分别代入(1)式,得声学波和光学波的振幅之比分别为, (4). (5)由于,则由(4)(5)两式可得,.即对于同种原子构成的一维双原子分子链,相距为不是晶格常数倍数的两个原子,不论是声学波还是光学波,其最大振幅是相同的.2.引入玻恩卡门条件的理由是什么?[解答](1)(1)方便于求解原子运动方程.由本教科书的(3.4)式可知,除了原子链两端的两个原子外,其它任一个原子的运动都与相邻的两个原子的运动相关.即除了原子链两端的两个原子外,其它原子的运动方程构成了个联立方程组.但原子链两端的两个原子只有一个相邻原子,其运动方程仅与一个相邻原子的运动相关,运动方程与其它原子的运动方程迥然不同.与其它原子的运动方程不同的这两个方程,给整个联立方程组的求解带来了很大的困难.(2)(2)与实验结果吻合得较好.对于原子的自由运动,边界上的原子与其它原子一样,无时无刻不在运动.对于有N个原子构成的的原子链,硬性假定的边界条件是不符合事实的.其实不论什么边界条件都与事实不符.但为了求解近似解,必须选取一个边界条件.晶格振动谱的实验测定是对晶格振动理论的最有力验证(参见本教科书§3.2与§3.4).玻恩卡门条件是晶格振动理论的前提条件.实验测得的振动谱与理论相符的事实说明,玻恩卡门周期性边界条件是目前较好的一个边界条件.3.什么叫简正振动模式?简正振动数目、格波数目或格波振动模式数目是否是一回事?[解答]为了使问题既简化又能抓住主要矛盾,在分析讨论晶格振动时,将原子间互作用力的泰勒级数中的非线形项忽略掉的近似称为简谐近似.在简谐近似下,由N个原子构成的晶体的晶格振动,可等效成3N个独立的谐振子的振动.每个谐振子的振动模式称为简正振动模式,它对应着所有的原子都以该模式的频率做振动,它是晶格振动模式中最简单最基本的振动方式.原子的振动,或者说格波振动通常是这3N个简正振动模式的线形迭加.简正振动数目、格波数目或格波振动模式数目是一回事,这个数目等于晶体中所有原子的自由度数之和,即等于3N.4.长光学支格波与长声学支格波本质上有何差别?[解答]长光学支格波的特征是每个原胞内的不同原子做相对振动,振动频率较高,它包含了晶格振动频率最高的振动模式.长声学支格波的特征是原胞内的不同原子没有相对位移,原胞做整体运动,振动频率较低,它包含了晶格振动频率最低的振动模式,波速是一常数.任何晶体都存在声学支格波,但简单晶格(非复式格子)晶体不存在光学支格波.5.晶体中声子数目是否守恒?[解答]频率为的格波的(平均)声子数为,即每一个格波的声子数都与温度有关,因此,晶体中声子数目不守恒,它是温度的变量.按照德拜模型,晶体中的声子数目N’为.作变量代换,.其中是德拜温度.高温时,,即高温时,晶体中的声子数目与温度成正比.低温时,,,即低温时,晶体中的声子数目与T3成正比.6.温度一定,一个光学波的声子数目多呢,还是声学波的声子数目多?[解答]频率为的格波的(平均)声子数为.因为光学波的频率比声学波的频率高,()大于(),所以在温度一定情况下,一个光学波的声子数目少于一个声学波的声子数目.7.对同一个振动模式,温度高时的声子数目多呢,还是温度低时的声子数目多?[解答]设温度T H>T L,由于()小于(),所以温度高时的声子数目多于温度低时的声子数目.8.高温时,频率为的格波的声子数目与温度有何关系?[解答]温度很高时,,频率为的格波的(平均)声子数为.可见高温时,格波的声子数目与温度近似成正比.9.从图3.6所示实验曲线,你能否判断哪一支格波的模式密度大?是光学纵波呢,还是声学纵波?[解答]从图3.6所示实验曲线可以看出,在波矢空间内,光学纵波振动谱线平缓,声学纵波振动谱线较陡.单位频率区间内光学纵波对应的波矢空间大,声学纵波对应的波矢空间小.格波数目与波矢空间成正比,所以单位频率区间内光学纵波的格波数目大.而模式密度是单位频率区间内的格波数目,因此光学纵波的模式密度大于声学纵波的模式密度.10.喇曼散射方法中,光子会不会产生倒逆散射?[解答]晶格振动谱的测定中,光波的波长与格波的波长越接近,光波与声波的相互作用才越显著.喇曼散射中所用的红外光,对晶格振动谱来说,该波长属于长波长范围.因此,喇曼散射是光子与长光学波声子的相互作用.长光学波声子的波矢很小,相应的动量不大.而能产生倒逆散射的条件是光的入射波矢与散射波矢要大,散射角也要大.与大要求波长小,散射角大要求大(参见下图),.但对喇曼散射来说,这两点都不满足.即喇曼散射中,光子不会产生倒逆散射.11.长声学格波能否导致离子晶体的宏观极化?[解答]长光学格波所以能导致离子晶体的宏观极化,其根源是长光学格波使得原胞内不同的原子(正负离子)产生了相对位移.长声学格波的特点是,原胞内所有的原子没有相对位移.因此,长声学格波不能导致离子晶体的宏观极化.12.金刚石中的长光学纵波频率与同波矢的长光学格横波频率是否相等?对KCl 晶体,结论又是什么?[解答]长光学纵波引起离子晶体中正负离子的相对位移,离子的相对位移产生出宏观极化电场,电场的方向是阻滞离子的位移,使得有效恢复力系数变大,对应的格波的频率变高.长光学格横波不引起离子的位移,不产生极化电场,格波的频率不变.金刚石不是离子晶体, 其长光学纵波频率与同波矢的长光学格横波频率相等.而KCl晶体是离子晶体,它的长光学纵波频率与同波矢的长光学格横波频率不相等,长光学纵波频率大于同波矢的长光学格横波频率.13.何谓极化声子?何谓电磁声子?[解答]长光学纵波引起离子晶体中正负离子的相对位移,离子的相对位移产生出宏观极化电场,称长光学纵波声子为极化声子.由本教科书的(3.103)式可知,长光学横波与电磁场相耦合,使得它具有电磁性质,人们称长光学横波声子为电磁声子.14.你认为简单晶格存在强烈的红外吸收吗?[解答]实验已经证实,离子晶体能强烈吸收远红外光波.这种现象产生的根源是离子晶体中的长光学横波能与远红外电磁场发生强烈耦合.简单晶格中不存在光学波,所以简单晶格不会吸收远红外光波.15.对于光学横波,对应什么物理图象?[解答]格波的频率与成正比.说明该光学横波对应的恢复力系数.时,恢复力消失,发生了位移的离子再也回不到原来的平衡位置,而到达另一平衡位置,即离子晶体结构发生了改变(称为相变).在这一新的结构中,正负离子存在固定的位移偶极矩,即产生了自发极化,产生了一个稳定的极化电场.16.爱因斯坦模型在低温下与实验存在偏差的根源是什么?[解答]按照爱因斯坦温度的定义,爱因斯坦模型的格波的频率大约为,属于光学支频率.但光学格波在低温时对热容的贡献非常小,低温下对热容贡献大的主要是长声学格波.也就是说爱因斯坦没考虑声学波对热容的贡献是爱因斯坦模型在低温下与实验存在偏差的根源.17.在甚低温下,不考虑光学波对热容的贡献合理吗?[解答]参考本教科书(3.119)式,可得到光学波对热容贡献的表达式.在甚低温下,对于光学波,,上式简化为.以上两式中是光学波的模式密度,在简谐近似下,它与温度无关.在甚低温下,,即光学波对热容的贡献可以忽略.也就是说,在甚低温下,不考虑光学波对热容的贡献是合理的.从声子能量来说,光学波声子的能量很大(大于短声学波声子的能量),它对应振幅很大的格波的振动,这种振动只有温度很高时才能得到激发.因此,在甚低温下,晶体中不存在光学波.18.在甚低温下,德拜模型为什么与实验相符?[解答]在甚低温下,不仅光学波得不到激发,而且声子能量较大的短声学格波也未被激发,得到激发的只是声子能量较小的长声学格波.长声学格波即弹性波.德拜模型只考虑弹性波对热容的贡献.因此,在甚低温下,德拜模型与事实相符,自然与实验相符.19.在绝对零度时还有格波存在吗?若存在,格波间还有能量交换吗?[解答]频率为的格波的振动能为,其中是由个声子携带的热振动能,()是零点振动能,声子数.绝对零度时,=0.频率为的格波的振动能只剩下零点振动能.格波间交换能量是靠声子的碰撞实现的.绝对零度时,声子消失,格波间不再交换能量.20.温度很低时,声子的自由程很大,当时,,问时,对于无限长的晶体,是否成为热超导材料?[解答]对于电绝缘体,热传导的载流子是声子.当时,声子数n.因此,时,不论晶体是长还是短,都自动成为热绝缘材料.21.石英晶体的热膨胀系数很小,问它的格林爱森常数有何特点?[解答]由本教科书(3.158)式可知,热膨胀系数与格林爱森常数成正比.石英晶体的热膨胀系数很小,它的格林爱森常数也很小.格林爱森常数大小可作为晶格非简谐效应大小的尺度.石英晶体的格林爱森常数很小,说明它的非简谐效应很小.。
固体物理第三章班级成绩学号Chapter 3 晶格振动与晶体的热学性质姓名(lattice vibration and its heat characteristics)⼀、简要回答下列问题(answer the following questions):1、在晶格常数为a 的⼀维单原⼦晶格中,波长λ=8a 和波长λ=8a/5的格波所对应的原⼦振动状态有⽆不同? 试画图加以说明。
[答]对于⼀维单原⼦链,由q=2π/λ知,λ=8a 时,q =π/4a ,λ=8a /5时,q =5π/4a ,⼆者的aq 相差π,不是2π的整数倍,因此,两个格波所对应的原⼦振动状态不同。
如上图,当两个格波的位相差为2π的整数倍时,则它们所对应的原⼦的振动状态相同。
2、什么叫简正振动模式?简正振动数⽬、格波数⽬或格波振动模式数⽬是否是⼀回事?[答]在简谐振动下,由N 个原⼦构成的晶体的晶格振动,可等效成3N 个独⽴的谐振⼦的振动,每⼀个谐振⼦的振动模式称为简正振动模式。
格波振动通常是这3N 个简正振动模式的线性叠加。
简正振动数⽬、格波数⽬或格波振动模式数⽬是是⼀回事,其数⽬等于晶体中所有原⼦的⾃由度之和,即等于3N 。
3、晶体中声⼦数⽬是否守恒?在极低温下,晶体中的声⼦数与温度T 之间有什么样的关系?[答]频率为ωi 的格波的平均声⼦数为: 11)(/-=Tk i B en ωω即每⼀个格波的声⼦数都与温度有关,因此晶体中的声⼦数⽬不守恒,它随温度的改变⽽改变。
以德拜模型为例。
晶体中的声⼦数⽬为ωωωωd g n N D)()('0=其中令 T k x B ω= 则 123'2/033233-=x TB e dxx C T k V N D θπ在极低温度下,θD /T →∞,于是 331332332033233)2(23123'T nC T Vk e dx x C T k V N n B x B ∑∞=∞=-=ππ即在温度极低时,晶体中的声⼦数⽬与T 3成正⽐。
第三章晶格振动与晶体的热学性质第三章晶格振动与晶体的热学性质晶体中的格点表示原子的平衡位置,晶格振动便是指原子在格点附近的振动。
晶格振动对晶体的电学、光学、磁学、介电性质、结构相变和超导电性都有重要的作用。
本章的主题用最邻近原子间简谐力模型来讨论劲歌振动的本征频率;并用格波来描述晶体原子的集体运动;再用量子理论来表述格波相应的能量量子、3.1 连续介质中的波波动方程22220u ux Y tρ??-=??对足够长的介质,求行波的解:s v q ω=其中波相速ω=称作色散关系。
3.2 一维晶格振动格波讨论晶格振动时采用了绝热近似,近邻近似和简谐近似。
绝热近似:考虑离子运动时,可以近似认为电子很快适应离子的位置变化。
为简单化,可以将离子的运动看成是近似成中性原子的运动。
近邻近似:在晶格振动中,只考虑最近邻的原子间的相互作用;简谐近似:在原子的互作用势能展开式中,只取到二阶项。
0020021()()()()......2r r dU d U U r U r dr dr δ+=+++简谐近似——振动很微弱,势能展式中作二级近似:00'''001()()||2r r U r U r U U δ+=++相邻原子间的作用力02222,r Ud U d U f dr dr δβδβδ=-=-=-= ? ??????一维晶格振动格波考虑第n 个例子的受力情况,它只受最近邻粒子的相互作用即分别受到来自第n-1个粒子及第n+1个例子的弹性力11()n n n f u u β--=-- 11()n n n f u u β++=--1111(2)n n n n n n f f f u u u β-++-=-=--- 2112(2)n n n n d uf ma m u u u dtβ+-===---试探解以行波作试探解()i t naq nq u Ae ω-=2()()(2)i t naq i t naq iaq iaq m e e e e ωωωβ----=---利用:222cos()24sin (/2)iaq iaq e e qa qa -+-=-=得224sin (/2)qa m βω=,/2)qa ω=色散关系 s i n (/2)qa ω=长波极限因为色散曲线是周期的且关于原点对称,在0/q a π<<的区间内,频率仅覆盖在0m ωω<<的范围内。
第三章 晶格振动与晶体热学性质1. 原子质量为m,间距为a,恢复力常数为β的一维简单晶格,频率为ω的格波)cos(qna t A u n -=ω,求(1) 该波的总能量,(2) 每个原子的时间平均总能量。
[解答](1) 格波的总能量为各原子能量的总和。
其中第n 个原子的动能为,)(212tu m n ∂∂ 而该原子与第n+1个原子之间的势能为21)(21--n n u u β 若只为考虑最近邻相互作用,则格波的总能量为,)(21)(21212--+∂∂=∑∑n n n n n u u t um E β将)cos(pna t A u n -=ω 代入上式得,2sin ])12(21[sin 421)(sin2222221qaqa n t A qna t A m E ⋅+-+-=∑∑ωβωϖϖ 设T 为原子振动周期,利用21)(sin 102=-⎰dt t T T ϕω 可得()dtqa n t T A dt qna t T A qaT nT n 2221022210222sin ]12([sin 14)(sin 121⋅+-+-=E ⎰∑⎰∑ωβωω =241ωm A 2N +2sin 22qa N A β. 式中N 为原子总数。
(2) 每个原子的时间平均总能量为2sin A A 412222qam N E βω+=-再利用色散关系2sin 4)cos 1(222qa m qa m ββϖ=-=便得到每个原子的时间平均能量2221A m N E ϖ=-2. 一维复式格子,原子质量都为m ,原子统一编号,任一原子与两最近邻的间距不同,力常数不同,分别为1β和2β,晶格常数为a,求原子的运动方程及色散关系. [解答]图3.2 一维双原子分子链此题实际是一双原子分子链.设相邻分子间两原子的力常数为2β,间距为b ;一个分子内两原子力常数1β;晶格常数为a;第n-1,n,n+1,n+2个原子的位移分别为211,,,++-n n n n u u u u .第n-1与第n+1个原子属于同一原子,第n 与n+1第个原子属于同一个原子,于是第n 和第n+1个原子受的力分别为)()(1112-+---=n n n n n u u u u f ββ, )()(121211n n n n n u u u u f ---=++++ββ. 其运动方程分别为)()(111222-+---=n n n n nu u u u dtu d m ββ)()(12121212n n n n n u u u u dt u d m ---=++++ββ设格波的解分别为[][]t qna i t a q i n Ae Ae u n ϖϖ--==212)([][]t qna i t qb a q i n BeAeB u n ϖϖ--++==212)('1.代入运动方程,得)()(122iqa Be A A B A m ----=-ββϖ.)()(212A B B AeB m iqa---=-ββϖ整理得)()(,0)()(22122221=-++-=--+-B m A e B e A m iqaiqa ϖββββββϖββ由于A 和B 不可能同时为零。
固体物理第三章晶格振动与晶体热学性质第三章晶格振动与晶体的热学性质晶格振动是描述原子在平衡位置附近的振动,由于晶体内原子间存在着相互作用力,各个原子的振动也不是孤立的,而是相互联系的,因此在晶体内形成各种模式的波。
只有当振动微弱时,原子间非谐的相互作用可以忽略,即在简谐近似下,这些模式才是独立的。
由于晶格的周期性条件,模式所取的能量值不是连续的而是分立的。
对于这些独立而又分立的振动模式,可以用一系列独立的简谐振子来描述。
和光子的情形相似,这些谐振子的能量量子称为声子。
这样晶格振动的总体就可以看成声子系综。
若原子间的非谐相互作用可以看作微扰项,则声子间发生能量交换,并且在相互作用过程中,某些频率的声子产生,某些频率的声子湮灭。
当晶格振动破坏了晶格的周期性,使电子在晶格中的运动受到散射而电阻增加,可以看作电子受到声子的碰撞,晶体中的光学性质也与晶格振动有密切关系,在很大程度上可以看作光子与声子的相互作用乃至强烈耦合。
晶格振动最早是用于研究晶体的热学性质,其对晶体的电学性质、光学性质、超导电性、磁性、结构相变等一系列物理问题都有相当重要的作用,是研究固体宏观性质和微观过程的重要基础。
ωη§3-1 简谐近似和简正坐标由原子受力和原子间距之间的关系可以看出,若离开平衡位置的距离在一定限度,原子受力和该距离成正比。
这时该振动可以看成谐振动.用n μϖ表示原子偏离平衡位置(格点)位移矢量,对于三维空间,描述N 个原子的位移矢量需要3N 个分量,表为)3,,2,1(N i i Λ=μ将体系的势函数在平衡位置附近作泰勒展开:高阶项+∑⎪⎪⎭⎫ ⎝⎛∂∂∂+∑∂∂+===j i N j i j i i N i i V V V V μμμμμμ031,2031021)(第一项为平衡位置的势能,可取为零,第二项为平衡位置的力,等于零。
若忽略高阶项,因为势能仅和位移的平方成正比,即为简谐近似。
23121i N i i m T μ&∑==引入合适的正交变换,将动能和势能用所谓的简正坐标表示成仅含平方∑==N j j ij i i Q a m 31μ项而没有交叉项,即:由分析力学,基本形式的拉格朗日方程为:)32,1(,N i q Q T Q T dt d i i i Λ&==∂∂-⎪⎪⎭⎫ ⎝⎛∂∂其中)32,1(,1N i q f q i j N j j i Λϖϖ=∂∂⋅∑==μ朗日方程:)32,1(,0N i Q L Q L dt d i i Λ&==∂∂-⎪⎪⎭⎫ ⎝⎛∂∂则正则方程为:)3,2,1(,02N i Q Q i i i Λ&&==+ω其解为:)sin(δω+=t A Q i i 当考察某一个j Q 时,则:)sin(δωμ+=t A m a j i iji 晶体参与的振动,且它们的振动频率相同。
第三章 晶格振动和晶体的热学性质
一、概念题
1、 什么是格波和晶格振动?
2、 什么是相速度,什么是群速度?
3、 什么是声子?
4、 什么是爱因斯坦模型假设和德拜模型假设?
5、何谓长光学波?
二、简答题
1、 引入玻恩——卡门条件理由是什么?
2、 长光学支格波与长声学支格波本质上有何差别?
3、 温度一定,一个光学波的声子数目多呢,还是声学波的声子数目多?
4、 长声学格波能否导致离子晶体的宏观极化?
5、 何谓极化声子?何谓电磁声子?
三、计算题
1、设有一维晶体,其原子的质量均为m ,而最近邻原子间的力常数交霍霍地等于β和10β,且最近邻的距离为a/2.试画出色散关系曲线,并给出q=0和q=±π/a 处的ω(q ).
2、设晶体中每个振子的零点振动能为12
ω ,使用德拜模型求晶体的零点振动能。
证明:根据量子力学零点能是谐振子所固有的,与温度无关,故T=0K 时振动能0E 就是各振动模零点能之和。
()()()000012m
E E g d E ωωωωωω==⎰ 将和()22332s
V g v ωωπ=代入积分有402339168m m s V E N v ωωπ=
= ,由于098m B D B D k E Nk ωθθ== 得一股晶体德拜温度为~210K ,可见零点振动能是相当大的,其量值可与温升数百度所需热能相比拟.讨论N 个原胞的一维双原子链(相邻原子间距为a ),其2N 格波解,当M=n 时与维单原子链的结果一一对应。