2011上海数学试卷
- 格式:doc
- 大小:145.50 KB
- 文档页数:6
2011学年第一学期期末测试高三数学参考答案2012.1.6一.填空题1. 12. 12i ±3. ()1,6-4. (0,3]5.i6. 117. 31x y =⎧⎨=⎩ 8. 2 9. 21a a ++ 10. 223+ 11. (1,2)12. 4 13. 21,3⎛⎫- ⎪⎝⎭二.选择题(本大题满分20分) 15. A 16.A 17.C 18. D三.解答题(本大题满分74分)19.解:化简22sin cos 1y x x x =--1cos 2212sin 26x x x π=--⎛⎫=-+ ⎪⎝⎭……………………(4分)因为72,666x πππ⎡⎤+∈⎢⎥⎣⎦, 所以1sin 2,162x π⎛⎫⎡⎤+∈- ⎪⎢⎥⎝⎭⎣⎦……………………(6分)即2y ⎡∈-+⎣……………………(8分)由2sin 206x π⎛⎫-++= ⎪⎝⎭得……………………(9分) 零点为12x π=或4x π=……………………(12分)20. 解:(1)1113E AA F A AE V S BC -∆=⋅……………………………………(3分) 1E AA F V -142233=⋅⋅=……………………………………………(6分)(2)连结EC可知EFC ∠为异面直线EF 与AB 所成角,…………………(9分)在Rt FEC ∆中,EC =,1FC =,……………………(10分)所以tan EFC ∠=13分)即EFC ∠=14分)21. 解:(1)由题意,131331x xx +-+≥+,化简得()2332310x x ⋅+⋅-≤……………(2分) 解得1133x-≤≤…………………………………………………………(4分) 所以1x ≤-……………………………………(6分,如果是其它答案得5分) (2)已知定义域为R ,所以()10=013af a b-+=⇒=+,…………………(7分) 又()()1103f f b +-=⇒=,……………………………………………………(8分)所以()11333xx f x +-=+;…………………………………………………………(9分)()11311312133331331x x x x x f x +⎛⎫--⎛⎫===-+ ⎪ ⎪+++⎝⎭⎝⎭对任意1212,,x x R x x ∈<可知()()()()211212121222333313133131x x x x x x f x f x ⎛⎫-⎛⎫ ⎪-=-= ⎪ ⎪++++⎝⎭⎝⎭…………(12分) 因为12x x <,所以21330xx->,所以()()12f x f x <因此()f x 在R 上递减.……………………………………………………………(14分)22.解:(1) 设椭圆方程为22221x y a b+=,由题意点12⎫⎪⎪⎝⎭在椭圆上,221a b =+………………………………………(2分) 所以226114(1)b b+=+,解得2212x y +=…………………………………………(4分) (2)由题意1y x =-,………………………………………………………………(5分) 所以,()410,0,,33A B ⎛⎫⎪⎝⎭, …………………………………………………………(7分)121=⋅=∆B ABP x AP S …………………………………………………………………(9分) (3)当直线斜率不存在时,易求1,,1,22A B ⎛⎛⎫- ⎪ ⎪⎝⎭⎝⎭, 所以)21,1(),212,1(),212,1(1-=+-=-=PF 由1PA PB tPF +=得2t =,直线l 的方程为1x =.……………………(11分) 当直线斜率存在时,所以112211,,,22PA x y PB x y ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭ ,111,2PF ⎛⎫=- ⎪⎝⎭由1PA PB tPF +=得121211222x x t t y y +=⎧⎪⎨-+-=-⎪⎩即121212x x t t y y +=⎧⎪⎨+=-⎪⎩…………………………………(13分)因为1212(2)y y k x x +=+-,所以12k =- 此时,直线l 的方程为()112y x =--………………………………………(16分) 注:由1PA PB tPF += 得1F是AB 的中点或P 、A 、B 、1F 共线,不扣分. 23.解:(1)由题可知()222log 22n n f a n a n =+⇒=+………………(2分) 得222n n a +=.………………………………………………………………(4分)(2)原式化简:()()221221221221212log log )23log log (32)23log (32)23322202202,2k k k k k k k k x x k x x k x x k x x x x x +++++++++≥+⇒+⋅-≥+⎡⎤⇒⋅-≥+⎣⎦⇒-⋅+⋅≤⇒--≤⎡⎤⇒∈⎣⎦……………………………………(8分)其中整数个数()121k g k +=+.…………………………………………(10分)(3)由题意,11111641211414n n n S ⎡⎤-⎢⎥⎣⎦=⨯=--12k +=…………………(12分)又2n S λ-恒成立,0n S >,0λ>,所以当n S取最小值时,n S -14分) 又1n S <4≥,所以214λλ-≤……………………………………(16分)解得2λ≥-18分)。
2011年上海市春季高考数学试卷一、填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每题填对得4分,否则一律得零分.1.(4分)函数f(x)=lg(x﹣2)的定义域是.2.(4分)若集合A={x|x≥1},B={x|x2≤4},则A∩B=.3.(4分)在△ABC中,tanA=,则sinA=.4.(4分)若行列式=0,则x=.5.(4分)若,,则x=(结果用反三角函数表示)6.(4分)(x+)6的二项展开式的常数项为.7.(4分)两条直线l1:x﹣y+2=0与l2:x﹣y+2=0的夹角的大小是.8.(4分)若S n为等比数列{a n}的前n项的和,8a2+a5=0,则=.9.(4分)若椭圆C的焦点和顶点分别是双曲线的顶点和焦点,则椭圆C的方程是.10.(4分)若点O和点F分别为椭圆+y2=1的中心和左焦点,点P为椭圆上的任意一点,则|OP|2+|PF|2的最小值为.11.(4分)根据如图所示的程序框图,输出结果i=.12.(4分)2011年上海春季高考有8所高校招生,如果某3位同学恰好被其中2所高校录取,那么录取方法的种数为.13.(4分)有一种多面体的饰品,其表面右6个正方形和8个正三角形组成(如图),则AB与CD所成的角的大小是.14.(4分)为求方程x5﹣1=0的虚根,可以把原方程变形为(x﹣1)(x2+ax+1)(x2+bx+1)=0,由此可得原方程的一个虚根为.二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.(5分)若向量,则下列结论正确的是()A.B.C. D.16.(5分)f(x)=的图象关于()A.原点对称B.直线y=x对称C.直线y=﹣x对称 D.y轴对称17.(5分)直线l:y=k(x+)与圆C:x2+y2=1的位置关系是()A.相交或相切B.相交或相离C.相切D.相交18.(5分)若,,均为单位向量,则=(,)是++=(,)的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件三、解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号规定区域内写出必要的步骤.19.(12分)已知向量=(sin2x﹣1,cosx),=(1,2cosx),设函数f(x)=•,求函数f(x)的最小正周期及x∈[0,]时的最大值.20.(14分)某甜品店制作蛋筒冰淇淋,其上半部分呈半球形,下半部分呈圆锥形(如图).现把半径为10cm的圆形蛋皮分成5个扇形,用一个扇形蛋皮围成锥形侧面(蛋皮厚度忽略不计),求该蛋筒冰淇淋的表面积和体积(精确到0.01).21.(14分)已知抛物线F:y2=4x(1)△ABC的三个顶点在抛物线F上,记△ABC的三边AB、BC、CA所在的直线的斜率分别为k AB,k BC,k CA,若A的坐标在原点,求k AB﹣k BC+k CA的值;(2)请你给出一个以P(2,1)为顶点、其余各顶点均为抛物线F上的动点的多边形,写出各多边形各边所在的直线斜率之间的关系式,并说明理由.22.(16分)定义域为R,且对任意实数x1,x2都满足不等式f()≤的所有函数f(x)组成的集合记为M,例如,函数f(x)=kx+b∈M.(1)已知函数f(x)=,证明:f(x)∈M;(2)写出一个函数f(x),使得f(x0)∉M,并说明理由;(3)写出一个函数f(x)∈M,使得数列极限=1,=1.23.(18分)对于给定首项x0>(a>0),由递推公式x n+1=(x n+)(n ∈N)得到数列{x n},对于任意的n∈N,都有x n>,用数列{x n}可以计算的近似值.(1)取x0=5,a=100,计算x1,x2,x3的值(精确到0.01);归纳出x n,x n+1,的大小关系;(2)当n≥1时,证明:x n﹣x n+1<(x n﹣1﹣x n);(3)当x0∈[5,10]时,用数列{x n}计算的近似值,要求|x n﹣x n+1|<10﹣4,请你估计n,并说明理由.2011年上海市春季高考数学试卷参考答案与试题解析一、填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每题填对得4分,否则一律得零分.1.(4分)(2011•上海)函数f(x)=lg(x﹣2)的定义域是(2,+∞).【分析】对数的真数大于0,可得答案.【解答】解:由x﹣2>0,得x>2,所以函数的定义域为(2,+∞).故答案为:(2,+∞).2.(4分)(2011•上海)若集合A={x|x≥1},B={x|x2≤4},则A∩B={x|1≤x ≤2} .【分析】求解二次不等式化简集合B,然后直接利用交集运算求解.【解答】解:由A={x|x≥1},B={x|x2≤4}={x|﹣2≤x≤2},所以A∩B={x|x≥1}∩{x|﹣2≤x≤2}={x|1≤x≤2}.故答案为{x|1≤x≤2}.3.(4分)(2011•上海)在△ABC中,tanA=,则sinA=.【分析】由题意可得A为锐角,再由tanA==,sin2A+cos2A=1,解方程组求得sinA的值.【解答】解:在△ABC中,tanA=,则A为锐角,再由tanA==,sin2A+cos2A=1,求得sinA=,故答案为.4.(4分)(2011•上海)若行列式=0,则x=1.【分析】先根据行列式的计算公式进行化简,然后解指数方程即可求出x的值.【解答】解:∵=0,∴2×2x﹣4=0,即2x=2,∴x=1.故答案为:1.5.(4分)(2011•上海)若,,则x=(结果用反三角函数表示)【分析】利用反正弦函数的定义,由角的范围为,故可直接得到答案.【解答】解:由于,根据反正弦函数的定义可得x=故答案为6.(4分)(2011•上海)(x+)6的二项展开式的常数项为20.【分析】在二项展开式的通项公式中,令x的幂指数等于0,求出r的值,即可求得常数项.=•x6﹣r•x﹣r=•x6﹣2r.【解答】解:(x+)6的二项展开式的通项公式为T r+1令6﹣2r=0,求得r=3,故展开式的常数项为=20,故答案为20.7.(4分)(2011•上海)两条直线l1:x﹣y+2=0与l2:x﹣y+2=0的夹角的大小是.【分析】设两条直线的夹角为θ,求得tanθ=||的值,可得tan2θ的值,求得2θ 的值,可得θ的值.【解答】解:由于两条直线l1:x﹣y+2=0与l2:x﹣y+2=0的斜率分别为、1,设两条直线的夹角为θ,则tanθ=||=||==2﹣,∴tan2θ==,∴2θ=,θ=,故答案为.8.(4分)(2011•上海)若S n为等比数列{a n}的前n项的和,8a2+a5=0,则=﹣7.【分析】根据已知的等式变形,利用等比数列的性质求出q3的值,然后分别根据等比数列的通项公式及前n项和公式,即可求出结果.【解答】解:由8a2+a5=0,得到=q3=﹣8===﹣7故答案为:﹣7.9.(4分)(2011•上海)若椭圆C的焦点和顶点分别是双曲线的顶点和焦点,则椭圆C的方程是.【分析】先确定双曲线的顶点和焦点坐标,可得椭圆C的焦点和顶点坐标,从而可得椭圆C的方程【解答】解:双曲线的顶点和焦点坐标分别为(±,0)、(±3,0)∵椭圆C的焦点和顶点分别是双曲线的顶点和焦点,∴椭圆C的焦点和顶点坐标分别为(±,0)、(±3,0)∴a=3,c=∴∴椭圆C的方程是故答案为:10.(4分)(2011•上海)若点O和点F分别为椭圆+y2=1的中心和左焦点,点P为椭圆上的任意一点,则|OP|2+|PF|2的最小值为2.【分析】先求出左焦点坐标F,设P(x,y),根据P(x,y)在椭圆上可得到x、y的关系式,表示出|OP|2+|PF|2,再将x、y的关系式代入组成二次函数进而可确定答案.【解答】解:由题意,F(﹣1,0),设点P(x,y),则有+y2=1,解得y2=1﹣,因为|OP|2+|PF|2=x2+y2+(x+1)2+y2=x2+(x+1)2+2﹣x2=(x+1)2+2,此二次函数对应的抛物线的对称轴为x=﹣1,|OP|2+|PF|2的最小值为2.故答案为:2.11.(4分)(2011•上海)根据如图所示的程序框图,输出结果i=8.【分析】按要求一步步代入循环体,直到符合要求退出循环,即可得到结论.【解答】解:因为i=0,t=76;不满足t≤0,∴t=76﹣10=66,i=0+1=1;不满足t≤0,∴t=66﹣10=56,i=1+1=2;不满足t≤0,∴t=56﹣10=46,i=2+1=3;不满足t≤0,∴t=46﹣10=36,i=3+1=4;不满足t≤0,∴t=36﹣10=26,i=4+1=5;不满足t≤0,∴t=26﹣10=16,i=5+1=6;不满足t≤0,∴t=16﹣10=6,i=6+1=7;不满足t≤0,∴t=6﹣10=﹣4,i=7+1=8;满足t≤0,输出结果i=8.故答案为:8.12.(4分)(2011•上海)2011年上海春季高考有8所高校招生,如果某3位同学恰好被其中2所高校录取,那么录取方法的种数为168.【分析】解决这个问题得分三步完成,第一步把三个学生分成两组,第二步从8所学校中取两个学校,第三步,把学生分到两个学校中,再用乘法原理求解【解答】解:由题意知本题是一个分步计数问题,解决这个问题得分三步完成,第一步把三个学生分成两组,第二步从8所学校中取两个学校,第三步,把学生分到两个学校中,共有C31C22A82=168故答案为:168.13.(4分)(2011•上海)有一种多面体的饰品,其表面右6个正方形和8个正三角形组成(如图),则AB与CD所成的角的大小是.【分析】由图形补出正方体,可得所求的角即为ED与CD所成的角,在△CDE 中,由余弦定理可得答案.【解答】解:该饰品实际上就是正方体的8个顶角被切掉,切线经过正方体每条棱边的中点,如图:可得AB与CD所成的角即为ED与CD所成的角,设正方体的棱长为2,在△CDE中,可得CD=DE=,EC=,由余弦定理可得cos∠CDE==,故∠CDE=,故AB与CD所成的角为故答案为:14.(4分)(2011•上海)为求方程x5﹣1=0的虚根,可以把原方程变形为(x﹣1)(x2+ax+1)(x2+bx+1)=0,由此可得原方程的一个虚根为.【分析】化简方程的左边,比较系数,求出a,b,再求方程的虚根.【解答】解:由题可知(x﹣1)(x2+ax+1)(x2+bx+1)=(x﹣1)[x4+(a+b)x3+(2+ab)x2+(a+b)x+1]比较系数可得,∴∴原方程的一个虚根为,中的一个故答案为:.二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.(5分)(2011•上海)若向量,则下列结论正确的是()A.B.C. D.【分析】由给出的两个向量的坐标,求出的坐标,然后直接进行数量积的坐标运算求解.【解答】解:由,则.所以.则.故选C.16.(5分)(2011•上海)f(x)=的图象关于()A.原点对称B.直线y=x对称C.直线y=﹣x对称 D.y轴对称【分析】先判断函数的定义域,然后利用函数奇偶性的定义进行判断.【解答】解:因为函数的定义域为R,所以定义域关于原点对称.f(x)==,则f(﹣x)=2﹣x﹣2x=﹣(2x﹣2﹣x)=﹣f(x),即函数f(x)为奇函数.故函数f(x)的图象关于原点对称.故选A.17.(5分)(2011•上海)直线l:y=k(x+)与圆C:x2+y2=1的位置关系是()A.相交或相切B.相交或相离C.相切D.相交【分析】根据点到直线的距离求出圆心到直线的距离d,再根据d与半径r的大小关系,得出结论.【解答】解:由于圆心(0,0),半径等于1,圆心到直线l:y=k(x+)的距离为d===<<r=1,故直线和圆相交,故选D.18.(5分)(2011•上海)若,,均为单位向量,则=(,)是++=(,)的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】均为单位向量,若,=(,)不成立;若=(,)可推得,由此可得.【解答】解:均为单位向量,,若,,则=(,)不成立;若均为单位向量,=(,)可推得所以“”是“”的必要不充分条件,故选B三、解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号规定区域内写出必要的步骤.19.(12分)(2011•上海)已知向量=(sin2x﹣1,cosx),=(1,2cosx),设函数f(x)=•,求函数f(x)的最小正周期及x∈[0,]时的最大值.【分析】利用两个向量的数量积公式求得函数f(x)的解析式为sin(2x+),根据x∈[0,],利用正弦函数的定义域和值域求函数的最大值.【解答】解:∵向量=(sin2x﹣1,cosx),=(1,2cosx),函数f(x)=•=(sin2x﹣1)+2cos2x=sin2x+cos2x=sin(2x+),故函数的周期为=π.∵x∈[0,],∴≤2x+≤,故当2x+=时,函数取得最大值为.20.(14分)(2011•上海)某甜品店制作蛋筒冰淇淋,其上半部分呈半球形,下半部分呈圆锥形(如图).现把半径为10cm的圆形蛋皮分成5个扇形,用一个扇形蛋皮围成锥形侧面(蛋皮厚度忽略不计),求该蛋筒冰淇淋的表面积和体积(精确到0.01).【分析】设出蛋筒冰淇淋的底面半径和高,由圆形蛋皮的周长等于5倍圆锥的底面周长求得圆锥底面半径,进一步求出圆锥的高,然后直接利用表面积公式和体积公式求解.【解答】解:设圆锥的底面半径为r,高为h.因为,所以r=2.则.则圆锥的表面积S=.体积V=.故该蛋筒冰淇淋的表面积约为87.96cm2,体积约为57.80cm3.21.(14分)(2011•上海)已知抛物线F:y2=4x(1)△ABC的三个顶点在抛物线F上,记△ABC的三边AB、BC、CA所在的直线的斜率分别为k AB,k BC,k CA,若A的坐标在原点,求k AB﹣k BC+k CA的值;(2)请你给出一个以P(2,1)为顶点、其余各顶点均为抛物线F上的动点的多边形,写出各多边形各边所在的直线斜率之间的关系式,并说明理由.【分析】(1)设B(x1,y1),C(x2,y2),把B、C点左边代入抛物线方程,利用斜率公式计算k AB﹣k BC+k CA的值即可;(2)先研究△PBC,四边形PBCD,五边形PBCDE,再研究n=2k,n=2k﹣1(k∈N,k≥2)边形的情形,最后研究n边形P1P2…Pn(k∈N,k≥3),按由特殊到一般的思路逐步得到结论;【解答】解:(1)设B(x1,y1),C(x2,y2),∵,,∴k AB﹣k BC+k CA=+=﹣+=0;(2)①研究△PBC,k PB﹣k BC+k CP=﹣+=﹣+==1;②研究四边形PBCD,k PB﹣k BC+k CD﹣k DP=﹣+﹣=0;③研究五边形PBCDE,k PB﹣k BC+k CD﹣k DE+k EP=﹣+﹣==1;④研究n=2k边形P1P2…P2k(k∈N,k≥2),其中P1=P,有﹣…+=0,证明:左边=+===0=右边;⑤研究n=2k﹣1边形P1P2…P2k﹣1(k∈N,k≥2),其中P1=P,有+﹣…+(﹣1)2k﹣2=1,证明:左边=+===1=右边;⑥研究n边形P1P2…Pn(k∈N,k≥3),其中P1=P,有+﹣…+(﹣1)n﹣1=,证明:左边=+(﹣1)n﹣1=[1+(﹣1)n﹣1]==右边.22.(16分)(2011•上海)定义域为R,且对任意实数x1,x2都满足不等式f()≤的所有函数f(x)组成的集合记为M,例如,函数f(x)=kx+b ∈M.(1)已知函数f(x)=,证明:f(x)∈M;(2)写出一个函数f(x),使得f(x0)∉M,并说明理由;(3)写出一个函数f(x)∈M,使得数列极限=1,=1.【分析】(1)分类讨论,验证f()≤成立,即可得到结论;(2)利用条件,构造函数f(x)=﹣x2,f(x)∉M,再取值验证即可;(3)利用条件,构造函数f(x)=满足f(x)∈M,验证条件即可.【解答】解:(1)证明:由题意,当x1≤x2≤0或0≤x1≤x2时,f()≤成立设x1≤0≤x2,且<0,∵﹣f()==0∴f()≤成立设x1≤0≤x2,且≥0,∵﹣f()==0∴f()≤成立∴综上所述,f(x)∈M;(2)如函数f(x)=﹣x2,f(x)∉M取x1=﹣1,x2=1,则=﹣1,f()=0此时f()≤不成立;(3)f(x)=满足f(x)∈M,且==1,==1.23.(18分)(2011•上海)对于给定首项x0>(a>0),由递推公式x n+1=(x n+)(n∈N)得到数列{x n},对于任意的n∈N,都有x n>,用数列{x n}可以计算的近似值.(1)取x0=5,a=100,计算x1,x2,x3的值(精确到0.01);归纳出x n,x n+1,的大小关系;(2)当n≥1时,证明:x n﹣x n+1<(x n﹣1﹣x n);(3)当x0∈[5,10]时,用数列{x n}计算的近似值,要求|x n﹣x n+1|<10﹣4,请你估计n,并说明理由.【分析】(1)利用数列递推式,代入计算,即可得到结论,同时可猜想结论;(2)作差,利用条件,证明其大于0,即可得到结论;(3)由题意,只要,由此可估计n的值.【解答】(1)解:∵x0=5,a=100,x n+1=(x n+)∴x1=(5+)≈4.74同理可得x2≈4.67,x3≈4.65猜想x n>x n+1;(2)证明:x n﹣x n+1﹣(x n﹣1﹣x n)==∵;∴x n﹣x n+1==>0∴x n>x n+1∴;(3)解:由(2)知<…<由题意,只要,即2n>104(x0﹣x1)∵∴n>=15.1∴n=16.。
上海市各地市2011年高考数学最新联考试题分类大汇编第4部分:数列一、选择题:18.(上海市杨浦区2011年4月高三模拟理科)已知有穷数列A :n a a a ,,,21⋅⋅⋅(N n n ∈≥,2).定义如下操作过程T :从A 中任取两项j i a a ,,将ji j i a a a a ++1的值添在A 的最后,然后删除j i a a ,,这样得到一系列1-n 项的新数列A 1 (约定:一个数也视作数列);对A 1的所有可能结果重复操作过程T 又得到一系列2-n 项的新数列A 2,如此经过k 次操作后得到的新数列记作A k . 设A :31,21,43,75-,则A 3的可能结果是…………( B ) (A )0; (B )34; (C )13; (D )12.16、(上海市徐汇区2011年4月高三学习诊断文科)设{}n a 是首项大于零的等比数列,则“12a a <”是“数列{}n a 是递增数列”的( C )(A )充分不必要条件 (B )必要不充分条件(C )充分必要条件 (D )既不充分又不必要条件16.(上海市卢湾区2011年4月高考模拟理科)已知数列{}n a 是无穷等比数列,其前n 项和是n S ,若232a a +=,341a a +=,则lim n n S →∞的值为 ( D ) A .23 B .43 C .83D .163 二、填空题:6.(上海市黄浦区2011年4月高考二模试题理科)已知数列{}n a 是首项为1,公差为2的等差数列,*()n S n N ∈是数列的前n 项和,则 2lim1nn S n →∞-= 1 .6.(上海市黄浦区2011年4月高考二模试题文科)已知数列{}n a 是首项为1,公差为2的等差数列,*()n S n N ∈是数列的前n 项和,则 2lim1nn S n →∞-= 1 .5.(上海市十校2010-2011学年第二学期高三第二次联考理科)已知{}n a 是公差不为零的等差数列,如果n S 是{}n a 的前n 项和,那么limnn nna S →+∞= 2 .2、(上海市虹口区2010-2011学年第二学期高三教学质量测试理科)数列{}n a 的前n 项和32-+=n n S n ,则通项公式=n a .⎩⎨⎧≥=-)2(2)1(1n n n4、(上海市虹口区2010-2011学年第二学期高三教学质量测试理科)各项都为正数的等比数列{}n a 中,11=a ,)11(273232a a a a +=+,则通项公式=n a .13-n 13、(上海市虹口区2010-2011学年第二学期高三教学质量测试理科)公差为d ,各项均为正整数的等差数列中,若11=a ,51=n a ,则d n +的最小值等于 16 .5. (上海市五校2011年联合教学调研理科已知等比数列}{n a 的公比为正数,且3a ·9a =225a ,2a =1,则1a = 。
2011年普通高等学校招生全国统一考试(上海卷)理科数学一、填空题(56分) 1.函数1()2f x x =-的反函数为1()f x -= 。
2.若全集U R =,集合{|1}{|0}A x x x x =≥≤ ,则U C A = 。
3.设m 为常数,若点(0,5)F 是双曲线2219y x m -=的一个焦点,则m = 。
4.不等式13x x+<的解为 。
5.在极坐标系中,直线(2cos sin )2ρθθ+=与直线cos 1ρθ=的夹角大小为 。
6.在相距2千米的A .B 两点处测量目标C ,若0075,60CAB CBA ∠=∠=,则A .C 两点之间的距离是 千米。
7.若圆锥的侧面积为2π,底面积为π,则该圆锥的体积为 。
8.函数sin()cos()26y x x ππ=+-的最大值为 。
9.马老师从课本上抄录一个随机变量ε的概率分布律如下表请小牛同学计算ε的数学期望,尽管“!”处无法完全看清,且两个“?”处字迹模糊,但能肯 定这两个“?”处的数值相同。
据此,小牛给出了正确答案E ε= 。
10.行列式a b c d(,,,{1,1,2}a b c d ∈-)的所有可能值中,最大的是 。
11.在正三角形ABC 中,D 是BC 上的点,3,1AB BD ==,则AB AD ⋅=。
12.随机抽取9个同学中,至少有2个同学在同一月出生的概率是 (默认每月天数相同,结果精确到0.001)。
13.设()g x 是定义在R 上.以1为周期的函数,若()()f x x g x =+在[3,4]上的值域为[2,5]-,则()f x 在区间[10,10]-上的值域为 。
?!?321P(ε=x )x14.已知点(0,0)O .0(0,1)Q 和0(3,1)R ,记00Q R 的中点为1P ,取01Q P 和10PR中的一条,记其端点为1Q .1R ,使之满足11(||2)(||2)0OQ OR --<;记11Q R 的中点为2P ,取12Q P 和21P R 中的一条,记其端点为2Q .2R ,使之满足22(||2)(||2)0OQ OR --<;依次下去,得到点12,,,,n P P P ,则0lim ||n n Q P →∞= 。
2011年上海高考数学1. 引言2011年上海高考数学是上海市全面推行素质教育的重要里程碑之一。
本文将对2011年上海高考数学试卷进行详细分析,并就其中的经典题目进行解答。
2. 考试概况2011年上海高考数学试卷由第一卷(选择题)和第二卷(非选择题)组成。
试卷难度适中,考察内容广泛涵盖了高中数学的各个知识点,突出了对学生综合运用数学知识解决实际问题的能力要求。
3. 经典题目解析题目1:某学校为了培养学生的综合能力,要求学生参加体育运动、文化艺术、劳动实践三类活动。
已知学校有400名学生,其中只参加体育运动的有120名,参加文化艺术的有150名,参加劳动实践的有180名,既参加体育运动又参加文化艺术的有50名,既参加文化艺术又参加劳动实践的有60名,既参加劳动实践又参加体育运动的有30名。
问有多少名学生同时参加了这三类活动?解答:设同时参加这三类活动的学生有x名,根据题目信息,我们可以列出如下方程组:x + 50 + 30 = 400 (方程1)x + 60 + 30 = 400 (方程2)x + 50 + 60 = 400 (方程3)从方程1、方程2和方程3中解得x=20,所以同时参加这三类活动的学生有20名。
题目2:已知函数f(x)的定义域为R,当x>1时,f(x) = x^2-3x+2;当x≤1时,f(x) = kx^2-x+2。
若函数f(x)在x=1处连续,求k 的值。
解答:由题意可知,函数f(x)在x=1处连续,即f(1)的左极限等于f(1)的右极限。
根据已知条件,我们可以列出如下等式:f(1) = 1^2-3*1+2 = k*1^2-1+2化简得到:-2 = k-1k = -1所以k的值为-1。
4. 总结2011年上海高考数学试卷中的题目设计充分考察了学生的综合运用数学知识解决实际问题的能力。
通过解析上述经典题目,我们可以发现物理学在日常生活中的广泛应用,以及在解题过程中需要灵活运用数学知识和技巧。
2011年上海市初中毕业统一学业考试数学卷数学注意事项:1. 本试卷共4页,全卷满分150分,考试时间为120分钟,考生答题全部答在答题卡上,答在本试卷上无效.2. 请认真核对监考教师在答题卡上所有粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米的黑色墨水签字笔填写在答题卡及本试卷上. 3. 答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需要改动,请用橡皮擦干净后,再选涂其他答案,答非选择题必须0.5毫米黑色墨水签字笔写在答题卡上指定位置,在其他位置答题一律无效.4. 作图必须用2B 铅笔作答,并请加黑加粗,描写清楚. 一、选择题(本大题共6题,每题4分,共24分)1.下列分数中,能化为有限小数的是( )(A) 13; (B) 15; (C) 17; (D) 19 .2.如果a >b ,c <0,那么下列不等式成立的是( ).(A) a +c >b +c ; (B) c -a >c -b ; (C) ac >bc ; (D) a b c c > . 3.下列二次根式中,最简二次根式是( ).(A)(B) ;(C)(D).4.抛物线y =-(x +2)2-3的顶点坐标是( ).(A) (2,-3); (B) (-2,3); (C) (2,3); (D) (-2,-3) . 5.下列命题中,真命题是( ).(A)周长相等的锐角三角形都全等; (B) 周长相等的直角三角形都全等; (C)周长相等的钝角三角形都全等; (D) 周长相等的等腰直角三角形都全等. 6.矩形ABCD 中,AB =8,BC =P 在边AB 上,且BP =3AP ,如果圆P 是以点P 为圆心,PD 为半径的圆,那么下列判断正确的是( ).(A) 点B 、C 均在圆P 外; (B) 点B 在圆P 外、点C 在圆P 内; (C) 点B 在圆P 内、点C 在圆P 外; (D) 点B 、C 均在圆P 内.二、填空题(本大题共12题,每题4分,共28分)12.一次函数y =3x -2的函数值y 随自变量x 值的增大而_____________(填“增大”或“减小”).13.有8只型号相同的杯子,其中一等品5只,二等品2只和三等品1只,从中随机抽取1只杯子,恰好是一等品的概率是__________.14.某小区2010年屋顶绿化面积为2000平方米,计划2012年屋顶绿化面积要达到2880平方米.如果每年屋顶绿化面积的增长率相同,那么这个增长率是_________.15.如图1,AM 是△ABC 的中线,设向量AB a =,BC b =,那么向量AM =____________(结果用a 、b 表示).16. 如图2, 点B 、C 、D 在同一条直线上,CE //AB ,∠ACB =90°,如果∠ECD =36°,那么∠A =_________.17.如图3,AB 、AC 都是圆O 的弦,OM ⊥AB ,ON ⊥AC ,垂足分别为M 、N ,如果MN =3,那么BC =_________.18.Rt△ABC中,已知∠C=90°,∠B=50°,点D在边BC上,BD=2CD(图4).把△ABC绕着点D逆时针旋转m(0<m<180)度后,如果点B恰好落在初始Rt△ABC 的边上,那么m=_________.图1 图2 图3 图4三、解答题(本大题共4题,满分48分)21.(本题满分10分,第(1)小题满分4分,第(2)小题满分6分)如图5,点C、D分别在扇形AOB的半径OA、OB的延长线上,且OA=3,AC=2,CD 平行于AB,并与弧AB相交于点M、N.(1)求线段OD的长;(2)若1tan2C∠=,求弦MN的长.图523.(本题满分12分,每小题满分各6分)如图,在梯形ABCD中,AD//BC,AB=DC,过点D作DE⊥BC,垂足为E,并延长DE 至F,使EF=DE.联结BF、CD、AC.(1)求证:四边形ABFC是平行四边形;(2)如果DE2=BE·CE,求证四边形ABFC是矩形.24.(本题满分12分,每小题满分各4分)已知平面直角坐标系xOy(如图1),一次函数33 4y x=+的图像与y轴交于点A,点M在正比例函数32y x=的图像上,且MO=MA.二次函数y=x2+bx+c的图像经过点A、M.(1)求线段AM的长;(2)求这个二次函数的解析式;(3)如果点B在y轴上,且位于点A下方,点C在上述二次函数的图像上,点D在一次函数334y x=+的图像上,且四边形ABCD是菱形,求点C的坐标.图125.(本题满分14分,第(1)小题满分4分,第(2)、(3)小题满分各5分)在Rt△ABC中,∠ACB=90°,BC=30,AB=50.点P是AB边上任意一点,直线PE⊥AB,与边AC或BC相交于E.点M在线段AP上,点N在线段BP上,EM=EN,12sin13EMP∠=.(1)如图1,当点E与点C重合时,求CM的长;(2)如图2,当点E在边AC上时,点E不与点A、C重合,设AP=x,BN=y,求y关于x的函数关系式,并写出函数的定义域;(3)若△AME∽△ENB(△AME的顶点A、M、E分别与△ENB的顶点E、N、B对应),求AP的长.图1 图2 备用图2011年上海市初中毕业统一学业数学卷答案及评分参考(满分150分,考试时间100分钟)一、选择题 (本大题共6题,每题4分,满分24分) 题号 1 2 3 4 5 6答案 B A C D D C 二、填空题 (本大题共12题,每题4分,满分48分)题号 7 8 9 10 11 12 13 14 15 16 17 18 答案a 5(x +3y )(x -3y )1x ≤3y = -x2 增大85 20%a +21b 54680或120三、解答题 (本题共30分,每小题5分) 19. (本题满分10分)[解] (-3)0-27+|1-2|+231+=1-33+2-1+3-2= -23。
2011年普通高等学校夏季招生全国统一考试数学(上海卷)本试卷共有23道试题,满分150分.考试时间120分钟.一、填空题(本大题满分56分)本大题共有14题,每题填对得4分,否则一律得零分. 1.函数1()2f x x =-的反函数为f -1(x )=______.2.若全集U =R ,集合A ={x |x ≥1}∪{x |x ≤0},则∁U A =______. 3.设m 是常数,若点F (0,5)是双曲线22=19yxm-的一个焦点,则m =______.4.不等式13x x+≤的解为______.5.在极坐标系中,直线ρ(2cos θ+sin θ)=2与直线ρcos θ=1的夹角大小为______.(结果用反三角函数值表示)6.在相距2千米的A 、B 两点处测量目标点C ,若∠CAB =75°,∠CBA =60°,则A 、C 两点之间的距离为______千米.7.若圆锥的侧面积为2π,底面面积为π,则该圆锥的体积为______.8.函数ππsin() cos()26y x x =+-的最大值为______.9请小牛同学计算ξ的数学期望,尽管“!”处完全无法看清,且两个“?”处字迹模糊,但能断定这两个“?”处的数值相同.据此,小牛给出了正确答案Eξ=______.10.行列式a cb d(a ,b ,c ,d ∈{-1,1,2})所有可能的值中,最大的是______.11.在正三角形ABC 中,D 是BC 上的点.若AB =3,BD =1,则AB AD ⋅=______.12.随机抽取的9个同学中,至少有2个同学在同一月份出生的概率是______(默认每个月的天数相同,结果精确到0.001).13.设g (x )是定义在R 上,以1为周期的函数.若函数f (x )=x +g (x )在区间[3,4]上的值域[-2,5],则f (x )在区间[-10,10]上的值域为______.14.已知点O (0,0)、Q 0(0,1)和点R 0(3,1),记Q 0R 0的中点为P 1,取Q 0P 1和P 1R 0中的一条,记其端点为Q 1、R 1,使之满足(|OQ 1|-2)(|OR 1|-2)<0,记Q 1R 1的中点为P 2,取Q 1P 2和P 2R 1中的一条,记其端点为Q 2、R 2,使之满足(|OQ 2|-2)(|OR 2|-2)<0,依次下去,得到P 1,P 2,…,P n ,…,则0lim n n Q P →∞=______.二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,选对得5分,否则一律得零分.15.若a ,b ∈R ,且ab >0.则下列不等式中,恒成立的是( )A .a 2+b 2>2abB .a b +≥C.11a b +> D .2b a a b +≥16.下列函数中,既是偶函数,又是在区间(0,+∞)上单调递减的函数是( )A .1ln ||y x = B .y =x 3 C .y =2|x |D .y =cos x17.设A 1,A 2,A 3,A 4,A 5是空间中给定的5个不同点,则使12345M A M A M A M A M A ++++=0成立的点M 的个数为( )A .0B .1C .5D .1018.设{a n }是各项为正数的无穷数列,A i 是边长为a i ,a i +1的矩形的面积(i =1,2,…),则{A n }为等比数列的充要条件是( )A .{a n }是等比数列B .a 1,a 3,…,a 2n -1,…或a 2,a 4,…,a 2n ,…是等比数列C .a 1,a 3,…,a 2n -1,…和a 2,a 4,…,a 2n ,…均是等比数列D .a 1,a 3,…,a 2n -1,…和a 2,a 4,…a 2n ,…均是等比数列,且公比相同三、解答题(本大题满分74分)本大题共有5题,解答下列各题必须写出必要的步骤. 19.已知复数z 1满足(z 1-2)·(1+i)=1-i(i 为虚数单位),复数z 2的虚部为2,且z 1·z 2是实数,求z 2.20.已知函数f (x )=a ·2x +b ·3x,其中常数a ,b 满足ab ≠0.(1)若ab >0,判断函数f (x )的单调性;(2)若ab <0,求f (x +1)>f (x )时的x 的取值范围.21.已知ABCD -A 1B 1C 1D 1是底面边长为1的正四棱柱,O 1为A 1C 1与B 1D 1的交点.(1)设AB 1与底面A 1B 1C 1D 1所成角的大小为α,二面角A -B 1D 1-A 1的大小为β.求证:tan βα;(2)若点C 到平面AB 1D 1的距离为43,求正四棱柱ABCD -A 1B 1C 1D 1的高.22.已知数列{a n }和{b n }的通项公式分别为a n =3n +6,b n =2n +7(n ∈N *).将集合{x |x=a n ,n ∈N *}∪{x |x =b n ,n ∈N *}中的元素从小到大依次排列,构成数列c 1,c 2,c 3,…c n ,….(1)写出c 1,c 2,c 3,c 4;(2)求证:在数列{c n }中,但不在数列{b n }中的项恰为a 2,a 4,…a 2n …; (3)求数列{c n }的通项公式.23.已知平面上的线段l 及点P .任取l 上一点Q ,线段PQ 长度的最小值称为点P 到线段l 的距离,记作d (P ,l ).(1)求点P (1,1)到线段l :x -y -3=0(3≤x ≤5)的距离d (P ,l );(2)设l 是长为2的线段,求点的集合D ={P |d (P ,l )≤1}所表示的图形面积;(3)写出到两条线段l 1,l 2距离相等的点的集合Ω={P |d (P ,l 1)=d (P ,l 2)},其中l 1=AB ,l 2=CD ,A ,B ,C ,D 是下列三组点中的一组.对于下列三种情形,只需选做一种,满分分别是①2分,②6分,③8分;若选择了多于一种的情形,则按照序号较小的解答计分.①A (1,3),B (1,0),C (-1,3),D (-1,0) ②A (1,3),B (1,0),C (-1,3),D (-1,-2)③A (0,1),B (0,0),C (0,0),D (2,0)参考答案1.答案:1+2x2.答案:{x |0<x <1} 3.答案:16 4.答案:x <0或12x ≥5.答案:arccos 56.7.答案:38.142+9.答案:2 10.答案:6 11.答案:15212.答案:0.985 13.答案:[-15,11]14.15. D 16.A 17.B 18.D 19.解:∵(z 1-2)(1+i)=1-i ,∴z 1=2-i. 设z 2=a +2i ,a ∈R . z 1·z 2=(2-i)(a +2i)=(2a +2)+(4-a )i. ∵z 1·z 2∈R ,∴a =4, ∴z 2=4+2i.20.解:(1)当a >0,b >0时,因为a ·2x 、b ·3x 都单调递增,所以函数f (x )单调递增; 当a <0,b <0时,因为a ·2x 、b ·3x 都单调递减,所以函数f (x )单调递减. (2)f (x +1)-f (x )=a ·2x +2b ·3x >0. (ⅰ)当a <0,b >0时,3()22xa b>-,解得32log ()2a x b>-;(ⅱ)当a >0,b <0时,3()22xa b>-,解得32log ()2a x b<-.21.解:设正四棱柱的高为h .(1)证明:连AO 1,∵AA 1⊥底面A 1B 1C 1D 1,∴∠AB 1A 1是AB 1与底面A 1B 1C 1D 1所成角,∴∠AB 1A 1=α.∵在等腰△AB 1D 1中,AO 1⊥B 1D 1.又A 1C 1⊥B 1D 1,∴∠AO 1A 1是二面角A -B 1D 1-A 1的一个平面角,∴∠AO 1A 1=β.在Rt △AB 1A 1中,111tan AA h A B α==;在Rt △AO 1A 1中,111tan AA A O β==.∴tan βα=.(2)解法一:如图建立空间直角坐标系,有A (0,0,h ),B 1(1,0,0),D 1(0,1,0),C (1,1,h ),则1(1,0)AB h = ,-,1(1,0)AD h = ,-,(1,1,0)A C =. 设平面AB 1D 1的法向量为n =(u ,v ,w ).∵1A B ⊥ n ,1AD ⊥n ,∴10AB ⋅= n ,10AD ⋅=n .由10()001()0u v h u v h ωω⋅+⋅+⋅-=⎧⎨⋅+⋅+⋅-=⎩,得u =h w ,v =h w ,∴n =(h w ,h w ,w ). 令w =1,得n =(h ,h,1).由点C 到平面AB 1D 1的距离为43A C d ⋅===n n,解得高h =2.解法二:连AC ,CB 1,CD 1.一方面,111111·2S AB D AO B D ===则四面体AB 1D 1C的体积V =.另一方面,设正四棱柱ABCD -A 1B 1C 1D 1的体积为V 1,三棱锥C -B 1C 1D 1的体积为V 2,则12143V V V h =-=.据此,得13h =,解得高h =2.22.解:(1)它们是9,11,12,13.(2)证明:∵数列{c n }由{a n }、{b n }的项构成, ∴只需讨论数列{a n }的项是否为数列{b n }的项.∵对于任意n ∈N *,a 2n -1=3(2n -1)+6=6n +3=2(3n -2)+7=b 3n -2,∴a 2n -1是{b n }的项.下面用反证法证明:a 2n 不是{b n }的项. 假设a 2n 是数列{b n }的项,设a 2n =b m ,则3·2n +6=2m +7,132m n =-,与m ∈N *矛盾.∴结论得证.(3)∵b 3k -2=2(3k -2)+7=6k +3, a 2k -1=6k +3,b 3k -1=6k +5, a 2k =6k +6,b 3k =6k +7,∴b 3k -2=a 2k -1<b 3k -1<a 2k <b 3k ,k =1,2,3,….所以,32213123,43,42,41,4k k k n k k b a n k b n k c a n k b n k ---==-⎧⎪=-⎪=⎨=-⎪⎪=⎩k ∈N *.综上,63,4365,4266,4167,4n k n k kn k c k n k kn k+=-⎧⎪+=-⎪=⎨+=-⎪⎪+=⎩k ∈N *.23.解:(1)设Q (x ,x -3)是l 上任一点(3≤x ≤5),则PQ ==,3≤x ≤5.当x =3时,min PQ =()d P l =,.(2)不妨设A (-1,0)、B (1,0)为l 的两个端点,则D 为线段l 1:y =1(|x |≤1)、线段l 2:y =-1(|x |≤1)、半圆C 1:(x +1)2+y 2=1(x ≤-1)、半圆C 2:(x -1)2+y 2=1(x ≥1)所围成的区域.这是因为对P (x ,y ),|x |≤1,则d (P ,l )=|y |;而对P (x ,y ),x <-1,则()d P l =,P (x ,y ),x >1,则()d P l =,.于是D 所表示的图形面积为4+π. (3)①Ω={(x ,y )|x =0}.②Ω={(x ,y )|x =0,y ≥0}∪{(x ,y )|y 2=4x ,-2≤y <0}∪{(x ,y )|x +y +1=0,x >1}.③Ω={(x ,y )|x ≤0,y ≤0}∪{(x ,y )|y =x,0<x ≤1}∪{(x ,y )|21(1)2y x =+,1<x ≤2}∪{(x ,y )|4x -2y -3=0,x >2}.。
OMNxy P上海市各地市2011年高考数学最新联考试题分类大汇编第5部分:三角函数一、选择题:15.(上海市闵行区2011届高三下学期质量调研文科) “1sin 2α=”是“1cos 22α=”的 [答]( A )(A)充分不必要条件. (B)必要不充分条件. (C)充要条件. (D)既不充分也不必要条件.17.(上海市闵行区2011届高三下学期质量调研文科)如图,设P 是单位圆和x 轴正半轴的交点,M N 、是单位圆上的两点,O 是坐标原点,3POM π∠=,PON α∠=,[)0απ∈,,()f OM ON α=⋅,则()αf 的范围为 [答]( A )(A) 1,12⎛⎤-⎥⎝⎦. (B) 11,22⎡⎫-⎪⎢⎣⎭. (C) 1,12⎡⎫-⎪⎢⎣⎭. (D) 1,12⎛⎫⎪⎝⎭. 15、(上海市奉贤区2011年4月高三调研测试)在△ABC 中,“C b B c cos cos =”是“△ABC是等腰三角形”的( A )(A )充分不必要条件 (B )必要不充分条件(C )充分必要条件 (D )既不充分也不必要条件15.(上海市卢湾区2011年4月高考模拟理科) “πϕ=”是“函数()sin()f x x ϕ=+是奇函数”的 ( A )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件 二、填空题:5.(上海市黄浦区2011年4月高考二模试题理科)若函数()2cos(4)17f x x π=+-与函数()5tan(1)2g x ax =-+的最小正周期相同,则实数a = .2a12.(上海市黄浦区2011年4月高考二模试题理科)已知角αβ、的顶点在坐标原点,始边与x 轴的正半轴重合,(0)αβπ∈、,,角β的终边与单位圆交点的横坐标是13-,角αβ+的终边与单位圆交点的纵坐标是45,则cos α= .3825.(上海市黄浦区2011年4月高考二模试题文科)若函数()2cos(4)17f x x π=+-与函数()5tan(1)2g x ax =-+的最小正周期相同,则实数a = .2a13.(上海市黄浦区2011年4月高考二模试题文科)已知角αβ、的顶点在坐标原点,始边与x 轴的正半轴重合,(0)αβπ∈、,,角β的终边与单位圆交点的横坐标是13-,角αβ+的终边与单位圆交点的纵坐标是45,则cos α= .382 7、(上海市虹口区2010-2011学年第二学期高三教学质量测试理科)若P ,Q 是等腰直角三角形ABC 斜边AB 的三等分点,则=∠PCQ tan .433.(上海市闵行区2011届高三下学期质量调研文科)已知1cos()43πα-=,则sin()4πα+= . 132、(上海市奉贤区2011年4月高三调研测试)若1sin 3x =,,22x ππ⎡⎤∈-⎢⎥⎣⎦,则x = (结果用反三角函数表示)31arcsin10.(上海市杨浦区2011年4月高三模拟理科)在△ABC 中,已知最长边23=AB ,3=BC ,∠A =30︒,则∠C = . 【∠C =135︒】7、(上海市徐汇区2011年4月高三学习诊断文科)在锐角ABC ∆中,,,a b c 分别是角,,A B C2sin c A =,则角C 的大小为 。
2011年上海市高考数学试题(理科)一.填空题(56分) 1.函数1()2f x x =-的反函数为1()f x -= . 【测量目标】反函数.【考查方式】直接利用函数的表达式,解出用y 表示x 的式子,即可得到答案. 【难易程度】容易 【参考答案】12x+ 【试题解析】设12y x =-,可得21xy y -=, (步骤1) ∴12xy y =+,可得12y x y+=,将x 、y 互换得112()x f x x -+=. (步骤2)∵原函数的值域为{}|0y y y ∈≠,∴112()(0)xfx x x-+=≠. (步骤3) 2.若全集U =R ,集合{}{}=|1|0A x x x x 厔,则U A =ð .【测量目标】集合的基本运算(补集).【考查方式】集合的表示法(描述法)求集合的补集. 【难易程度】容易【参考答案】{|01}x x <<【试题解析】∵集合{}{}{}=|1|0|10A x x x xx x x = 或厔厔∴U A =ð{|01}x x <<. 3.设m 为常数,若点(0,5)F 是双曲线2219y x m -=的一个焦点,则m = . 【测量目标】双曲线的简单几何性质.【考查方式】利用双曲线标准方程中的分母与焦点(非零坐标)的关系,列出关于m 的方程,通过解方程求出m 的值. 【难易程度】容易 【参考答案】16【试题解析】由于点(0,5)F 是双曲线2219y x m -=的一个焦点, 故该双曲线的焦点在y 轴上,从而0m >. 从而得出m +9=25,解得m =16. 4.不等式13x x+…的解为 . 【测量目标】解一元二次不等式.【考查方式】通过移项解一元二次不等式.【难易程度】容易【参考答案】0x <或12x …【试题解析】原不等式同解于130x x +-…,同解于(12)00x x x -⎧⎨≠⎩…,即2200x x x ⎧-⎨≠⎩…,解得 0x <或12x ….5.在极坐标系中,直线(2cos sin )2ρθθ+=与直线cos 1ρθ=的夹角大小为 . 【测量目标】简单曲线的极坐标方程.【考查方式】先转换得到直角坐标系,再利用直线的直角坐标方程求出它们的夹角即可. 【难易程度】容易 【参考答案】1arctan2【试题解析】∵(2cos sin )2ρθθ+=,cos 1ρθ=, ∴转化到直角坐标系得到:220x y +-=与x =1. (步骤1) ∴220x y +-=与x =1夹角的正切值为12, (步骤2) 直线(2cos sin )2ρθθ+=与直线cos 1ρθ=的夹角大小为1arctan2.(步骤3) 6.在相距2千米的A 、B 两点处测量目标C ,若75,60CAB CBA ∠=∠= ,则A 、C 两点之间的距离是 千米.【测量目标】解三角形的实际应用.【考查方式】用三角形内角和求得ACB ∠,进而表示出AD ,进而在Rt ABD △中,表示出AB 和AD 的关系求得.【难易程度】容易【试题解析】由A 点向BC 作垂线,垂足为D ,设AC x =, (步骤1) ∵75,60CAB CBA ∠=∠= ,∴180756045ACB ∠=--=∴AD x =. (步骤2) ∴在Rt ABD △中,sin 602AB x ==(步骤3)x =. (步骤4)第6题图7.若圆锥的侧面积为2π,底面积为π,则该圆锥的体积为 .【测量目标】柱、锥、台、球的体积.【考查方式】求出圆锥的底面周长,然后利用侧面积求出圆锥的母线,求出圆锥的高,即可求出圆锥体积. 【难易程度】容易【试题解析】根据题意,圆锥的底面面积为π,则其底面半径是1,底面周长为2π.(步骤1)又π2πrl =,∴圆锥的母线为2(步骤2)所以圆锥的体积1π3= (步骤3) 8.函数ππsin()cos()26y x x =+-的最大值为 【测量目标】三角函数的最值.【考查方式】利用诱导公式和积化和差公式对解析式化简,进而根据正弦函数的值域求得函数的最大值. 【难易程度】容易【参考答案】24+ 【试题解析】ππsin()cos()26y x x =+-=πcos cos()6x x -=1ππcos cos(2)266x ⎡⎤+-⎢⎥⎣⎦=1πcos(2)26x -+. 9.马老师从课本上抄录一个随机变量ε的概率分布律如下表请小牛同学计算ε的数学期望,尽管“!”处无法完全看清,且两个“?”处字迹模糊,但能肯定这两个“?”处的数值相同.据此,小牛给出了正确答案E ε= .【测量目标】离散型随机变量的期望与方差.【考查方式】(1)(3)(2)1P P P εεε=+=+==,然后根据期望求法即可求得结果. 【难易程度】容易 【参考答案】2【试题解析】设(1)(3),(2),P P a P b εεε====== 则21,232(2)2a b E a b a a b ε+==++=+=.10.行列式a bc d(,,,{1,1,2}a b c d ∈-)的所有可能值中,最大的是 . 【测量目标】矩阵与行列式.【考查方式】按照行列式的运算法则,化简得ad bc -,再根据条件进行分析计算,比较可得其最大值. 【难易程度】容易 【参考答案】6 【试题解析】a bad bc c d=-, ∵,,,{1,1,2}a b c d ∈-∴ad 的最大值是:2⨯2=4,bc 的最小值是:122-⨯=-, ∴ad bc -的最大值是6.11.在正三角形ABC 中,D 是BC 上的点,3,1AB BD ==,则AB AD =.【测量目标】平面向量在平面几何中的应用.【考查方式】把AD 用,AB BC表示出来,利用向量的数量积的运算法则即可求得AB AD 的值.【难易程度】容易【参考答案】152【试题解析】∵3AB =,1BD =,∴D 是BC 上的三等分点, (步骤1) ∴13AD AB BD AB BC =+=+, (步骤2)∴2111115()9933322AB AD AB AD AB AB BC AB AB BC ==+=+=-⨯⨯=. (步骤3) 12.随机抽取9个同学中,至少有2个同学在同一月出生的概率是 (默认每月天数相同,结果精确到0.001).【测量目标】古典概型.【考查方式】先求事件发生总数,再求出所求事件的对立事件总数,继而得到结果. 【难易程度】容易 【参考答案】0.985【试题解析】事件发生总数为912,至少有2位同学在同一个月出生的对立事件是没有人生日在同一个月,共有912P 种结果,∴要求的事件的概率是9129P 3850110.98512248832-=-=.13.设()g x 是定义在R 上、以1为周期的函数,若()()f x x g x =+在[3,4]上的值域为[2,5]-,则()f x 在区间[10,10]-上的值域为 . 【测量目标】函数的周期性;函数的值域.【考查方式】根据题意条件,研究函数()()f x x g x =+的性质,得()()11f x f x +-=,由此关系求出函数值域.【难易程度】容易 【参考答案】[15,11]-【试题解析】由题意()()f x x g x -=在R 上成立, 故()()()111f x x g x +-+=+ 所以()()11f x f x +-=,由此知自变量增大1,函数值也增大1 故()f x 在[10,10]-上的值域为[15,11]-14.已知点(0,0)O 、0(0,1)Q 和0(3,1)R ,记00Q R 的中点为1P ,取01Q P 和10PR 中的一条,记其端点为1Q 、1R ,使之满足11(||2)(||2)0OQ OR --<;记11Q R 的中点为2P ,取12Q P 和21P R 中的一条,记其端点为2Q 、2R ,使之满足22(||2)(||2)0OQ OR --<;依次下去,得到点12,,,,n P P P ……,则0lim ||n n Q P →∞= . 【测量目标】数列的极限与运算.【考查方式】由题意推导下去,则1122;Q R Q R 、、中必有一点在的左侧,一点在右侧,然后退出12n ,P P P ,的极限,继而求出结果. 【难易程度】中等【试题解析】由题意11(||2)(||2)0OQ OR --<,所以第一次只能取10PR 一条,22(||2)(||2)0OQ OR --<.依次下去,则1122;Q R Q R 、、…中必有一点在的左侧,一点在右侧,由于12n ,,,,P P P ,……是中点,根据题意推出12n ,P P P ,…,,…,的极限为:),所以001lim n n Q P Q P →∞==二、选择题(20分)15.若,a b ∈R ,且0ab >,则下列不等式中,恒成立的是 ( )A.222a b ab +> B.a b +… C.11a b +>D.2b a a b +… 【测量目标】基本不等式.【考查方式】根据基本不等式使用条件和定义逐个排除得到结果. 【难易程度】容易 【参考答案】D【试题解析】对于A ,222a b ab +…所以A 错;对于B ,C ,虽然0ab >,只能说明a ,b 同号,若a ,b 都小于0时,所以B ,C 错 ∵0ab >∴2b aa b+…,故选D. 16.下列函数中,既是偶函数,又是在区间(0,)+∞上单调递减的函数为 ( ) A.1ln||y x = B.3y x = C.||2x y = D.cos y x = 【测量目标】函数单调性的判断;函数奇偶性的判断.【考查方式】再结合偶函数的定义判断出为偶函数;求出导函数判断出导函数的符号,判断出函数的单调性.【难易程度】容易 【参考答案】A 【试题解析】对于1ln||y x =,函数的定义域为x ∈R 且0x ≠,(步骤1) 将x 用x -代替,解析式不变,所以是偶函数. (步骤2) 当(0,)x ∈+∞时,11lnln ||y x x==,10y x '=-<∴1ln||y x =在区间(0,)+∞上单调递减的函数,故选A . (步骤3) 17.设12345,,,,A A A A A 是空间中给定的5个不同的点,则使123450MA MA MA MA MA ++++=成立的点M 的个数为 ( )A.0B.1C.5D.10 【测量目标】向量的线性运算.【考查方式】把M 的坐标用其他5个点的坐标表示出来,进而判断M 的坐标x 、y 的解的组数,进而转化可得答案【难易程度】容易 【参考答案】B【试题解析】根据题意,设M 的坐标为()x y ,,x 、y 解得组数即符合条件的点M 的个数,再设12345,,,,A A A A A 的坐标依次为11(,)x y ,22(,)x y ,33(,)x y ,44(,)x y ,55(,)x y ;若123450MA MA MA MA MA ++++= 成立,则123455x x x x x x ++++=,123455y y y y y y ++++=; 只有一组解,即符合条件的点M 有且只有一个;故选B .18.设{}n a 是各项为正数的无穷数列,i A 是边长为1,i i a a +的矩形面积(1,2,i = ),则{}n A 为等比数列的充要条件为 ( ) A . {}n a 是等比数列.B . 1321,,,,n a a a -……或242,,,,n a a a ……是等比数列.C . 1321,,,,n a a a -……和242,,,,n a a a ……均是等比数列.D . 1321,,,,n a a a -……和242,,,,n a a a ……均是等比数列,且公比相同. 【测量目标】充分、必要条件;等比数列的性质.【考查方式】结合等比数列的性质,先判断必要性,再判断充分性得到结果. 【难易程度】容易 【参考答案】D【试题解析】依题意可知1i i i A a a += ,∴12i i i A a a ++= , (步骤1) 若{}n A 为等比数列则12i i i iA a q A a ++==(q 为常数),则1321,,,,n a a a -……和242,,,,n a a a ……均是等比数列,且公比均为q ; (步骤2) 反之要想{}n A 为等比数列则12i i i iA a A a ++=需为常数,即需要1321,,,,n a a a -……和242,,,,n a a a ……均是等比数列,且公比相等;(步骤3)故{}n A 为等比数列的充要条件是1321,,,,n a a a -……和242,,,,n a a a ……均是等比数列,且公比相同. 故选D. (步骤4) 三、解答题(74分)19.(12分)已知复数1z 满足1(2)(1i)1i z -+=-(i 为虚数单位),复数2z 的虚部为2,12z z 是实数,求2z .【测量目标】复数代数形式的运算.【考查方式】利用复数的除法运算法则求出1z ,设出复数2z ;利用复数的乘法运算法则求出12z z ;利用当虚部为0时复数为实数,求出2z . 【难易程度】中等【试题解析】1(2)(1i)1i z -+=-⇒12i z =- (步骤1)设22i,z a a =+∈R ,则12(2i)(2i)(22)(4)i z z a a a =-+=++-,(步骤2) ∵ 12z z ∈R ,a =4∴ 242i z =+ (步骤3)20.(12分)已知函数()23x x f x a b =+ ,其中常数,a b 满足0ab ≠. ⑴ 若0ab >,判断函数()f x 的单调性; ⑵ 若0ab <,求(1)()f x f x +>时x 的取值范围. 【测量目标】函数单调性的判断.【考查方式】先把0ab >分为0,0a b >>与0,0a b <<两种情况,然后根据指数函数的单调性即可作出判断;把0ab <分为0,0a b ><与0,0a b <>两种情况;然后由(1)()f x f x +>化简得223x xa b +,最后由指数函数的单调性求出x 的取值范围. 【难易程度】中等【试题解析】⑴ 当0,0a b >>时,任意1212,,x x x x ∈<R , 则121212()()(22)(33)x x x xf x f x a b -=-+-. (步骤1)∵ 121222,0(22)0xxxxa a <>⇒-<,121233,0(33)0xxxxb b <>⇒-<, ∴ 12()()0f x f x -<,函数()f x 在R 上是增函数. (步骤2) 当0,0a b <<时,同理,函数()f x 在R 上是减函数. (步骤3) ⑵ (1)()223x x f x f x a b +-=+> (步骤4) 当0,0a b <>时,32()2xb a <-,则322log ()bx a >-; (步骤5) 当0,0a b ><时,32()2xb a >-,则322log ()bx a <-. (步骤6) 21.(14分)已知1111ABCD A BC D -是底面边长为1的正四棱柱,1O 是11AC 和11B D 的交点. ⑴ 设1AB 与底面1111A B C D 所成的角的大小为α,二面角111A B D A --的大小为β.求证:tan βα=; ⑵ 若点C 到平面11AB D 的距离为43,求正四棱柱1111ABCD A BC D -的高.第21题图【测量目标】空间直角坐标系;点、线、面间的距离公式. 【考查方式】利用线面角及二面角的定义求出α,β;借助面面垂直找到点C 在平面11AB D 的位置,利用三角形的相似解出. 【难易程度】中等【试题解析】(1)设正四棱柱的高为h .连1AO ,1AA ⊥底面1111A B C D 于1A , ∴ 1AB 与底面1111A B C D 所成的角为11AB A ∠,即11AB A α∠=∵ 11AB AD =,1O 为11B D 中点,∴111AO B D ⊥,又1111AO B D ⊥, ∴ 11AO A ∠是二面角111A B D A --的平面角,即11AO A β∠= ∴ 111tan AA h A B α==,111tan AA AO βα===.第21题(1)图⑵ 建立如图空间直角坐标系,有11(0,0,),(1,0,0),(0,1,0),(1,1,)A h B D C h11(1,0,),(0,1,),(1,1,0)AB h AD h AC =-=-=设平面11AB D 的一个法向量为(,,)n x y z =,∵ 111100n AB n AB n AD n AD ⎧⎧⊥=⎪⎪⇔⎨⎨⊥=⎪⎪⎩⎩,取1z =得(,,1)n h h = ∴ 点C 到平面11AB D的距离为||43||n AC d n === ,则2h =.第21题(2)图22.(18分)已知数列{}n a 和{}n b 的通项公式分别为36n a n =+,27n b n =+(*n ∈N ),将集合**{|,}{|,}n n x x a n x x b n =∈=∈N N 中的元素从小到大依次排列,构成数列123,,,,,n c c c c .⑴ 求1234,,,c c c c ;⑵ 求证:在数列{}n c 中、但不在数列{}n b 中的项恰为242,,,,n a a a ……; ⑶ 求数列{}n c 的通项公式.【测量目标】等差数列的通项公式;数列的概念及其表示.【考查方式】利用两个数列的通项公式求出前3项,按从小到大挑出4项;对于数列{}n a ,对n 进行分类讨论,判断是否能写成27n +的形式;对{}n a 中的n 进行分类讨论,对{}n b 中的n 从被3除的情况分类讨论,判断项的大小,求出数列的通项. 【难易程度】较难【试题解析】⑴ 13169a =⨯+=,12179b =⨯+=,232612a =⨯+=,222711b =⨯+=,333612a =⨯+=,323713b =⨯+=,12349,11,12,13c c c c ====;⑵ ① 任意*n ∈N ,设213(21)66327n k a n n b k -=-+=+==+,则32k n =-,即2132n n a b --=② 假设26627n k a n b k =+==+⇔*132k n =-∈N (矛盾),∴ 2{}n n a b ∉ ∴ 在数列{}n c 中、但不在数列{}n b 中的项恰为242,,,,n a a a ……. ⑶ 32212(32)763k k b k k a --=-+=+=,3165k b k -=+,266k a k =+,367k b k =+∵ 63656667k k k k +<+<+<+ ∴ 当1k =时,依次有111222334,,,b a c b c a c b c =====,…∴ *63(43)65(42),66(41)67(4)n k n k k n k c k k n k k n k +=-⎧⎪+=-⎪=∈⎨+=-⎪⎪+=⎩N .23.(18分)已知平面上的线段l 及点P ,在l 上任取一点Q ,线段PQ 长度的最小值称为点P 到线段l 的距离,记作(,)d P l .⑴ 求点(1,1)P 到线段:30l x y --=(35x 剟)的距离(,)d P l ;⑵ 设l 是长为2的线段,求点集{|(,)D P d P l =…}1所表示图形的面积;⑶ 写出到两条线段12,l l 距离相等的点的集合12{|(,)(,)}P d P l d P l Ω==,其中12,l AB l CD ==, ,,,A B C D 是下列三组点中的一组.对于下列三组点只需选做一种,满分分别是①2分,②6分,③8分;若选择了多于一种的情形,则按照序号较小的解答计分.①(1,3),(1,0),(1,3),(1,0)A B C D --.②(1,3),(1,0),(1,3),(1,2)A B C D ---.③(0,1),(0,0),(0,0),(2,0)A B C D .【测量目标】点到直线的距离公式;空间中点、线、面的位置关系.【考查方式】用两点之间的距离公式求解;集合{|(,)D P d P l =}1…表示一个半圆,据此求出面积;写出两条直线的方程,从直线方程中看出这两条直线之间的平行关系,得到结果.【难易程度】较难【试题解析】⑴ 设(,3)Q x x -是线段:30l x y --=(35x 剟)上一点,则||PQ ==35x 剟),当3x =时,min (,)||d P l PQ =⑵ 设线段l 的端点分别为,A B ,以直线AB 为x 轴,AB 的中点为原点建立直角坐标系,则(1,0),(1,0)A B -,点集D 由如下曲线围成12:1(1),:1(1)l y x l y x==-剟,221:(1)1C x y ++=,(1)x -…,222:(1)1C x y -+=,(1)x …其面积为4πS =+.第23题(2)图⑶ ① 选择(1,3),(1,0),(1,3),(1,0)A B C D --,{(,)|0}x y x Ω==第23题(3)图② 选择(1,3),(1,0),(1,3),(1,2)A B C D ---.{}{}{}2(,)|0,0(,)|4,20(,)|10,1x y x y x y y x y x y x y x Ω===-<++=> 厔第23题(3)图③ 选择(0,1),(0,0),(0,0),(2,0)A B C D .{}{}(,)|0,0(,)|,01x y x y x y y x x Ω==< 剟?{}{}2(,)|21,12(,)|4230,2x y x y x x y x y x =-<--=> …第23题(3)图。
2011年上海市初中毕业生统一学业考试数学试卷(试运转)(满分150分,考试时间100分钟).一、选择题(本大题共6题,每题4分,满分24分)【下列各题的四个结论中,有且只有一个选项是正确的。
选择正确项的代号并填涂在答题纸的相应位置上.】1.下列各实数中,属有理数的是A .πB .2C .9D .cos 45°2.解方程3)1(2122=-+-x x x x 时,设y x x =-12,则原方程化为y 的整式方程为A .01622=+-y y B .0232=+-y y C .01322=+-y y D .0322=-+y y 3.α∠在正方形网格中的位置如图一所示,那么αsin 应用哪些 点联结成的线段的比值表示 A .AC AE B .BC BE C .AC AD D .BCBD4.如图二,当圆形桥孔中的水面宽度AB 为8米时,弧ACB 恰 为半圆。
当水面上涨1米时,桥孔中的水面宽度A ’B ’为 A .15米 B .152米 C .172米 D .不能计算 5.下列命题中正确的是A .对角线互相垂直且相等的四边形是正方形B .如果一条直线上有两点到另一条直线上的距离相等,那么这两条直线互相平行C .如果半径分别为3和1的两圆相切,那么两圆的圆心距一定是4D .有一个内角是︒95的两个等腰三角形相似6.如图三,已知AC 平分∠P AQ ,点B 、D 分别在边AP 、AQ 上. 如果添加一个条件后可推出AB =AD ,那么该条件不可以是 A .BD ⊥AC B .BC =DCC .∠ACB =∠ACD D .∠ABC =∠ADC二、填空题(本大题共12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置上.】— 1 —7.求值:38-= .8.计算:333226y x y x ÷= . 9.分解因式:22y y x x --+= .ABCDE(图一)C A ’ B ’ ·(图二)·AP QC (图三)10.函数11-=x y 的定义域是 .11.如图四,原点O 是矩形ABCD 的对称中心,顶点A 、C 在反比例函数图像上,AB 平行x 轴.若矩形ABCD 的面积为8,那么 反比例函数的解析式是 .12.方程 xx x x -+-22323=1中,如设x x y -=23,原方程可化为整式方程 .13.方程13-=++x x的根是.14.直角三角形斜边长为6,那么三角形的重心到斜边中点的距离为 .15.如图五△ABC 中,AB=AC ,BC =6,S △ABC =3,那么sin B = . 16.汽车沿坡度为1:7的斜坡向上行驶了100米,升高了 米. 17.如图六,AB 左边是计算器上的数字“5”,若以直线AB 为对称轴,那么它的轴对称图形是数字 .18.如图七,在△ABC 中,∠C =90º,∠A=30º,BC =1,将△ABC 绕点B 顺时针方向旋转,使点C 落到AB 的延长线上,那么点A 所经 过的线路长为 .三、解答题(本大题共7题,满分78分)19.(本题满分10分)计算:︒︒-︒+︒60tan 30tan 260tan 30tan 22.20.(本题满分10分)解不等式组:⎪⎪⎩⎪⎪⎨⎧->+-≥-62334323429x x x x ,并把它的解集表示在数轴上.— 2 —21.(本题满分10分,第(1)小题满分3分,第(2)小题满分4分,第(3)小题满分3分)某产品每千克的成本价为20元,其销售价不低于成本价,当每千克售价为50元时,它的日销售数量为100千克,如果每千克售价每降低(或增加)一元,日销售数量就增加-2 -1 0 1 2 3 4(图五)AB (图六)A BC(图七)A NB EFGC MD P (图九)(或减少)10千克,设该产品每千克售价为x (元),日销售量为y (千克),日销售利润为w (元).(1) 求y 关于x 的函数解析式,并写出函数的定义域; (2) 写出w 关于x 的函数解析式及函数的定义域;(3)若日销售量为300千克,请直接写出日销售利润的大小.22.(本题满分10分,每小题满分各5分)已知:如图八,在ABC ∆中,BC AD ⊥,D 点为垂足,BE AC ⊥,E 点为垂足,M 点位AB 边的中点,联结ME 、MD 、ED .(1)求证:MED ∆与BMD ∆都是等腰三角形; (2)求证:DAC EMD ∠=∠2.23.(本题满分12分,第(1)小题满分5分,第(2)小题满分3分,第(3)小题满分4分)如图九,在线段AE 的同侧作正方形ABCD 和正方形BEFG (BE AB <),连结EG 并延长交DC 于点M ,作MN AB ⊥,垂足为N ,MN 交BD 于点P .设正方形ABCD 的边长为1.(1)证明:△CMG ≌△NBP ;(2)设B E x =,四边形MGBN 的面积为y ,求y 关于x 的函数解析式,并写出定义域; (3)如果按照题设方法作出的四边形BGMP 是菱形,求BE 的长.— 3 —24.(本题满分12分,每小题满分各6分)如图十,C 在射线BM 上,在平行四边形ABCD 中,10==BD AC ,43tan =∠CAD ,对角线AC 与BD 相交于O 点.在射线BM 上截取一点E ,使CE OC =,联结OE ,与边ABCDME(图八)CD 相交于点F . (1)求CF 的长;(2)在没有“CE OC =”的条件下,联结DE 、AE ,AE 与对角线BD 相交于P 点,若ADE ∆为等腰三角形,请求出DP 的长.25.(本题满分14分,第(1)、(2)小题满分各5分,第(3)小题满分4分)已知∠MON = 60°,射线OT 是∠MON 的平分线,点P 是射线OT 上的一个动点,射线PB 交射线ON 于点B .(1)如图十一,若射线PB 绕点P 顺时针旋转120°后与射线OM 交于A ,求证:P A = PB ; (2)在(1)的条件下,若点C 是AB 与OP 的交点,且满足PC =23PB ,求:△POB 与△PBC 的面积之比;(3)当OB = 2时,射线PB 绕点P 顺时针旋转120°后与直线OM 交于点A (点A 不与点O 重合),直线P A 交射线ON 于点D ,且满足ABO PBD ∠=∠.请求出OP 的长.— 4 —MO NTPA BC OMNTOMNT(备用图一)(备用图二)(图十一)(备用图)A B CDOM2011年上海市初中毕业生统一学业考试(试运转)数学试卷参考答案 (2011.6)一、选择题(本大题共6题,每题4分,满分24分)1.C 2.B 3.A 4.B 5.D 6.B 二、选择题(本大题共12题,每题4分,满分48分)7.-2; 8.133-x x或; 9.)1)((++-y x y x ; 10.1>x ;11.x y 2=; 12.022=+-y y ; 13.)2(2不得分写--=x ; 14.1; 15.1010; 16.102; 17.2; 18.π34.三、解答题(本大题共7题,满分78分)19.解:原式=2)60tan 30(tan ︒-︒……………………………………………………(4分)=2)333(-……………………………………………………………(7分) =333-=332…………………………………………………………(10分) 20.解:由(1)得:x x 432329+-≥-3≤x …………………………………………………………(3分)由(2)得:236134->+x x1->x …………………………………………………………(6分) ∴不等式组的解集为:.........31≤<-x ………………………………………………(8分) 在数轴上表示解集正确(图略)………………………………………………(10分)21.解:(1))50(10100x y -+=………………………………………………………(1分)x y 10600-=……………………………………………………………………(2分) 定义域为20≤x ≤60……………………………………………………………… (3分) (2))20)(10600(--=x x w ………………………………………………………(5分)12000800102-+-=x x w ,定义域为20≤x ≤60……………………………(7分)(3)3000………………………………………………………………………………(9分)答:……………………………………………………………………………………(10分) 22.证明:(1)∵M 为AB 边的中点,AD ⊥BC , BE ⊥AC , ∴12ME AB =,12MD AB =………………………………………………………(2分)∴ME =MD ………………………………………………………………………………(3分)∴△MED 为等腰三角形………………………………………………………………(5分) (2)∵12ME AB MA == ∴∠MAE =∠MEA …………………………………………………………………… (6分) ∴∠BME =2∠MAE ……………………………………………………………………(7分) 同理可得:12MD AB MA == ∴∠MAD =∠MDA …………………………………………………………………… (8分) ∴∠BMD =2∠MAD ……………………………………………………………………(9分) ∵∠EMD =∠BME -∠BMD=2∠MAE -2∠MAD =2∠DAC ……………………………………………(10分) 23.证明:(1)∵正方形ABCD∴︒=∠=∠90CBA C ,︒=∠45ABD 同理︒=∠45BEG ∵CD //BE∴︒=∠=∠45BEG CMG ………………………………………………………………(2分) ∵AB MN ⊥,垂足为N ∴︒=∠90MNB∴四边形BCMN 是矩形………………………………………………………………(3分) ∴NB CM =又∵︒=∠=∠90PNB C ,︒=∠=∠45NBP CMG∴△CMG ≌△NBP ……………………………………………………………………(5分) (2)∵ 正方形BEFG ∴x BE BG == ∴x CG -=1从而 x CM -=1………………………………………………………………………(6分) ∴21111()(1)(1)2222y BG MN BN x x x =+=+-=- (10<<x )…………(8分) (3)由已知易得 MN //BC ,MG //BP∴四边形BGMP 是平行四边形………………………………………………………(9分) 要使四边形BGMP 是菱形则BG =MG ,∴)1(2x x -=………………………………………………………(10分)解得22-=x ………………………………………………………………………(11分) ∴22-=BE 时四边形BGMP 是菱形……………………………………………(12分) 24.解:(1)∵ABCD 为平行四边形且AC=BD∴ABCD 为矩形…………………………………………………………………………(1分) ∴∠ACD =90°在RT △CAD 中,tan ∠CAD=43=ADCD 设CD =3k ,AD =4k ∴(3k )²+(4k )²=10² 解得k =2∴CD =3k =6 ……………………………………………………………………………(2分) (Ⅰ)当E 点在BC 的延长线上时,过O 作OG ⊥BC 于G …………………………………………………………………(3分)∴21==BD BO CD OG ∴OG =3 同理可得:11==OD BO GC BG ,即BG =GC =4又∵521===AC CE OC∴EG CE OG CF = ∴4553+=CF 解得35=CF ……………………………………………………………………………(4分)(Ⅱ)当E 点在边BC 上时,易证F 在CD 的延长线上,与题意不符,舍去……(6分) (注:若有考生求出该情况下CF 的长,但没有舍去此解,扣.1.分.) (2)若ADE ∆为等腰三角形,(Ⅰ)8==ED AD (交于BC 的延长线上) 由勾股定理可得:726-8DC -DE 2222===CE ………………………(7分)∵AD ∥BE ∴a PD BP AD BE −→−+=+==令4748728 ∴BP +PD =BD =10=a a a 474++解得57)78(10-=a∴5774032057)78(404-=-==a PD …………………………………………(8分)(Ⅱ)8==ED AD (交于边BC ) 同理可得:a AD BE PD BP −→−-=-==令4748728 ∴a a a BD PD BP 47410+-===+解得57)78(10+=a∴5774032057)78(404+=+==a PD …………………………………………(9分)(Ⅲ)ED AE = 易证:DEC AEB ∆≅∆∴421===BC EC BE ∴同理可得:31=BD BP ,则3110=BP∴310=BP ,PD =320………………………………………………………………(10分)(Ⅳ)8==AD AE∴726822=-=BE∴同理可得:a PDBP AD BE −→−==令47 9)74(101074-==+a a a∴97401604-==a PD …………………………………………………………(11分)∴综上所述,若ADE ∆为等腰三角形,3205774032057740320或或+-=PD 或9740160-…………………………………………………………………………(12分)(注:若考生只详细写出一种情况,其余几种均用了同理,只要答案正确,也给满分....)25.解:(1)证明:作PF ⊥OM 于F ,作PG ⊥ON 于G ………………………………(1分)∵OP 平分∠MON∴PF =PG ………………………………………………………………………………(2分) ∵∠MON = 60°∴∠FPG = 360°– 60°– 90°– 90°= 120°………………………………………………(3分) 又∵∠APB =120° ∴∠APF = ∠BPG∴△P AF ≌△PBG ………………………………………………………………………(4分) ∴P A = PB ………………………………………………………………………………(5分) (2)由(1)得:P A = PB ,∠APB =120°∴∠P AB = ∠PBA = 30°………………………………………………………………(6分) ∵∠MON = 60°,OP 平分∠MON∴∠TON = 30°…………………………………………………………………………(7分) ∴∠POB = ∠PBC ………………………………………………………………………(8分) 又∠BPO = ∠OPB∴△POB ∽△PBC ………………………………………………………………………(9分) ∴34)23()(22===∆∆PB PB PC PB S S PBCPOB ∴△POB 与△PBC 的面积之比为4∶3………………………………………………(10分) (3)① 当点A 在射线OM 上时(如图乙1),易求得:∠BPD = ∠BOA = 60°∵ABO PBD ∠=∠,而∠PBA = 30°,∴∠OBA = ∠PBD = 75° 作BE ⊥OT 于E ∵∠NOT = 30°,OB = 2 ∴BE =1,OE =3,∠OBE = 60°∴∠EBP = ∠EPB = 45° ∴PE = BE =1∴OP = OE + PE =3+ 1……………………………………………………………(12分) ② 当点A 在射线OM 的反向延长线上时(如图乙2) 此时∠AOB = ∠DPB = 120°∵ABO PBD ∠=∠,而∠PBA = 30°,∴∠OBA = ∠PBD = 15° 作BE ⊥OT 于E∵∠NOT = 30°,OB = 2,∴BE =1,OE = 3,∠OBE = 60°∴∠EBP = ∠EPB = 45° ∴PE = BE =1∴OP =3-1…………………………………………………………………………(14分) ∴综上所述,当2=OB 时,1313-+=或OP(注:若考生直接写出结果......,只给一半的分数.......)OMNT图乙1APD BEO MNT图乙2PABED。
2011年上海市初中毕业生统一学业考试数学试卷(试运转)(满分150分,考试时间100分钟).一、选择题(本大题共6题,每题4分,满分24分)【下列各题的四个结论中,有且只有一个选项是正确的。
选择正确项的代号并填涂在答题纸的相应位置上.】1.下列各实数中,属有理数的是A .πB .2C .9D .cos 45°2.解方程3)1(2122=-+-x x x x 时,设y x x =-12,则原方程化为y 的整式方程为 A .01622=+-y y B .0232=+-y y C .01322=+-y y D .0322=-+y y 3.α∠在正方形网格中的位置如图一所示,那么αsin 应用哪些 点联结成的线段的比值表示 A .AC AE B .BC BE C .AC AD D .BCBD4.如图二,当圆形桥孔中的水面宽度AB 为8米时,弧ACB 恰 为半圆。
当水面上涨1米时,桥孔中的水面宽度A ’B ’为 A .15米 B .152米 C .172米 D .不能计算 5.下列命题中正确的是A .对角线互相垂直且相等的四边形是正方形B .如果一条直线上有两点到另一条直线上的距离相等,那么这两条直线互相平行C .如果半径分别为3和1的两圆相切,那么两圆的圆心距一定是4D .有一个内角是︒95的两个等腰三角形相似6.如图三,已知AC 平分∠PAQ ,点B 、D 分别在边AP 、AQ 上. 如果添加一个条件后可推出AB =AD ,那么该条件不可以是 A .BD ⊥AC B .BC =DCC .∠ACB =∠ACD D .∠ABC =∠ADC二、填空题(本大题共12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置上.】 7.求值:38-= .8.计算:333226y x y x ÷= . 9.分解因式:22y y x x --+= .ABCDE(图一)A BC A ’B ’ · (图二)·AP QC (图三)10.函数11-=x y 的定义域是 .11.如图四,原点O 是矩形ABCD 的对称中心,顶点A 、C 在反比例函数图像上,AB 平行x 轴.若矩形ABCD 的面积为8,那么 反比例函数的解析式是 .12.方程 xx x x -+-22323=1中,如设x x y -=23,原方程可化为整式方程 . 13.方程13-=++x x的根是.14.直角三角形斜边长为6,那么三角形的重心到斜边中点的距离 为 .15.如图五△ABC 中,AB=AC ,BC =6,S △ABC =3,那么sin B = . 16.汽车沿坡度为1:7的斜坡向上行驶了100米,升高了 米. 17.如图六,AB 左边是计算器上的数字“5”,若以直线AB 为对称轴,那么它的轴对称图形是数字 .18.如图七,在△ABC 中,∠C =90º,∠A=30º,BC =1,将△ABC 绕点B 顺时针方向旋转,使点C 落到AB 的延长线上,那么点A 所经 过的线路长为 .三、解答题(本大题共7题,满分78分)19.(本题满分10分)计算:︒︒-︒+︒60tan 30tan 260tan 30tan 22.20.(本题满分10分)解不等式组:⎪⎪⎩⎪⎪⎨⎧->+-≥-62334323429x x x x ,并把它的解集表示在数轴上.-2 -1 0 1 2 3 4AD B CO xy (图四)ABC (图五)AB (图六)A BC(图七)21.(本题满分10分,第(1)小题满分3分,第(2)小题满分4分,第(3)小题满分3分)某产品每千克的成本价为20元,其销售价不低于成本价,当每千克售价为50元时,它的日销售数量为100千克,如果每千克售价每降低(或增加)一元,日销售数量就增加(或减少)10千克,设该产品每千克售价为x (元),日销售量为y (千克),日销售利润为w (元).(1) 求y 关于x 的函数解析式,并写出函数的定义域; (2) 写出w 关于x 的函数解析式及函数的定义域;(3)若日销售量为300千克,请直接写出日销售利润的大小.22.(本题满分10分,每小题满分各5分)已知:如图八,在ABC ∆中,BC AD ⊥,D 点为垂足,BE AC ⊥,E 点为垂足,M 点位AB 边的中点,联结ME 、MD 、ED .(1)求证:MED ∆与BMD ∆都是等腰三角形; (2)求证:DAC EMD ∠=∠2.ABCDME(图八)A N BEFGC MD P(图九)23.(本题满分12分,第(1)小题满分5分,第(2)小题满分3分,第(3)小题满分4分)如图九,在线段AE 的同侧作正方形ABCD 和正方形BEFG (BE AB <),连结EG 并延长交DC 于点M ,作MN AB ⊥,垂足为N ,MN 交BD 于点P .设正方形ABCD 的边长为1.(1)证明:△CMG ≌△NBP ;(2)设B E x =,四边形MGBN 的面积为y ,求y 关于x 的函数解析式,并写出定义域; (3)如果按照题设方法作出的四边形BGMP 是菱形,求BE 的长.24.(本题满分12分,每小题满分各6分)如图十,C 在射线BM 上,在平行四边形ABCD 中,10==BD AC ,43tan =∠CAD ,对角线AC 与BD 相交于O 点.在射线BM 上截取一点E ,使CE OC =,联结OE ,与边CD 相交于点F . (1)求CF 的长;(2)在没有“CE OC =”的条件下,联结DE 、AE ,AE 与对角线BD 相交于P 点,若ADE ∆为等腰三角形,请求出DP 的长.(备用图)A B CDOM25.(本题满分14分,第(1)、(2)小题满分各5分,第(3)小题满分4分)已知∠MON = 60°,射线OT 是∠MON 的平分线,点P 是射线OT 上的一个动点,射线PB 交射线ON 于点B .(1)如图十一,若射线PB 绕点P 顺时针旋转120°后与射线OM 交于A ,求证:PA = PB ; (2)在(1)的条件下,若点C 是AB 与OP 的交点,且满足PC =23PB ,求:△POB 与△PBC 的面积之比;(3)当OB = 2时,射线PB 绕点P 顺时针旋转120°后与直线OM 交于点A (点A 不与点O 重合),直线PA 交射线ON 于点D ,且满足ABO PBD ∠=∠.请求出OP 的长.MO NTPA BC OMNTOMNT(备用图一)(备用图二)(图十一)2011年上海市初中毕业生统一学业考试(试运转)数学试卷参考答案 (2011.6)一、选择题(本大题共6题,每题4分,满分24分)1.C 2.B 3.A 4.B 5.D 6.B 二、选择题(本大题共12题,每题4分,满分48分)7.-2; 8.133-x x或; 9.)1)((++-y x y x ; 10.1>x ;11.xy 2=; 12.022=+-y y ; 13.)2(2不得分写--=x ; 14.1; 15.1010; 16.102; 17.2; 18.π34.三、解答题(本大题共7题,满分78分)19.解:原式=2)60tan 30(tan ︒-︒……………………………………………………(4分)=2)333(-……………………………………………………………(7分) =333-=332…………………………………………………………(10分) 20.解:由(1)得:x x 432329+-≥-3≤x …………………………………………………………(3分)由(2)得:236134->+x x 1->x …………………………………………………………(6分)∴不等式组的解集为:.........31≤<-x ………………………………………………(8分) 在数轴上表示解集正确(图略)………………………………………………(10分)21.解:(1))50(10100x y -+=………………………………………………………(1分)x y 10600-=……………………………………………………………………(2分)定义域为20≤x ≤60……………………………………………………………… (3分) (2))20)(10600(--=x x w ………………………………………………………(5分)12000800102-+-=x x w ,定义域为20≤x ≤60……………………………(7分)(3)3000………………………………………………………………………………(9分)答:……………………………………………………………………………………(10分) 22.证明:(1)∵M 为AB 边的中点,AD ⊥BC , BE ⊥AC , ∴12ME AB =,12MD AB =………………………………………………………(2分) ∴ME =MD ………………………………………………………………………………(3分)∴△MED 为等腰三角形………………………………………………………………(5分) (2)∵12ME AB MA == ∴∠MAE =∠MEA …………………………………………………………………… (6分) ∴∠BME =2∠MAE ……………………………………………………………………(7分) 同理可得:12MD AB MA == ∴∠MAD =∠MDA …………………………………………………………………… (8分) ∴∠BMD =2∠MAD ……………………………………………………………………(9分) ∵∠EMD =∠BME -∠BMD=2∠MAE -2∠MAD =2∠DAC ……………………………………………(10分) 23.证明:(1)∵正方形ABCD∴︒=∠=∠90CBA C ,︒=∠45ABD 同理︒=∠45BEG ∵CD //BE∴︒=∠=∠45BEG CMG ………………………………………………………………(2分) ∵AB MN ⊥,垂足为N ∴︒=∠90MNB∴四边形BCMN 是矩形………………………………………………………………(3分) ∴NB CM =又∵︒=∠=∠90PNB C ,︒=∠=∠45NBP CMG∴△CMG ≌△NBP ……………………………………………………………………(5分) (2)∵ 正方形BEFG ∴x BE BG == ∴x CG -=1从而 x CM -=1………………………………………………………………………(6分) ∴21111()(1)(1)2222y BG MN BN x x x =+=+-=-(10<<x )…………(8分) (3)由已知易得 MN //BC ,MG //BP∴四边形BGMP 是平行四边形………………………………………………………(9分) 要使四边形BGMP 是菱形则BG =MG ,∴)1(2x x -=………………………………………………………(10分)解得22-=x ………………………………………………………………………(11分) ∴22-=BE 时四边形BGMP 是菱形……………………………………………(12分) 24.解:(1)∵ABCD 为平行四边形且AC=BD∴ABCD 为矩形…………………………………………………………………………(1分) ∴∠ACD =90°在RT △CAD 中,tan ∠CAD=43=ADCD 设CD =3k ,AD =4k ∴(3k )²+(4k )²=10² 解得k =2∴CD =3k =6 ……………………………………………………………………………(2分) (Ⅰ)当E 点在BC 的延长线上时,过O 作OG ⊥BC 于G …………………………………………………………………(3分)∴21==BD BO CD OG ∴OG =3 同理可得:11==OD BO GC BG ,即BG =GC =4 又∵521===AC CE OC∴EG CE OG CF = ∴4553+=CF 解得35=CF ……………………………………………………………………………(4分)(Ⅱ)当E 点在边BC 上时,易证F 在CD 的延长线上,与题意不符,舍去……(6分) (注:若有考生求出该情况下CF 的长,但没有舍去此解,扣.1.分.) (2)若ADE ∆为等腰三角形,(Ⅰ)8==ED AD (交于BC 的延长线上) 由勾股定理可得:726-8DC -DE 2222===CE ………………………(7分)∵AD ∥BE ∴a PD BP AD BE −→−+=+==令4748728 ∴BP +PD =BD =10=a a a 474++解得57)78(10-=a∴5774032057)78(404-=-==a PD …………………………………………(8分) (Ⅱ)8==ED AD (交于边BC ) 同理可得:a AD BE PD BP −→−-=-==令4748728 ∴a a a BD PD BP 47410+-===+解得57)78(10+=a∴5774032057)78(404+=+==a PD …………………………………………(9分) (Ⅲ)ED AE = 易证:DEC AEB ∆≅∆∴421===BC EC BE ∴同理可得:31=BD BP ,则3110=BP ∴310=BP ,PD =320………………………………………………………………(10分)(Ⅳ)8==AD AE∴726822=-=BE ∴同理可得:a PDBP AD BE −→−==令47 9)74(101074-==+a a a∴97401604-==a PD …………………………………………………………(11分)∴综上所述,若ADE ∆为等腰三角形,3205774032057740320或或+-=PD 或9740160-…………………………………………………………………………(12分)(注:若考生只详细写出一种情况,其余几种均用了同理,只要答案正确,也给满分....)25.解:(1)证明:作PF ⊥OM 于F ,作PG ⊥ON 于G ………………………………(1分)∵OP 平分∠MON∴PF =PG ………………………………………………………………………………(2分) ∵∠MON = 60°∴∠FPG = 360°– 60°– 90°– 90°= 120°………………………………………………(3分) 又∵∠APB =120°∴∠APF = ∠BPG∴△PAF ≌△PBG ………………………………………………………………………(4分) ∴PA = PB ………………………………………………………………………………(5分)(2)由(1)得:PA = PB ,∠APB =120°∴∠PAB = ∠PBA = 30°………………………………………………………………(6分) ∵∠MON = 60°,OP 平分∠MON∴∠TON = 30°…………………………………………………………………………(7分) ∴∠POB = ∠PBC ………………………………………………………………………(8分) 又∠BPO = ∠OPB∴△POB ∽△PBC ………………………………………………………………………(9分) ∴34)23()(22===∆∆PB PB PC PB S S PBC POB ∴△POB 与△PBC 的面积之比为4∶3………………………………………………(10分)(3)① 当点A 在射线OM 上时(如图乙1),易求得:∠BPD = ∠BOA = 60°∵ABO PBD ∠=∠,而∠PBA = 30°,∴∠OBA = ∠PBD = 75°作BE ⊥OT 于E∵∠NOT = 30°,OB = 2∴BE =1,OE = 3,∠OBE = 60°∴∠EBP = ∠EPB = 45°∴PE = BE =1∴OP = OE + PE =3+ 1……………………………………………………………(12分) ② 当点A 在射线OM 的反向延长线上时(如图乙2)此时∠AOB = ∠DPB = 120°∵ABO PBD ∠=∠,而∠PBA = 30°,∴∠OBA = ∠PBD = 15°作BE ⊥OT 于E∵∠NOT = 30°,OB = 2,∴BE =1,OE =3,∠OBE = 60° ∴∠EBP = ∠EPB = 45°∴PE = BE =1∴OP =3-1…………………………………………………………………………(14分) ∴综上所述,当2=OB 时,1313-+=或OP(注:若考生直接写出结果......,只给一半的分数.......)O M N T图乙1 A PD BEO M NT 图乙2 P A B E D。
2011年上海市初中毕业统一学业考试数学卷
(满分150分考试时间100分钟)
一、选择题(本大题共6题,每题4分,共24分)
1.下列分数中,能化为有限小数的是().
(A) 1
3;(B) 1
5
;(C) 1
7
;(D) 1
9
.
2.如果a>b,c<0,那么下列不等式成立的是().
(A) a+c>b+c;(B) c-a>c-b;(C) ac>bc;(D) a b
c c >.
3.下列二次根式中,最简二次根式是().
(A) (B) (C) (D) .
4.抛物线y=-(x+2)2-3的顶点坐标是().
(A) (2,-3);(B) (-2,3);(C) (2,3);(D) (-2,-3).
5.下列命题中,真命题是().
(A)周长相等的锐角三角形都全等;(B) 周长相等的直角三角形都全等;
(C)周长相等的钝角三角形都全等;(D) 周长相等的等腰直角三角形都全等.
6.矩形ABCD中,AB=8,BC=P在边AB上,且BP=3AP,如果圆P是以点P为圆心,PD为半径的圆,那么下列判断正确的是().
(A) 点B、C均在圆P外;(B) 点B在圆P外、点C在圆P内;
(C) 点B在圆P内、点C在圆P外;(D) 点B、C均在圆P内.
二、填空题(本大题共12题,每题4分,共48分)
7.计算:23
a a⋅=__________.
8.因式分解:22
9
x y
-=_______________.
9.如果关于x的方程220
x x m
-+=(m为常数)有两个相等实数根,那么m=______.
10.函数y=的定义域是_____________.
11.如果反比例函数k y x
=(k 是常数,k ≠0)的图像经过点(-1,2),那么这个函数
的解析式是__________.
12.一次函数y =3x -2的函数值y 随自变量x 值的增大而_____________(填“增大”或“减小”).
13.有8只型号相同的杯子,其中一等品5只,二等品2只和三等品1只,从中随机抽取1只杯子,恰好是一等品的概率是__________.
14.某小区2010年屋顶绿化面积为2000平方米,计划2012年屋顶绿化面积要达到2880平方米.如果每年屋顶绿化面积的增长率相同,那么这个增长率是_________.
15.如图1,AM 是△ABC 的中线,设向量AB a = ,BC b =
,那么向量AM =
____________(结果用a 、b 表示)
. 16. 如图2, 点B 、C 、D 在同一条直线上,CE //AB ,∠ACB =90°,如果∠ECD =36°,那么∠A =_________.
17.如图3,AB 、AC 都是圆O 的弦,OM ⊥AB ,ON ⊥AC ,垂足分别为M 、N ,如果MN =3,那么BC =_________.
18.Rt △ABC 中,已知∠C =90°,∠B =50°,点D 在边BC 上,BD =2CD (图4).把△ABC 绕着点D 逆时针旋转m (0<m <180)度后,如果点B 恰好落在初始Rt △ABC 的边上,那么m =_________.
图1 图2 图3 图4
三、解答题(本大题共7
题,满分78分) 19.(本题满分
10
分)计算:0
(3)1---+
20.(本题满分10分)解方程组:22
2,
230.
x y x xy y -=⎧⎨--=⎩
21.(本题满分10分,第(1)小题满分4分,第(2)小题满分6分)
如图5,点C 、D 分别在扇形AOB 的半径OA 、OB 的延长线上,且OA =3,AC =2,CD 平行于AB ,并与弧AB 相交于点M 、N .
(1)求线段OD 的长; (2)若1tan 2
C ∠=
,求弦MN 的长.
图5
22.(本题满分10分,第(1)、(2)小题满分各2分,第(3)、(4)小题满分各3分)
据报载,在“百万家庭低碳行,垃圾分类要先行”活动中,某地区对随机抽取的1000名公民的年龄段分布情况和对垃圾分类所持态度进行调查,并将调查结果分别绘成条形图(图6)、扇形图(图7).
(1)图7中所缺少的百分数是____________;
(2)这次随机调查中,如果公民年龄的中位数是正整数,那么这个中位数所在年龄段是________________(填写年龄段);
(3)这次随机调查中,年龄段是“25岁以下”的公民中“不赞成”的有5名,它占“25岁以下”人数的百分数是_____________;
(4)如果把所持态度中的“很赞同”和“赞同”统称为“支持”,那么这次被调查公民中“支持”的人有_______________名.
10%20%
35%
25%
10%
百分数
年龄段(岁)
25岁
以下
25~3536~4546~60
60岁以上
图6 图7
赞同31%
很赞同39%
不赞同18%一般
23.(本题满分12分,每小题满分各6分)
如图,在梯形ABCD 中,AD //BC ,AB =DC ,过点D 作DE ⊥BC ,垂足为E ,并延长DE 至F ,使EF =DE .联结BF 、CD 、AC .
(1)求证:四边形ABFC 是平行四边形;
(2)如果DE 2=BE ·CE ,求证四边形ABFC 是矩形.
24.(本题满分12分,每小题满分各4分)
已知平面直角坐标系xOy (如图1),一次函数334
y x =+的图像与
y 轴交于点A ,点M
在正比例函数32
y x =
的图像上,且MO =MA .二次函数
y =x 2+bx +c 的图像经过点A 、M .
(1)求线段AM 的长;
(2)求这个二次函数的解析式;
(3)如果点B 在y 轴上,且位于点A 下方,点C 在上述二次函数的图像上,点D 在一次函数334
y x =
+的图
像上,且四边形ABCD 是菱形,求点C 的坐标.
图1
25.(本题满分14分,第(1)小题满分4分,第(2)、(3)小题满分各5分)
在Rt △ABC 中,∠ACB =90°,BC =30,AB =50.点P 是AB 边上任意一点,直线PE ⊥AB ,与边AC 或BC 相交于E .点M 在线段AP 上,点N 在线段BP 上,EM =EN ,
12sin 13
E M P ∠=
.
(1)如图1,当点E 与点C 重合时,求CM 的长;
(2)如图2,当点E 在边AC 上时,点E 不与点A 、C 重合,设AP =x ,BN =y ,求y 关于x 的函数关系式,并写出函数的定义域;
(3)若△AME ∽△ENB (△AME 的顶点A 、M 、E 分别与△ENB 的顶点E 、N 、B 对应),求AP 的长.
图1 图2 备用图。