2011安徽中考数学试卷及答案
- 格式:doc
- 大小:606.00 KB
- 文档页数:9
2011年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)1.-2、0、2、-3这四个数中最大的是( )A .2B .0C .-2D .-32.我省2010年末森林面积为3804.2千公顷,用科学记数法表示3804.2千.正确的是( ) A .3804.2×103 B .380.42×104 C .3.8042×106 D .3.8042×107 3.下图是五个相同的小正方体搭成的几何体,其左视图是( )4.设a =19-1,a 在两个相邻整数之间,则这两个整数是( ) A .1和2 B .2和3 C .3和4 D .4和55.从正五边形的五个顶点中,任取四个顶点连成四边形,对于事件M :“这个四边形是等腰梯形”,下列推断正确的是( )A .事件M 是不可能事件B .事件M 是必然事件C .事件M 发生的概率为1 5D .事件M 发生的概率为2 56.如图,D 是△ABC 内一点,BD ⊥CD ,AD =6,BD =4,CD =3,E 、F 、G 、H 分别是AB 、AC 、CD 、BD 的中点,则四边形EFGH 的周长是( )A .7B .9C .10D .117.如图,⊙O 的半径为1,A 、B 、C 是圆周上的三点,∠BAC =36°,则劣弧BC 的长是( ) A .π51B .π52 C .π53 D .π548.一元二次方程x (x -2)=2-x 的根是( )A .-1B .2C .1和2D .-1和29.如图,在四边形ABCD 中,∠BAD =∠ADC =90°,AB =AD =22,CD =2,点P 在四边形ABCD 的边上.若点P 到BD 的距离为23,则点P 的个数为( ) A .1 B .2 C .3 D .410.如图,点P 是菱形ABCD 的对角线AC 上的一个动点,过点P 垂直于AC 的直线交菱形ABCD 的边于M 、N 两点.设AC =2,BD =1,AP =x ,△AMN 的面积为y ,则y 关于x 的函数图象大致形状是( )二、填空题(本大题共4小题,每小题5分,满分20分)11.因式分解:a 2b +2ab +b = .12.根据里氏震级的定义,地震所释放出的相对能量E 与震级n 的关系为:E =10n ,那么9级地震所释放出的相对能量是7级地震所释放出的相对能量的倍数是 .13.如图,⊙O 的两条弦AB 、CD 互相垂直,垂足为E ,且AB =CD ,CE =1,DE =3,则⊙O 的半径是 .AB CD EOACDMN PA B CD ABC OABC D E FGHA .B .C .D .14.定义运算a ⊗b =a (1-b ),下面给出了关于这种运算的四个结论:①2⊗(-2)=6 ②a ⊗b =b ⊗a③若a +b =0,则(a ⊗a )+(b ⊗b )=2ab ④若a ⊗b =0,则a =0. 其中正确结论的序号是 (填上你认为所有正确结论的序号).三、(本大题共2小题,每小题8分,满分16分)15.先化简,再求值:12112---x x ,其中x =-2.16.江南生态食品加工厂收购了一批质量为10000kg 的某种山货,根据市场需求对其进行粗加工和精加工处理,已知精加的这种山货质量比粗加工的质量的3倍还多2000kg ,求粗加工的这种山货的质量.四、(本大题共2小题,每小题8分,满分16分)17.如图,在边长为1个单位长度的小正方形组成的网格中,按要求画出△A 1B 1C 1和△A 2B 2C 2:(1)将△ABC 先向右平移4个单位,再向上平移1个单位,得到△A 1B 1C 1;(2)以图中的点O 为位似中心,将△A 1B 1C 1作位似变换且放大到原来的两倍,得到△A 2B 2C 2.18.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如下图所示.(1)填写下列各点的坐标:A 4( , )、A 8( , )、A 12( , ); (2)写出点A 4n 的坐标(n 是正整数); (3)指出蚂蚁从点A 100到点A 101的移动方向.五、(本大题共2小题,每小题10分,满分20分)19.如图,某高速公路建设中需要确定隧道AB 的长度.已知在离地面1500m 高度C 处的飞机上,测量人员测得正前方A 、B 两点处的俯角分别为60°和45°.求隧道AB 的长(3≈1.73).20.一次学科测验,学生得分均为整数,满分为10分,成绩达到6分以上(包括6分)为合格,成绩达到9分为优秀.这次测验甲、乙两组学生成绩分布的条形统计图如下:(1)请补充完成下面的成绩统计分析表:(2)甲组学生说他们的合格率、优秀率均高于乙组,所以他们的成绩好于乙组.但乙组学生不同意甲组学生的说法,认为他们组的成绩要好于甲组.请你给出三条支持乙组学生观点的理由.六、(本题满分12分)21.如图,函数y 1=k 1x +b 的图象与函数y 2=k 2x (x >0)的图象交于点A (2,1)、B ,与y 轴交于点C (0,3).(1)求函数y 1的表达式和点B 的坐标; (2)观察图象,比较当x >0时y 1与y 2的大小.七、(本题满分12分)22.在△ABC 中,∠ACB =90°,∠ABC =30°,将△ABC 绕顶点C 顺时针旋转,旋转角为θ(0°<θ<180°),得到△A 1B 1C .(1)如图1,当AB ∥CB 1时,设A 1B 1与BC 相交于点D.证明:△A 1CD 是等边三角形; (2)如图2,连接AA 1、BB 1,设△ACA 1和△BCB 1的面积分别为S 1、S 2.求证:S 1∶S 2=1∶3;(3)如图3,设AC 的中点为E ,A 1B 1的中点为P ,AC =a ,连接EP .当θ= °时,EP 的长度最大,最大值为 .八、(本题满分14分)23.如图,正方形ABCD 的四个顶点分别在四条平行线l 1、l 2、l 3、l 4上,这四条直线中相邻两条之间的距离依次为h 1、h 2、h 3(h 1>0,h 2>0,h 3>0). (1)求证:h 1=h 2;(2)设正方形ABCD 的面积为S ,求证:S =(h 1+h 2)2+h 12;(3)若 32h 1+h 2=1,当h 1变化时,说明正方形ABCD 的面积S 随h 1的变化情况.l 1l 2l 3l 4CA 1A 1BBB11EP图1图2图3θ/分2011年安徽省中考数学试卷答案及评分标准1-10 ACACB DBDBC11. ()21+a b ; 12. 100; 13.5 14. ①③.15. 原式=112111)1)(1(1)1)(1(21-=+-=+=-+-=-+-+x x x x x x x .16. 设粗加工的该种山货质量为xkg ,根据题意,得 x+(3x+2000)=10000. 解得 x=2000.答:粗加工的该种山货质量为2000kg. 17. 如下图18.⑴A 1(0,1) A 3(1,0) A 12(6,0)⑵A n (2n,0) ⑶向上19. 简答:∵OA 350033150030tan 1500=⨯=⨯=, OB=OC=1500,∴AB=635865150035001500=-≈-(m). 答:隧道AB 的长约为635m.20. (1)甲组:中位数 7; 乙组:平均数7, 中位数7(2)(答案不唯一)①因为乙组学生的平均成绩高于甲组学生的平均成绩,所以乙组学生的成绩好于甲组;②因为甲乙两组学生成绩的平均分相差不大,而乙组学生的方差低于甲组学生的方差,说明乙组学生成绩的波动性比甲组小,所以乙组学生的成绩好于甲组;③因为乙组学生成绩的最低分高于甲组学生的最低分,所以乙组学生的成绩好于甲组。
A BCD E FGH A B C OAB CD P2011年安徽省初中毕业学业考试数 学一、选择题(本大题共10小题,每小题4分,满分40分)1.-2、0、2、-3这四个数中最大的是【 】A .2B .0C .-2D .-32.我省2010年末森林面积为3804.2千公顷,用科学记数法表示3804.2千.正确的是【 】 A .3804.2×103 B .380.42×104 C .3.8042×106 D .3.8042×107 3.下图是五个相同的小正方体搭成的几何体,其左视图是【 】4.设a =19-1,a 在两个相邻整数之间,则这两个整数是【 】A .1和2B .2和3C .3和4D .4和5 5.从正五边形的五个顶点中,任取四个顶点连成四边形,对于事件M :“这个四边形是等腰梯形”,下列推断正确的是【 】 A .事件M 是不可能事件 B .事件M 是必然事件 C .事件M 发生的概率为1 5 D .事件M 发生的概率为2 56.如图,D 是△ABC 内一点,BD ⊥CD ,AD =6,BD =4,CD =3,E 、F 、G 、H 分别是AB 、AC 、CD 、BD 的中点,则四边形EFGH 的周长是【 】A .7B .9C .10D .11 7.如图,⊙O 的半径为1,A 、B 、C 是圆周上的三点,∠BAC =36°, 则劣弧BC 的长是【 】A .π51B .π52C .π53D .π548.一元二次方程x (x -2)=2-x 的根是【 】A .-1B .2C .1和2D .-1和2 9.如图,在四边形ABCD 中,∠BAD =∠ADC =90°,AB =AD =22,CD =2,点P 在四边形ABCD 的边上.若点P 到BD 的距离为23,则点P 的个数为【 】A .1B .2C .3D .410.如图,点P 是菱形ABCD 的对角线AC 上的一个动点,过点P 垂直于AC 的直线交菱形ABCD 的边于M 、N 两点.设AC =2,BD =1,AP =x ,△AMN 的面积为y ,则y 关于x 的函数图象大致形状是【 】二、填空题(本大题共4小题,每小题5分,满分20分)11.因式分解:a 2b +2ab +b = .12.根据里氏震级的定义,地震所释放出的相对能量E 与震级n 的关系为:E =10n ,那么9级地震所释放出的相A .B .C .D .OOOOx x x x y y y y 1 2 1 2 1 2 1 2 A .B .C .D . ABCDMN PAB CDEO对能量是7级地震所释放出的相对能量的倍数是 .13.如图,⊙O 的两条弦AB 、CD 互相垂直,垂足为E ,且AB =CD ,CE =1,DE =3,则⊙O 的半径是 .14.定义运算a ⊗b =a (1-b ),下面给出了关于这种运算的四个结论:①2⊗(-2)=6 ②a ⊗b =b ⊗a③若a +b =0,则(a ⊗a )+(b ⊗b )=2ab ④若a ⊗b =0,则a =0. 其中正确结论的序号是 (填上你认为所有正确结论的序号).三、(本大题共2小题,每小题8分,满分16分)15.先化简,再求值:12112---x x ,其中x =-2. 【解】16.江南生态食品加工厂收购了一批质量为10000kg 的某种山货,根据市场需求对其进行粗加工和精加工处理,已知精加的这种山货质量比粗加工的质量的3倍还多2000kg ,求粗加工的这种山货的质量. 【解】四、(本大题共2小题,每小题8分,满分16分)17.如图,在边长为1个单位长度的小正方形组成的网格中,按要求画出△A 1B 1C 1和△A 2B 2C 2:(1)将△ABC 先向右平移4个单位,再向上平移1个单位,得到△A 1B 1C 1;(2)以图中的点O 为位似中心,将△A 1B 1C 1作位似变换且放大到原来的两倍,得到△A 2B 2C 2.18.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如下图所示.(1)填写下列各点的坐标:A 4( , )、A 8( , )、A 12( , ); (2)写出点A 4n 的坐标(n 是正整数); 【解】(3)指出蚂蚁从点A 100到点A 101的移动方向. 【解】ABCOA 1A 2A 3 A 4 A 5A 6A 7 A 8 A 9A 10A 11 A 12 O xy 1ABCOxyA BO CD1500m 45° 60°五、(本大题共2小题,每小题10分,满分20分)19.如图,某高速公路建设中需要确定隧道AB 的长度.已知在离地面1500m 高度C 处的飞机上,测量人员测得正前方A 、B 两点处的俯角分别为60°和45°.求隧道AB 的长(3≈1.73).【解】20.一次学科测验,学生得分均为整数,满分为10分,成绩达到6分以上(包括6分)为合格,成绩达到9分为优秀.这次测验甲、乙两组学生成绩分布的条形统计图如下:(1)请补充完成下面的成绩统计分析表:平均分 方差 中位数 合格率 优秀率 甲组 6.9 2.4 91.7% 16.7% 乙组1.383.3%8.3%(2)甲组学生说他们的合格率、优秀率均高于乙组,所以他们的成绩好于乙组.但乙组学生不同意甲组学生的说法,认为他们组的成绩要好于甲组.请你给出三条支持乙组学生观点的理由. 【解】六、(本题满分12分)21.如图,函数y 1=k 1x +b 的图象与函数y 2=k 2x(x >0)的图象交于点A (2,1)、B ,与y 轴交于点C (0,3). (1)求函数y 1的表达式和点B 的坐标;【解】(2)观察图象,比较当x >0时y 1与y 2的大小. 【解】5 4 3 2 1 01 2345678910学生数/人 成绩/分甲乙A BC Dl1l2 l3 l4h1 h2 h3七、(本题满分12分)22.在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋转角为θ(0°<θ<180°),得到△A1B1C.(1)如图1,当AB∥CB1时,设A1B1与BC相交于点D.证明:△A1CD是等边三角形;【证】(2)如图2,连接AA1、BB1,设△ACA1和△BCB1的面积分别为S1、S2.求证:S1∶S2=1∶3;【证】(3)如图3,设AC的中点为E,A1B1的中点为P,AC=a,连接EP.当θ=°时,EP的长度最大,最大值为.八、(本题满分14分)23.如图,正方形ABCD的四个顶点分别在四条平行线l1、l2、l3、l4上,这四条直线中相邻两条之间的距离依次为h1、h2、h3(h1>0,h2>0,h3>0).(1)求证:h1=h2;【证】(2)设正方形ABCD的面积为S,求证:S=(h1+h2)2+h12;【证】(3)若32h1+h2=1,当h1变化时,说明正方形ABCD的面积S随h1的变化情况.【解】A A1AC C CA1A1ADB1B B BB1B1EP 图1 图2 图3θθθ2011年安徽省初中毕业学业考试数学参考答案1~10 ACACB DBDBC11. ()21+a b ; 12. 100; 13.5 14. ①③.15. 原式=112111)1)(1(1)1)(1(21-=+-=+=-+-=-+-+x x x x x x x .16. 设粗加工的该种山货质量为xkg ,根据题意,得 x+(3x+2000)=10000. 解得 x=2000.答:粗加工的该种山货质量为2000kg. 17. 如下图18.⑴A 1(0,1) A 3(1,0) A 12(6,0)⑵A n (2n,0) ⑶向上 19. 简答:∵OA 350033150030tan 1500=⨯=⨯=, OB=OC=1500,∴AB=635865150035001500=-≈-(m).答:隧道AB 的长约为635m.20. (1)甲组:中位数 7; 乙组:平均数7, 中位数7(2)(答案不唯一)①因为乙组学生的平均成绩高于甲组学生的平均成绩,所以乙组学生的成绩好于甲组; ②因为甲乙两组学生成绩的平均分相差不大,而乙组学生的方差低于甲组学生的方差,说明乙组学生成绩的波动性比甲组小,所以乙组学生的成绩好于甲组;③因为乙组学生成绩的最低分高于甲组学生的最低分,所以乙组学生的成绩好于甲组。
2011 年安徽省中考数学试题及详尽分析一、选择题(共10 小题,每题 4 分,满分40 分)1、在﹣ 1, 0, 1, 2 这四个数中,既不是正数也不是负数的是()A、﹣ 1B、0C、 1D、 2考点:有理数。
剖析:正数是大于 0 的数,负数是小于 0 的数,既不是正数也不是负数的是 0 .解答:解: A、﹣ 1< 0,是负数,故 A 错误;B、既不是正数也不是负数的是 0,正确;C、 1>0,是正数,故C错误;D、 2> 0,是正数,故 D 错误.应选 B.评论:理解正数和负数的观点是解答本题的要点.2、计算( 2x)3÷x的结果正确的选项是)(A、 8x 2B、 6x 2C、 8x3D、 6x3考点:整式的除法;幂的乘方与积的乘方;同底数幂的除法。
剖析:依据积的乘方等于各因式乘方的积和单项式的除法法例解答.解答:解:( 2x)332.÷ x=8x÷ x=8x应选 A.评论:本题主要考察积的乘方的性质,单项式的除法,娴熟掌握运算性质是解题的要点.3、如图,直线l1∥l 2,∠ 1=55°,∠ 2=65°,则∠ 3 为()A、 50°B、 55°C、 60°D、 65°考点:平行线的性质;对顶角、邻补角;三角形内角和定理。
专题:计算题。
剖析:先依据平行线的性质及对顶角相等求出∠ 3 所在三角形其他两角的度数,再依据三角形内角和定理即可求出∠ 3 的度数.解答:解:以下图:∵l1∥ l2,∠ 2=65°,∴∠ 6=65°,∵∠ 1=55°,∴∠ 1=∠ 4=55°,在△ ABC中,∠ 6=65°,∠ 4=55°,∴∠ 3=180°﹣ 65°﹣ 55°=60°.应选 C.评论:本题要点考察了平行线的性质、对顶角相等及三角形内角和定理,是一道较为简单的题目.4、 2010 年一季度,全国城镇新增就业人数为289 万人,用科学记数法表示289 万正确的是()7 6A、 2.89 × 10B、 2.89 × 105 4C、 2.89 × 10D、 2.89 × 10考点:科学记数法—表示较大的数。
2011年安徽省中考数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题4分,满分40分)1.(4分)(2011•安徽)﹣2,0,2,﹣3这四个数中最大的是()A.2 B.0 C.﹣2 D.﹣3【考点】M115 有理数M117 实数的大小比较【难度】容易题【分析】根据正数都大于0,负数都小于0,正数大于一切负数;两个负数,绝对值大的其值反而小解答即:∵2>0>﹣2>﹣3,∴最大的数是2.故选A.【解答】A.【点评】本题考查了有理数大小的比较,熟记:正数都大于0,负数都小于0,正数大于一切负数;两个负数,绝对值大的其值反而小.2.(4分)(2011•安徽)安徽省2010年末森林面积为3804.2千公顷,用科学记数法表示3804.2千正确的是()A.3804.2×103B.380.42×104C.3.8042×106D.3.8042×105【考点】M11C 科学记数法【难度】容易题【分析】本题先把3804.2千化成3804200,然后用科学计数法表示;科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.则3804.2千=3804200=3.8042×106;故选C.【解答】C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(4分)(2011•安徽)下图是五个相同的小正方体搭成的几体体,其左视图是()A.B.C.D.【考点】M413 视图与投影【难度】容易题【分析】找到从左边向右边看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.则从左边看易得第一层有2个正方形,第二层有1个正方形.故选A.【解答】A.【点评】本题只要了解清楚各个几何体的三视图即可得解,考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.4.(4分)(2011•安徽)设,a在两个相邻整数之间,则这两个整数是()A.1和2 B.2和3 C.3和4 D.4和5【考点】M116 无理数M117 实数的大小比较【难度】容易题【分析】先对进行估算,再确定是在哪两个相邻的整数之间,然后计算介于哪两个相邻的整数之间.具体为:解:∵16<19<25,∴4<<5,∴3<﹣1<4,∴3<a<4,∴a在两个相邻整数3和4之间;故选C.【解答】C.【点评】此题主要考查了估算无理数的大小,注意首先估算无理数的值,再根据不等式的性质进行计算.现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.5.(4分)(2011•安徽)从正五边形的五个顶点中,任取四个顶点连成四边形,对于事件M,“这个四边形是等腰梯形”.下列推断正确的是()A.事件M是不可能事件B.事件M是必然事件C.事件M发生的概率为D.事件M发生的概率为【考点】M221 事件M223 概率的计算M321 三角形内(外)角和M327 等腰三角形性质与判定M331 多边形的内(外)角和M336 梯形及其中位线M344 多边形与圆【难度】中等题【分析】如图,连接BE,∵正五边形ABCDE,∴BC=DE=CD=AB=AE,根据多边形的内角和(n﹣2)×180°得:∠A=∠ABC=∠C=∠D=∠AED==108°,∴∠ABE=∠AEB=(180°﹣∠A)=36°,∴∠CBE=∠ABC﹣∠ABE=72°,∴∠C+∠CBE=180°,∴BE∥CD,∴四边形BCDE是等腰梯形,即事件M是必然事件,故选:B.【解答】B.【点评】本题主要考查对正多边形与圆,三角形的内角和定理,等腰三角形的性质,等腰梯形的判定,必然事件,概率,随机事件,多边形的内角和定理等知识点的理解和掌握,综合运用这些性质进行推理是解此题的关键.6.(4分)(2011•安徽)如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是()A.7 B.9 C.10 D.11【考点】M323 三角形的中位线M32B 勾股定理及其逆定理【难度】容易题【分析】根据勾股定理求出BC==5,根据三角形的中位线定理得到HG=BC=EF,EH=FG=AD,得到EF=HG=2.5,EH=GF=3,代入即可求出四边形EFGH的周长是EF+FG+HG+EH=2×(2.5+3)=11.故选D.【解答】D.【点评】本题主要考查对勾股定理,三角形的中位线定理等知识点的理解和掌握,能根据三角形的中位线定理求出EF、HG、EH、FG的长是解此题的关键.7.(4分)(2011•安徽)如图,⊙半径是1,A、B、C是圆周上的三点,∠BAC=36°,则劣弧的长是()A.B.C.D.【考点】M343 圆心角、圆周角M34F 弧长的计算【难度】容易题【分析】连OB,OC,根据圆周角定理得到∠BOC=2∠BAC=72°,然后根据弧长公式计算劣弧的长==.故选B.【解答】B.【点评】本题难度不大,主要考查了弧长公式以及圆周角定理,其中弧长公式:l=.也考查了圆周角定理.8.(4分)(2013•宁夏)一元二次方程x(x﹣2)=2﹣x的根是()A.﹣1 B.2 C.1和2 D.﹣1和2【考点】M11Q 因式分解M127 解一元二次方程【难度】容易题【分析】先移项得到x(x﹣2)+(x﹣2)=0,然后利用提公因式因式分解,最后转化为两个一元一次方程,解方程即:x(x﹣2)+(x﹣2)=0,∴(x﹣2)(x+1)=0,∴x﹣2=0或x+1=0,∴x1=2,x2=﹣1.故选D.【解答】D.【点评】本题主要考查了运用因式分解法解一元二次方程的方法:利用因式分解把一个一元二次方程化为两个一元一次方程.其中涉及到解一元一次方程知识点,考查知识较细碎,解答此类型题时一定要注意计算上的失误!9.(4分)(2011•安徽)如图,四边形ABCD中,∠BAD=∠ADC=90°,AB=AD=,CD=,点P在四边形ABCD上,若P到BD的距离为,则点P的个数为()A.1 B.2 C.3 D.4【考点】M315 点到直线的距离M32E 解直角三角形【难度】中等题【分析】首先作出AB、AD边上的点P(点A)到BD的垂线段AE,即点P到BD的最长距离,作出BC、CD的点P(点C)到BD的垂线段CF,即点P到BD的最长距离,由已知计算出AE、CF的长与比较得出答案.具体如下:解:过点A作AE⊥BD于E,过点C作CF⊥BD于F,∵∠BAD=∠ADC=90°,AB=AD=,CD=,∴∠ABD=∠ADB=45°,∴∠CDF=90°﹣∠ADB=45°,∵sin∠ABD=,∴AE=AB•sin∠ABD=2•sin45°=2•=2>,所以在AB和AD边上有符合P到BD的距离为的点2个,∵sin∠CDF=,∴CF=CD•sin∠CDF=•=1<,所以在边BC和CD上没有到BD的距离为的点,总之,P到BD的距离为的点有2个.故选:B.【解答】B.【点评】此题综合性比较强,主要考查的知识点是解直角三角形和点到直线的距离,其中涉及到实数的大小比较,特殊角三角函数的值;解题的关键是先求出各边上点到BD的最大距离比较得出答案.10.(4分)(2011•安徽)如图所示,P是菱形ABCD的对角线AC上一动点,过P垂直于AC的直线交菱形ABCD的边于M、N两点,设AC=2,BD=1,AP=x,则△AMN的面积为y,则y关于x的函数图象的大致形状是()A.B.C.D.【考点】M13A 动点问题的函数图象M325 三角形的面积M32H 相似三角形性质与判定M334 菱形的性质与判定【难度】较难题【分析】△AMN的面积=AP×MN,通过题干已知条件,用x分别表示出AP、MN,根据所得的函数,利用其图象,可分两种情况解答:(1)0<x≤1;(2)1<x<2;具体为:解:(1)当0<x≤1时,如图,在菱形ABCD中,AC=2,BD=1,AO=1,且AC⊥BD;∵MN⊥AC,∴MN∥BD;∴△AMN∽△ABD,∴,即,,MN=x;∴y=AP×MN=x2(0<x≤1),∵,∴函数图象开口向上;(2)当1<x<2,如图,同理证得,△CDB∽△CNM,,即,,MN=2﹣x;∴y=AP×MN=x×(2﹣x),y=﹣x2+x;∵﹣,∴函数图象开口向下;综上,答案C的图象大致符合;故选:C.【解答】C.【点评】本题属于压轴题,较难,主要考查了动点问题的函数图象,其中涉及到二次函数的图象、性质、三角形的面积、相似三角形性质与判定、相似比等知识点,考查了学生从图象中读取信息的数形结合能力,体现了分类讨论的思想.二、填空题(本题共4小题,每小题5分,满分20分)11.(5分)(2011•安徽)因式分解:a2b+2ab+b=.【考点】M11Q 因式分解【难度】容易题【分析】提取公因式b,剩下的正好是(a+1)的完全平方.具体为:原式=b(a2+2a+1)=b(a+1)2.故答案为:b(a+1)2.【解答】b(a+1)2.【点评】本题考查了提取公因式法与公式法的综合运用,先提取公因式b,剩下是(a+1)的完全平方.12.(5分)(2011•安徽)根据里氏震级的定义,地震所释放的相对能量E与地震级数n的关系为:E=10n,那么9级地震所释放的相对能量是7级地震所释放的相对能量的倍数是.【考点】M11N 整式运算【难度】容易题【分析】首先根据里氏震级的定义,得出9级地震所释放的相对能量为109,7级地震所释放的相对能量为107,然后列式表示9级地震所释放的相对能量是7级地震所释放的相对能量的倍数是109÷107=102=100,即9级地震所释放的相对能量是7级地震所释放的相对能量的倍数是100.故答案为:100.【解答】100.【点评】本题考查了同底数幂的除法在实际生活中的应用.理解里氏震级的定义,正确列式是解题的关键.13.(5分)(2011•安徽)如图,⊙O的两条弦AB、CD互相垂直,垂足为E,且AB=CD,已知CE=1,ED=3,则⊙O的半径是.【考点】M32B 勾股定理及其逆定理M335 正方形的性质与判定M342 弦、弧、直径、扇形、弓形M343 圆心角、圆周角M347 垂径定理及其推论【难度】中等题【分析】过O作OF⊥CD于F,OQ⊥AB于Q,连接OD,∵AB=CD,∴OQ=OF,∵OF过圆心O,OF⊥CD,∴CF=DF=2,∴EF=2﹣1=1,∵OF⊥CD,OQ⊥AB,AB⊥CD,∴∠OQE=∠AEF=∠OFE=90°,∵OQ=OF,∴四边形OQEF是正方形,∴OF=EF=1,在△OFD中由勾股定理得:OD==,故答案为:.【解答】.【点评】本题综合性稍强,主要考查对垂径定理,圆心角、弧、弦之间的关系,勾股定理,正方形的性质和判定等知识点的理解和掌握,能根据性质求出OF和DF的长是解此题的关键.14.(5分)(2011•安徽)定义运算a⊗b=a(1﹣b),下列给出了关于这种运算的几个结论:①2⊗(﹣2)=6;②a⊗b=b⊗a;③若a+b=0,则(a⊗a)+(b⊗b)=2ab;④若a⊗b=0,则a=0.其中正确结论的序号是.(把在横线上填上你认为所有正确结论的序号)【考点】M11L 求代数式的值M11N 整式运算【难度】较难题【分析】本题需先根据a⊗b=a(1﹣b)的运算法则,分别对每一项进行计算得出正确结果,最后判断出所选的结论.具体为:解:∵a⊗b=a(1﹣b),①2⊗(﹣2)=6=2×[1﹣(﹣2)]=2×3=6故本选项正确;②a⊗b=a×(1﹣b)=a﹣abb⊗a=b(1﹣a)=b﹣ab,故本选项错误;③∵(a⊗a)+(b⊗b)=[a(1﹣a)]+[b(1﹣b}]=a﹣a2+b﹣b2,∵a+b=0,∴原式=(a+b)﹣(a2+b2)=0﹣[(a+b)2﹣2ab]=2ab,故本选项正确;④∵a⊗b=a(1﹣b)=0,∴a=0错误.故答案为:①③【解答】①③【点评】此题属于开放性题型,属于近几年中考的新题型,主要考查了整式的混合运算,理解所提供的公式的含义是解题的关键.三、(本题共2小题,每小题8分,满分16分)15.(8分)(2011•安徽)先化简,再求值:,其中x=﹣2.【考点】M119 实数的混合运算M11Q 因式分解M11R 分式及其相关概念M11S 分式的基本性质M11T 分式运算【难度】容易题【分析】先通分,然后进行四则运算,最后将x=﹣2代入计算即可.【解答】解:原式=, (6)当x=﹣2时,原式==﹣1. (8)【点评】这是个分式的混合运算题,属于历年常考题型,解答时要注意把各分母先因式分解,确定最简公分母进行通分;做除法时要注意先把除法运算转化为乘法运算,而做乘法运算时要注意先把分子、分母能因式分解的先分解,然后约分.解答此题的关键是把分式化到最简,然后代值计算.16.(8分)(2011•安徽)江南生态食品加工厂收购了一批质量为10000千克的某种山货,根据市场需求对其进行粗加工和精加工处理,已知精加工的该种山货质量比粗加工的质量3倍还多2000千克.求粗加工的该种山货质量.【考点】M124 一元一次方程的应用【难度】容易题【分析】设粗加工的该种山货质量为x千克,根据题意,得x+(3x+2000)=10000. (4)解得x=2000. (7)答:粗加工的该种山货质量为2000千克. (8)【解答】2000.【点评】本题属于应用题型,此类题型为近年来中考必考题,主要考查一元一次方程的应用;对于此类应用题只要我们根据题意得到各个量之间的等量关系,然后根据等量关系列方程解答即可,而对于本题得到山货总质量的等量关系是关键.四、(本题共2小题,每小题8分,满分16分)17.(8分)(2011•安徽)如图,在边长为1个单位长度的小正方形组成的网格中,按要求画出△A1B1C1和△A2B2C2;(1)把△ABC先向右平移4个单位,再向上平移1个单位,得到△A1B1C1;(2)以图中的O为位似中心,将△A1B1C1作位似变换且放大到原来的两倍,得到△A2B2C2.【考点】M318 尺规作图M32L 相似三角形的应用M412 图形的平移、旋转【难度】容易题【分析】(1)把A、B、C三点先向右平移4个单位,再向上平移1个单位得到A1,B1,C1,顺次连接得到的各点即可;(2)延长OA1到A2,使0A2=20A1,同法得到其余各点,顺次连接即可.【解答】解:如图 (8)【点评】本题考查图形的平移、旋转、位似变换,属于近几年来中考必考知识点,对于此类题掌握画图的方法和以及关键点的变换是解题关键.18.(8分)(2011•安徽)在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如图所示.(1)填写下列各点的坐标:A1(,),A3(,),A12(,);(2)写出点A4n的坐标(n是正整数);(3)指出蚂蚁从点A100到A101的移动方向.【考点】M414 坐标与图形运动M612 规律探究【难度】中等题【分析】(1)在平面直角坐标系中可以直接找出答案;此问简单(2)根据求出的各点坐标,得出规律;此问简单(3)点A100中的n正好是4的倍数,根据第二问的答案可以分别得出点A100和A101的坐标,所以可以得到蚂蚁从点A100到A101的移动方向.此问中等【解答】解:(1)A1(0,1),A3(1,0),A12(6,0); (2)(2)当n=1时,A4(2,0),当n=2时,A8(4,0),当n=3时,A12(6,0),所以A4n(2n,0); (5)(3)点A100中的n正好是4的倍数,所以点A100和A101的坐标分别是A100(50,0),A101的(50,1),所以蚂蚁从点A100到A101的移动方向是从下向上. (8)【点评】本题属于中考新题型,主要考查的是在平面直角坐标系中确定点的坐标和点的坐标的规律性,注意蚂蚁移动的方向以及蚂蚁移动时路过的点的规律是解答此题的关键所在!五、(本题共5小题,每小题10分,满分58分)19.(10分)(2011•安徽)如图,某高速公路建设中需要确定隧道AB的长度.已知在离地面1500m,高度C处的飞机,测量人员测得正前方A、B两点处的俯角分别为60°和45°,求隧道AB的长.【考点】M31J 坡度、坡脚,仰角、俯角M32C 锐角三角函数的应用M32D 特殊角三角函数的值M32E 解直角三角形【难度】容易题【分析】易得∠CAO=60°,∠CBO=45°,利用相应的正切值可得AO,BO的长,相减即可得到AB的长.【解答】解:由题意得∠CAO=60°,∠CBO=45°, (2)∵OA=1500×tan30°=1500×=500,OB=OC=1500, (6)∴AB=1500﹣500≈634(m). (9)答:隧道AB的长约为634m. (10)【点评】考查解直角三角形的应用,属于中考热点题型,利用三角函数值得到与所求线段的相关线段的长度是解决本题的关键.20.(10分)(2011•安徽)一次学科测验,学生得分均为整数,满分10分,成绩达到6分以上为合格.成绩达到9分为优秀.这次测验中甲乙两组学生成绩分布的条形统计图如下:(1)请补充完成下面的成绩统计分析表:平均分方差中位数合格率优秀率甲组 6.9 2.4 91.7% 16.7%乙组 1.3 83.3% 8.3%(2)甲组学生说他们的合格率、优秀率均高于乙组,所以他们的成绩好于乙组.但乙组学生不同意甲组学生的说法,认为他们组的成绩要高于甲组.请你给出三条支持乙组学生观点的理由.【考点】M212 方差和标准差M213 平均数、极差M215 中位数、众数M217 统计图(扇形、条形、折线)【难度】容易题【分析】(1)本题需先根据中位数的定义,再结合统计图得出它们的平均分和中位数即可求出答案.(2)本题需先根据统计图,再结合它们的合格率、优秀率说出它们各自的观点是本题所求的答案.【解答】解:(1)从统计图中可以看出:甲组:中位数7;乙组:平均分7,中位数7; (4)(2)①因为乙组学生的平均成绩高于甲组学生的平均成绩,所以乙组学生的成绩好于甲组; (6)②因为甲乙两组学生成绩的平均分相差不大,而乙组学生的方差低于甲组学生的方差,说明乙组学生成绩的波动性比甲组小,所以乙组学生的成绩好于甲组; (8)③因为乙组7分(含7分)以上人数多于甲组7分(含7分)以上人数,所以乙组学生的成绩好于甲组. (10)【点评】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.21.(12分)(2011•安徽)如图函数y1=k1x+b的图象与函数y2=(x>0)的图象交于A、B两点,与y轴交于C点.已知A点的坐标为(2,1),C点坐标为(0,3).(1)求函数y1的表达式和B点坐标;(2)观察图象,比较当x>0时,y1和y2的大小.【考点】M117 实数的大小比较M12F 解二元一次方程组M12G 二元一次方程组的应用M142 一次函数的图象、性质M152 反比例函数的图象、性质M13B 函数的交点问题【难度】容易题【分析】(1)把A(2,1),C(0,3)代入y1=k1x+b可求出k1和b;把A(2,1)代入(x>0)求出k2,然后把两个解析式联立起来解方程组即可求出B点坐标;此问简单(2)观察函数图象,当x>0,两图象被A,B分成三段,然后分段判断大小以及对应的x 的值.此问中等【解答】解:(1)由题意,得, (2)解得,∴y1=﹣x+3 (4)又∵A点在函数上,∴,解得k2=2,∴, (6)解方程组,得,所以点B的坐标为(1,2); (8)(2)当0<x<1或x>2时,y1<y2;当1<x<2时,y1>y2;当x=1或x=2时,y1=y2. (12)【点评】本题属于一次函数与反比例函数的交点问题,主要考查了一次函数的图象、性质,反比例函数的图象、性质,用待定系数法求函数关系式等知识点,第二问较难,要求学生理解并掌握通过观察图像来辨别自变量在特定范围内两个函数的函数值的大小22.(12分)(2011•安徽)在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋转角为θ(0°<θ<180°),得到△A1B1C.(1)如图1,当AB∥CB1时,设A1B1与BC相交于D.证明:△A1CD是等边三角形;(2)如图2,连接AA1、BB1,设△ACA1和△BCB1的面积分别为S1、S2.求证:S1:S2=1:3;(3)如图3,设AC中点为E,A1B1中点为P,AC=a,连接EP,当θ=°时,EP长度最大,最大值为.【考点】M322 三角形三边的关系M328 等边三角形性质与判定M329 直角三角形性质与判定M32H 相似三角形性质与判定M412 图形的平移、旋转【难度】容易题【分析】(1)当AB∥CB1时,∠BCB1=∠B=∠B1=30°,则∠A1CD=90°﹣∠BCB1=60°,∠A1DC=∠BCB1+∠B1=60°,可证:△A1CD是等边三角形;此问简单(2)由旋转的性质可证△ACA1∽△BCB1,利用相似三角形的面积比等于相似比的平方求解;此问简单(3)连接CP,当E、C、P三点共线时,EP最长,当△ABC旋转到△A1B1C的位置时,此时θ=∠ACA1=120°,EP=EC+CP=a+a=a.根据图形求出此时的旋转角及EP的长.此问中等【解答】(1)证明:如图,∵AB∥CB1,∴∠BCB1=∠B=∠B1=30°, (2)∴∠A1CD=90°﹣∠BCB1=60°,∠A1DC=∠BCB1+∠B1=60°,∴△A1CD是等边三角形; (4)(2)证明:由旋转的性质可知AC=CA1,∠ACA1=∠BCB1,BC=CB1,∴△ACA1∽△BCB1, (6)∴S1:S2=AC2:BC2=12:()2=1:3; (8)(3)解:如图,连接CP,当△ABC旋转到△A1B1C的位置时,此时θ=∠ACA1=120°,EP=EC+CP=a+a=a.故答案为:120,a. (12)【点评】本题综合性较强,考查了旋转的性质,特殊三角形的判定与性质,相似三角形的判断与性质,解答第二问时要注意根据旋转性质以及利用相似三角形的面积比等于相似比的平方求解来证明问题.23.(14分)(2011•安徽)如图,正方形ABCD的四个顶点分别在四条平行线l1、l2、l3、l4上,这四条直线中相邻两条之间的距离依次为h1、h2、h3(h1>0,h2>0,h3>0).(1)求证:h1=h3;(2)设正方形ABCD的面积为S,求证:S=(h2+h1)2+h12;(3)若,当h1变化时,说明正方形ABCD的面积为S随h1的变化情况.【考点】M12L 解一元一次不等式(组)M163 二次函数的图象、性质M165 二次函数的应用M31B 平行线的判定及性质M32A 全等三角形性质与判定M335 正方形的性质与判定M339 四边形的面积M611 数学综合与实践【难度】此问较难【分析】(1)过A点作AF⊥l3分别交l2、l3于点E、F,过C点作CH⊥l2分别交l2、l3于点H、G,根据正方形的性质和平行线的性质,证△ABE≌△CDG即可;此问简单(2)易证△ABE≌△BCH≌△CDG≌△DAF,且两直角边长分别为h1、h1+h2,四边形EFGH 是边长为h2的正方形,所以.此问中等(3)根据题意用h2关于h1的表达式代入S,即可求出h1取何范围是S的变化.此问较难【解答】(1)证明:过A点作AF⊥l3分别交l2、l3于点E、F,过C点作CH⊥l2分别交l2、l3于点H、G,∵四边形ABCD是正方形,l1∥l2∥l3∥l4,∴AB=CD,∠ABE+∠HBC=90°,∵CH⊥l2,∴∠BCH+∠HBC=90°,∴∠BCH=∠ABE,∵∠BCH=∠CDG,∴∠ABE=∠CDG, (2)∵∠AEB=∠CGD=90°,在△ABE和△CDG中,,∴△ABE≌△CDG(AAS),∴AE=CG,即h1=h3, (4)(2)证明:∵四边形ABCD是正方形,∴AB=BC=CD=DA,∵∠AEB=∠DFA=∠BHC=∠CGD=90°,∠ABE=∠FAD=∠BCH=∠CDG,∴△AEB≌△DAF≌△BCH≌△CGD,且两直角边长分别为h1、h1+h2, (6)∴四边形EFGH是边长为h2的正方形,∴, (8)(3)解:由题意,得, (9)所以, (11)又,解得0<h1<,∴当0<h1<时,S随h1的增大而减小; (13)当h1=时,S取得最小值;当<h1<时,S随h1的增大而增大. (14)【点评】本题属于压轴题,主要考查全等三角形的判定和性质、平行线的性质、直角三角形的性质,正方形的性质与判定,解决本题的突破口在于作好辅助线,根据已知找到全等三角形即可。
2011年安徽省中考试题数 学(本试卷共8大题,计23小题,满分150分,考试时间120分钟.)题号 一 二 三 四 五 六 七 八 总分 得分一.选择题(本大题10小题,每小题4分,满分40分)每一个小题都给出代号为A 、B 、C 、D 的四个结论,其中只有一个是正确的,把正确结论的代号写在题后的括号.每一小题:选对得 4 分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分. 1.(2011安徽,1,4分)-2,0,2,-3这四个数中最大的是……………………………………【 】 A .2 B .0 C .-2 D .-3 【分析】. 【答案】A【涉及知识点】【点评】本题考查,属于基础题. 【推荐指数】☆ 【典型错误】 2.(2011安徽,2,4分)安徽省2010年末森林面积为3804.2千公顷,用科学计数法表示3804.2千.正确的是………………………………………………………………………………………………………【 】A .3102.3804⨯ B .41042.380⨯ C .6108042.3⨯ D .7108042.3⨯【分析】.【答案】C【涉及知识点】【点评】本题考查,属于基础题. 【推荐指数】☆ 【典型错误】 3.(2011安徽,3,4分)下图是五个相同的小正方体搭成的几何体,其左视图为………………………【 】【分析】. 【答案】A【涉及知识点】【点评】本题考查,属于基础题. 【推荐指数】☆☆ 【典型错误】4.(2011安徽,4,4分)设119-=a ,a 在两个相邻整数之间,则这两个整数是……………………【 】 A .1和2 B .2和3 C .3和4 D .4和5【分析】. 【答案】C【涉及知识点】【点评】本题考查,属于基础题. 【推荐指数】☆☆ 【典型错误】 5.(2011安徽,5,4分)从正五边形的五个顶点中,任取四个顶点连成四边形,对于事件M :“这个四边形是等腰梯形”,下列推断正确的是…………………………………………………………【 】 A .事件M 是不可能事件 B .事件M 是必然事件 C .事件M 发生的概率为51D .事件M 发生的概率为52 【分析】 【答案】B【涉及知识点】【点评】本题考查,属于基础题. 【推荐指数】☆☆☆ 【典型错误】 6.(2011安徽,6,4分)如图,D 是△ABC 内一点,BD ⊥CD ,AD=6,BD=4,CD=3,E 、F 、G 、H 分别是AB 、AC 、CD 、BD 的中点,则四边形EFGH 的周长是…【 】A .7B .9C .10D .11 【分析】. 【答案】D 【涉及知识点】【点评】本题考查,属于基础题. 【推荐指数】☆☆☆ 【典型错误】 7.(2011安徽,7,4分)如图,⊙O 的半径是1,A 、B 、C 是圆周上的三点, ∠BAC=36°,则劣弧BC 的长为………………………………………【 】 A .5πB .52πC .53πD .54π 【分析】. 【答案】B【涉及知识点】【点评】本题考查,属于基础题. 【推荐指数】☆☆☆ 【典型错误】8.(2011安徽,8,4分)一元二次方程x x x -=-2)2(的根是………………【 】 A .1-B .2C .1和2D .1-和2【分析】. 【答案】D【涉及知识点】第7题图O CA B第6题图 G HF EDCB A第10题图PM N D CBA【点评】本题考查,属于基础题. 【推荐指数】☆☆ 【典型错误】9.(2011安徽,9,4分)如图,四边形ABCD 中,∠BAD=∠ADC=90°,AB=AD=22,CD=2,点P 在四边形ABCD 的边上.若P 到BD 的距离为23,则点P 的个数为………………………【 】 A .1 B .2C .3D .4 【分析】A 到BD 的距离为2,故在AB 、AD 存在, .【答案】B【涉及知识点】【点评】本题考查,属于基础题. 【推荐指数】☆☆☆☆ 【典型错误】 10.(2011安徽,10,4分)如图所示,P 是菱形ABCD 的对角线AC 上一点,过P 垂直于AC 的直线交菱形ABCD 的边于M 、N 两点,设AC=2,BD=1,AP=x ,△AMN 的面积为y ,则y 关于x 的函数图象的大致形状是…………………………………………………………………【 】【分析】⎪⎪⎩⎪⎪⎨⎧<<-≤<=)21(),2(2)10(,212x x x x x y .【答案】C【涉及知识点】【点评】本题考查,属于基础题. 【推荐指数】☆☆☆☆ 【典型错误】二、填空题(本大题4小题,每小题5分,满分20分)11.(2011安徽,11,5分)因式分解b ab b a ++22=_______________.【分析】.【答案】2)1(+a ab【涉及知识点】因式分解,提公因式法,公式法(完全平方公式)【点评】本题考查,属于基础题. 【推荐指数】☆☆第9题图D CBAA .B .C .D .【典型错误】12.(2011安徽,12,5分)根据里氏震级的定义,地震所释放的相对能量E 与震级n 的关系为:nE 10=,那么9级地震所释放的相对能量是7级地震所释放的相对能量的倍数是_______________.【分析】. 【答案】100【涉及知识点】数的乘方,整式除法. 【点评】本题考查,属于基础题. 【推荐指数】☆☆ 【典型错误】13.(2011安徽,13,5分)如图,⊙O 的两条弦AB 、CD 互相垂直,垂足为E ,且AB=CD ,已知CE=1,ED=3,则⊙O 的半径是_______________ 【分析】过O 作AB 、CD 的垂线垂足分别为M 、N ,则OM=ON=1.【答案】5【涉及知识点】勾股定理,圆的对称性. 【点评】本题考查,属于基础题. 【推荐指数】☆☆☆ 【典型错误】14.(2011安徽,14,5分)定义运算)1(b a b a -=⊗,下面给出了关于这种运算的几个结论: ①6)2(2=-⊗;②a b b a ⊗=⊗; ③若0=+b a ,则ab b b a a 2)()(=⊗+⊗;④若0=⊗b a ,则0=a其中正确结论的序号是_______________.(在横线上填上你认为所有正确结论的序号) 【分析】.ab ab b a b a b b a a b b a a 22)()()()(22222=++-=+-=-+-=⊗+⊗ 【答案】①③【涉及知识点】【点评】本题考查,属于基础题. 【推荐指数】☆☆☆☆ 【典型错误】 三、(本大题共2小题,每小题8分,共16分)15.(2011安徽,15,8分)先化简,再求值:12112---x x ,其中2-=x . 【分析】. 【答案】原式=11)1)(1(1)1)(1(2)1)(1(21+=+--=+--+--+x x x x x x x x x …………………………(6分)当2-=x 时,原式、1121-=+-……………………………………………………(8分) 【涉及知识点】分式、分式的运算与化简,简单题。
2011年安徽省初中毕业学业考试数学本试卷共8大题,计23小题,满分150分,考试时间120分钟题号一二三四五六七八总分得分一、选择题(本题共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C、D的四个选项同,其中只有一个正确的,请把正确选项的代号写在题后的括号内.每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分.1.-2,0,2,-3这四个数中最大的是………………………………………………………【】A.-12. 安徽省2010年末森林面积为千公顷,用科学记数法表示千正确的是…………………………………………………………………………………………………【】下图是五个相同的小正方体搭成的几体体,其左视图是…………………………………【】4.设191a=-,a在两个相邻整数之间,则这两个整数是………………………………【】和2 和3 和4 和55.从下五边形的五个顶点中,任取四个顶点连成四边形,对于事件M,“这个四边形是等腰梯形”.下列推断正确的是……………………………………………………………………………【】A.事件M是不可能事件B. 事件M是必然事件C.事件M发生的概率为15D. 事件M发生的概率为25第3题图第6题图6如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是……………【】D. 117. 如图,⊙半径是1,A、B、C是圆周上的三点,∠BAC=36°,则劣弧»BC的长是…………………………………………………………………………………【】A.5πB.25πC.35πD.45π8.一元二次方程()22x x x-=-的根是………………【】A.-1B. 2C. 1和2D. -1和29.如图,四边形ABCD中,∠BAD=∠ADC=90°,AB=AD=22,CD=2,点P在四边形ABCD 上,若P到BD的距离为32,则点P的个数为……………………………【】10.如图所示,P是菱形ABCD的对角线AC上一动点,过P垂直于AC的直线交菱形ABCD的边于M、N两点,设AC=2,BD=1,AP=x,则△AMN的面积为y,则y关于x的函数图象的大致形状是…………………………………………………………………………………………【】二、填空题(本题共4小题,每小题5分,满分20分)11.因式分解:22a b ab b++=_________.第10题图第7题图第9题图12.根据里氏震级的定义,地震所释放的相对能量E 与地震级数n 的关系为:10nE =,那么9级地震所释放的相对能量是7级地震所释放的相对能量的倍数是 .13.如图,⊙O 的两条弦AB 、CD 互相垂直,垂足为E ,且AB=CD ,已知CE=1,ED=3,则⊙O 的半径是_________.14.定义运算()1a b a b ⊗=-,下列给出了关于这种运算的几点结论: ① ()226⊗-= ②a b b a ⊗=⊗③若0a b +=,则())(2a b b a ab ⊗+⊗= ④若0a b ⊗=,则a=0.其中正确结论序号是_____________.(把在横线上填上你认为所有正确结论的序号)三、(本题共2小题,每小题8分,满分16分) 15.先化简,再求值:21211x x ---,其中x=-2 【解】16.江南生态食品加工厂收购了一批质量为10000千克的某种山货,根据市场需求对其进行粗加工和精加工处理,已知精加工的该种山货质量比粗加工的质量3倍还多2000千克.求粗加工的该种山货质量. 【解】四、(本题共2小题,每小题8分,满分16分)17. 如图,在边长为1个单位长度的小正方形组成的网格中,按要求画出△A 1B 1C 1和△A 2B 2C 2; (1)把△ABC 先向右平移4个单位,再向上平移1个单位,得到△A 1B 1C 1;第3题图第13题图(2)以图中的O为位似中心,将△A1B1C1作位似变换且放大到原来的两倍,得到△A2B2C2. 【解】第17题图18、在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如下图所示.第18题图(1)填写下列各点的坐标:A1(____,_____),A3(____,_____),A12(____,____);(2)写出点A n的坐标(n是正整数);【解】(3)指出蚂蚁从点A100到A101的移动方向.【解】五、(本题共2小题,每小题10分,满分20分)19.如图,某高速公路建设中需要确定隧道AB的长度.已知在离地面1500m,高度C处的飞机,测量人员测得正前方A、B两点处的俯角分别为60°和45°,求隧道AB的长. 【解】20、一次学科测验,学生得分均为整数,满分10分,成绩达到6分以上(包括6分)为合格.成绩达到9分为优秀.这次测验中甲乙两组学生成绩分布的条形统计图如下(1)请补充完成下面的成绩统计分析表:(2)甲组学生说他们的合格率、优秀率均高于乙组,所以他们的成绩好于乙组.但乙组学生不同意甲组学生的说法,认为他们组的成绩要高于甲组.请你给出三条支持乙组学生观点的理由. 【解】六、(本题满分12分)21. 如图函数11y k x b =+的图象与函数2k y x=(x >0)的图象交于A 、B 两点,与y 轴交于C 点.已知A 点的坐标为(2,1),C 点坐标为(0,3). (1)求函数1y 的表达式和B 点坐标; 【解】(2)观察图象,比较当x >0时,1y 和2y 的大小.七、(本题满分12分)22.在△ABC 中,∠ACB=90°,∠ABC=30°,将△ABC 绕顶点C 顺时针旋转,旋转角为θ(0°<θ<180°),得到△A /B /C.(1)如图(1),当AB ∥CB /时,设AB 与CB /相交于D.证明:△A / CD 是等边三角形; 【解】(2)如图(2),连接A /A 、B /B ,设△ACA /和△BCB /的面积分别为 S △ACA /和S △BCB /. 求证:S △ACA /∶S △BCB /=1∶3; 【证】(3)如图(3),设AC 中点为E ,A / B /中点为P ,AC=a ,连接EP ,当θ=_______°时,EP 长度最大,最大值为________. 【解】第22题图(1)第22题图(2)第22题图(3)八、(本题满分14分)23.如图,正方形ABCD 的四个顶点分别在四条平行线l 1、l 2、l 3、l 4上,这四条直线中相邻两条之间的距离依次为h 1、h 2、h 3(h 1>0,h 2>0,h 3>0). (1)求证h 1=h 3; 【解】(2) 设正方形ABCD 的面积为S.求证S=(h 2+h 3)2+h 12; 【解】 (3)若12312h h +=,当h 1变化时,说明正方形ABCD 的面积为S 随h 1的变化情况. 【解】2011年安徽省初中毕业学业考试数学参考答案1~5ACACB 6~10DBDBC11. ()21+a b ; 12. 100; 13.5 14. ①③.第23题图15. 原式=112111)1)(1(1)1)(1(21-=+-=+=-+-=-+-+x x x x x x x .16. 设粗加工的该种山货质量为x 千克,根据题意,得 x+(3x+2000)=10000. 解得 x=2000.答:粗加工的该种山货质量为2000千克. 17. 如下图18.⑴A 1(0,1) A 3(1,0)A 12(6,0)⑵A n (2n,0) ⑶向上19. 简答:∵OA 350033150030tan 1500=⨯=⨯=ο, OB=OC=1500, ∴AB=635865150035001500=-≈-(m). 答:隧道AB 的长约为635m.20. (1)甲组:中位数 7; 乙组:平均数7, 中位数7(2)(答案不唯一)①因为乙组学生的平均成绩高于甲组学生的平均成绩,所以乙组学生的成绩好于甲组; ②因为甲乙两组学生成绩的平均分相差不大,而乙组学生的方差低于甲组学生的方差,说明乙组学生成绩的波动性比甲组小,所以乙组学生的成绩好于甲组;③因为乙组学生成绩的最低分高于甲组学生的最低分,所以乙组学生的成绩好于甲组.21. (1)由题意,得⎩⎨⎧==+.3,121b b k 解得⎩⎨⎧=-=.3,11b k ∴ 31+-=x yAA 1BCB 1C 1A 2B 2C 2· O又A 点在函数x k y 22=上,所以 212k =,解得22=k 所以xy 22= 解方程组⎪⎩⎪⎨⎧=+-=x y x y 2,3 得⎩⎨⎧==.2,111y x ⎩⎨⎧==.1,222y x 所以点B 的坐标为(1, 2) (2)当0<x <1或x >2时,y 1<y 2;当1<x <2时,y 1>y 2; 当x=1或x=2时,y 1=y 2.22.(1)易求得ο60='∠CD A , DC C A =', 因此得证. (2)易证得A AC '∆∽B BC '∆,且相似比为3:1,得证. (3)120°,a 2323.(1)过A 点作AF ⊥l 3分别交l 2、l 3于点E 、F ,过C 点作CH ⊥l 2分别交l 2、l 3于点H 、G , 证△ABE ≌△CDG 即可.(2)易证△ABE ≌△BCH ≌△CDG ≌△DAF,且两直角边长分别为h 1、h 1+h 2,四边形EFGH 是边长为h 2的正方形, 所以()2122122212122211)(22214h h h h h h h h h h h S ++=++=++⨯=. (3)由题意,得12321h h -= 所以5452451452312112121211+⎪⎭⎫ ⎝⎛-=+-=+⎪⎭⎫ ⎝⎛-+=h h h h h h S又1103102h h >⎧⎪⎨->⎪⎩ 解得0<h 1<32∴当0<h 1<52时,S 随h 1的增大而减小; 当h 1=52时,S 取得最小值54;当52<h 1<32时,S 随h 1的增大而增大.。
2011年安徽省初中毕业学业考试数学参考答案1~5ACACB 6~10DBDBC11. ()21+a b ; 12. 100; 13. 5 14. ①③.15. 原式=112111)1)(1(1)1)(1(21-=+-=+=-+-=-+-+x x x x x x x . 16. 设粗加工的该种山货质量为x 千克,根据题意,得 x+(3x+2000)=10000. 解得 x=2000.答:粗加工的该种山货质量为2000千克.17. 如下图18.⑴A 1(0,1) A 3(1,0)A 12(6,0) ⑵A n (2n,0)⑶向上19. 简答:∵OA 350033150030tan 1500=⨯=⨯= , OB=OC=1500, ∴AB=635865150035001500=-≈-(m).答:隧道AB 的长约为635m.20. (1)甲组:中位数 7; 乙组:平均数7, 中位数7(2)(答案不唯一)①因为乙组学生的平均成绩高于甲组学生的平均成绩,所以乙组学生的成绩好于甲组; ②因为甲乙两组学生成绩的平均分相差不大,而乙组学生的方差低于甲组学生的方差,说明乙组学生成绩的波动性比甲组小,所以乙组学生的成绩好于甲组;③因为乙组学生成绩的最低分高于甲组学生的最低分,所以乙组学生的成绩好于甲组.21. (1)由题意,得⎩⎨⎧==+.3,121b b k 解得⎩⎨⎧=-=.3,11b k ∴ 31+-=x y 又A 点在函数x k y 22=上,所以 212k =,解得22=k 所以xy 22= 解方程组⎪⎩⎪⎨⎧=+-=x y x y 2,3 得⎩⎨⎧==.2,111y x ⎩⎨⎧==.1,222y x 所以点B 的坐标为(1, 2)(2)当0<x <1或x >2时,y 1<y 2;当1<x <2时,y 1>y 2;当x=1或x=2时,y 1=y 2.22.(1)易求得60='∠CD A , DC C A =', 因此得证. AA 1B CB 1C 1A 2B 2C 2 · O(2)易证得A AC '∆∽B BC '∆,且相似比为3:1,得证.(3)120°, a 23 23.(1)过A 点作AF ⊥l 3分别交l 2、l 3于点E 、F ,过C 点作CH ⊥l 2分别交l 2、l 3于点H 、G , 证△ABE ≌△CDG 即可.(2)易证△ABE ≌△BCH ≌△CDG ≌△DAF,且两直角边长分别为h 1、h 1+h 2,四边形EFGH 是边长为h 2的正方形, 所以()2122122212122211)(22214h h h h h h h h h h h S ++=++=++⨯=. (3)由题意,得12321h h -= 所以 又1103102h h >⎧⎪⎨->⎪⎩ 解得0<h 1<32 ∴当0<h 1<52时,S 随h 1的增大而减小; 当h 1=52时,S 取得最小值54;当52<h 1<32时,S 随h 1的增大而增大.。
2011年安徽省初中毕业学业考试数学一、选择题(本题共 10小题,每小题 4分,满分 40分每小题都给出代号为 A 、 B 、 C 、 D 的四个选项同,其中只有一个正确的,请把正确选项的代号写在题后的括号内 . 每一小题,选对得 4分,不选、选错或选出的代号超过一个的(不论是否写在括号内一律得 0分 .1. -2, 0, 2,-3这四个数中最大的是………………………………………………………【】 A. -1 B.0 C.1 D.22. 安徽省 2010年末森林面积为 3804.2千公顷,用科学记数法表示 3804.2千正确的是…………【】 A.3804.2×103 B.380.42×104 C.3.842×106 D.3.842×1053. 下图是五个相同的小正方体搭成的几体体,其左视图是…………………………………【】4. 设 1a =, a 在两个相邻整数之间,则这两个整数是………………………………【】 A.1和 2B.2和 3C.3和 4D.4 和 5 5. 从下五边形的五个顶点中, 任取四个顶点连成四边形,对于事件M , “这个四边形是等腰梯形” . 下列推断正确的是……………………………………………………【】A. 事件 M 是不可能事件 B. 事件 M 是必然事件 C. 事件 M 发生的概率为15 D. 事件 M 发生的概率为 256如图, D 是△ ABC 内一点, BD ⊥ CD , AD=6, BD=4, CD=3, E 、 F 、 G 、 H 分别是 AB 、 AC 、CD 、 BD 的中点,则四边形 EFGH 的周长是……………【】 A.7 B.9 C.10D. 117. 如图,⊙半径是 1,A 、B 、C 是圆周上的三点,∠ BAC=36°,则劣弧 BC 的长是…【】A. 5πB. 25πC. 35πD.45π 8. 一元二次方程 (22x x x -=-的根是………………【】A. -1B. 2C. 1和 2D. -1和 29. 如图,四边形 ABCD 中,∠ BAD=∠ ADC=90°, AB=AD=点 P 在四边形 ABCD 上,若 P 到 BD 的距离为 32,则点 P 的个数为…………【】A.1B.2C.3D.4第 3题图第 6题图第 7题图第 9题图10. 如图所示, P 是菱形 ABCD 的对角线 AC 上一动点,过 P 垂直于 AC 的直线交菱形 ABCD 的边于 M 、 N 两点, 设 AC=2, BD=1, AP=x, 则△ AMN 的面积为y , 则 y 关于 x 的函数图象的大致形状是………………………………………………【】二、填空题(本题共 4小题,每小题 5分,满分 20分 11. 因式分解:22a b ab b ++=_________.12. 根据里氏震级的定义,地震所释放的相对能量 E 与地震级数 n 的关系为:10nE =,那么 9级地震所释放的相对能量是 7级地震所释放的相对能量的倍数是 .13. 如图, ⊙ O 的两条弦 AB 、 CD 互相垂直, 垂足为 E , 且 AB=CD, 已知 CE=1, ED=3, 则⊙ O 的半径是 _________. 14. 定义运算 (1a b a b ⊗=-,下列给出了关于这种运算的几点结论: ① (226⊗-= ② a b b a ⊗=⊗③若 0a b +=,则 ( (2a b b a ab ⊗+⊗= ④若 0a b ⊗=,则 a=0.其中正确结论序号是 _____________.(把在横线上填上你认为所有正确结论的序号三、 (本题共 2小题,每小题 8分,满分 16分 15. 先化简,再求值:21211x x ---,其中 x=-2 【解】16. 江南生态食品加工厂收购了一批质量为 10000千克的某种山货, 根据市场需求对其进行粗加工和精加工处理,已知精加工的该种山货质量比粗加工的质量 3倍还多 2000千克 . 求粗加工的该种山货质量 . 【解】四、 (本题共 2小题,每小题 8分,满分 16分17. 如图,在边长为 1个单位长度的小正方形组成的网格中,按要求画出△ A 1B 1C 1和△ A 2B 2C 2; (1把△ ABC 先向右平移 4个单位,再向上平移 1个单位,得到△ A 1B 1C 1;(2以图中的 O 为位似中心,将△ A 1B 1C 1作位似变换且放大到原来的两倍,得到△ A 2B 2C 2. 【解】第 10题图第 13题图第 17题图18、在平面直角坐标系中,一蚂蚁从原点 O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动 1个单位 . 其行走路线如下图所示 .第 18题图(1填写下列各点的坐标:A 1(____, _____ , A 3(____, _____ , A 12(____, ____ ;(2 写出点 A n 的坐标 (n是正整数 ;【解】(3指出蚂蚁从点 A 100到 A 101的移动方向 .【解】五、 (本题共 2小题,每小题 10分,满分 20分19. 如图,某高速公路建设中需要确定隧道 AB 的长度 . 已知在离地面 1500m ,高度 C 处的飞机,测量人员测得正前方 A 、 B 两点处的俯角分别为 60°和 45°,求隧道AB 的长 .【解】第 19题图20、一次学科测验,学生得分均为整数,满分 10分,成绩达到 6分以上 (包括 6分为合格 . 成绩达到 9分为优秀 . 这次测验中甲乙两组学生成绩分布的条形统计图如下(1请补充完成下面的成绩统计分析表:(2甲组学生说他们的合格率、优秀率均高于乙组,所以他们的成绩好于乙组 . 但乙组学生不同意甲组学生的说法,认为他们组的成绩要高于甲组 . 请你给出三条支持乙组学生观点的理由 . 【解】六、 (本题满分 12分 21. 如图函数 11y k x b =+的图象与函数 2k y x=(x >0的图象交于 A 、 B 两点,与 y 轴交于 C 点 . 已知 A 点的坐标为 (2, 1 , C 点坐标为 (0, 3.(1求函数 1y 的表达式和 B 点坐标;【解】(2观察图象,比较当 x >0时, 1y 和 2y 的大小 .【解】七、 (本题满分 12分22. 在△ ABC 中, ∠ ACB=90°, ∠ ABC=30°, 将△ ABC 绕顶点 C 顺时针旋转, 旋转角为θ(0°<θ<180° ,得到△ A /B /C.(1如图 (1,当 AB ∥ CB /时,设 AB 与 CB /相交于 D. 证明:△ A / CD是等边三角形; 【解】(2如图 (2,连接 A /A 、 B /B ,设△ ACA /和△ BCB /的面积分别为 S △ ACA /和 S △ BCB /. 求证:S △ ACA /∶ S △ BCB /=1∶ 3;【证】(3如图 (3,设 AC 中点为 E , A / B/中点为 P , AC=a,连接 EP ,当θ=_______°时, EP 长度最大,最大值为 ________. 【解】第 21题图第 22题图 (1第 22题图 (2 第 22题图 (3八、 (本题满分 14分23. 如图,正方形 ABCD 的四个顶点分别在四条平行线 l 1、 l 2、 l 3、 l 4上,这四条直线中相邻两条之间的距离依次为 h 1、 h 2、 h 3(h 1>0, h 2>0, h 3>0 . (1求证h 1=h 3; 【解】 (2 设正方形 ABCD 的面积为 S. 求证 S=(h 2+h 3 2+h 12; 【解】 (3若12312h h +=, 当 h 1变化时,说明正方形 ABCD 的面积为 S 随 h 1的变化情况 . 【解】第 23题图2011 年安徽省初中毕业学业考试数学参考答案 1~5ACACB 6~10DBDBC 11.b a 1; 2 12. 100; 13. 5 14. ①③. 15. 原式= x 1 2 x 1 1 11 . ( x 1(x 1 ( x 1(x 1 x 12 1 16. 设粗加工的该种山货质量为 x 千克,根据题意,得 x+(3x+2000=10000. 解得 x=2000. 答:粗加工的该种山货质量为 2000 千克. 17. 如下图 C2 C1 C A2 B A 18.⑴A1(0,1 A3(1,0 A12(6,0 ⑵An(2n,0 ⑶向上 19. 简答:∵OA 1500 tan30 1500 B2 B1 A1 · O3 500 3 ,OB=OC=1500, 3 ∴AB= 1500 500 3 1500 865 635(m. 答:隧道 AB 的长约为 635m. 20. (1)甲组:中位数 7;乙组:平均数 7,中位数 7 (2)(答案不唯一)①因为乙组学生的平均成绩高于甲组学生的平均成绩,所以乙组学生的成绩好于甲组;②因为甲乙两组学生成绩的平均分相差不大,而乙组学生的方差低于甲组学生的方差,说明乙组学生成绩的波动性比甲组小,所以乙组学生的成绩好于甲组;③因为乙组学生成绩的最低分高于甲组学生的最低分,所以乙组学生的成绩好于甲组. 21. (1由题意,得2k1 b 1, k1 1, 解得∴ y1 x 3 b 3. b 3. k k 2 又 A 点在函数 y 2 2 上,所以 1 2 ,解得k 2 2 所以 y 2 x x 2 y x 3, x1 1, x 2 2, 解方程组得 2 y y1 2. y 2 1. x 所以点 B 的坐标为(1, 2)(2)当 0<x <1 或 x>2 时,y1<y2; 当 1<x<2 时,y1>y2; 当 x=1 或 x=2 时,y1=y2.22.(1)易求得A CD 60 , A C DC , 因此得证. (2易证得AC A∽BC B ,且相似比为 1 : 3 ,得证. (3)120°, 3 a 2 23.(1)过 A 点作AF⊥l3 分别交 l2、l3 于点 E、F,过 C 点作 CH⊥l2 分别交 l2、l3 于点 H、G,证△ABE≌△CDG 即可. (2)易证△ABE≌△BCH≌△CDG≌△DAF,且两直角边长分别为 h1、h1+h2,四边形 EFGH 是边长为 h2 的正方形, 1 2 2 2 2 h1 h1 h2h2 2h1 2h1 h2 h2 (h1 h 2 2 h1 . 2 (3由题意,得 h2 1 3 所以2 h1 所以 S 4 3 5 2 2 S h1 1 h1 h1 h1 h1 1 24 5 2 4 h1 4 5 5 h1 0 2 又 3 解得 0<h1< 3 1 h1 0 2 2 ∴当 0<h1<时,S 随 h1 的增大而减小; 5 2 2 4 2 当 h1= 时,S 取得最小值;当<h1<时,S 随 h1 的增大而增大. 3 5 5 5 2 2。
2011年安徽省初中学业水平暨高级中等学校招生考试试卷数学参考答案及评分标准2011年安徽省初中毕业学业考试数学参考答案1~5ACACB 6~10DBDBC11. ;12. 100;13. 14. ①③.15. 原式= .16. 设粗加工的该种山货质量为x千克,根据题意,得x+(3x+2000)=10000.解得x=2000.答:粗加工的该种山货质量为2000千克.17. 如下图18.⑴A1(0,1) A3(1,0) A12(6,0)⑵An(2n,0)⑶向上19. 简答:∵OA ,OB=OC=1500,∴AB= (m).答:隧道AB的长约为635m.20. (1)甲组:中位数7;乙组:平均数7,中位数7(2)(答案不唯一)①因为乙组学生的平均成绩高于甲组学生的平均成绩,所以乙组学生的成绩好于甲组;②因为甲乙两组学生成绩的平均分相差不大,而乙组学生的方差低于甲组学生的方差,说明乙组学生成绩的波动性比甲组小,所以乙组学生的成绩好于甲组;③因为乙组学生成绩的最低分高于甲组学生的最低分,所以乙组学生的成绩好于甲组.21. (1)由题意,得解得∴又A点在函数上,所以,解得所以解方程组得所以点B的坐标为(1, 2)(2)当0<x<1或x>2时,y1<y2;当1<x<2时,y1>y2;当x=1或x=2时,y1=y2.22.(1)易求得, , 因此得证.(2)易证得∽ ,且相似比为,得证.(3)120°,23.(1)过A点作AF⊥l3分别交l2、l3于点E、F,过C点作CH⊥l2分别交l2、l3于点H、G,证△ABE≌△CDG即可.(2)易证△ABE≌△BCH≌△CDG≌△DAF,且两直角边长分别为h1、h1+h2,四边形EFGH 是边长为h2的正方形,所以 .(3)由题意,得所以又解得0<h1<∴当0<h1<时,S随h1的增大而减小;当h1= 时,S取得最小值;当<h1<时,S随h1的增大而增大.。
2011年安徽省初中毕业学业考试数 学本试卷共8大题,计23小题,满分150分,考试时间120分钟题号一二三四五六七八 总分 得分一、选择题(本题共10小题,每小题4分,满分40分)每小题都给出代号为A 、B 、C 、D 的四个选项同,其中只有一个正确的,请把正确选项的代号写在题 后的括号内.每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分.1.-2,0,2,-3这四个数中最大的是………………………………………………………【 】 A.-1 B.0 C.1 D.22. 安徽省2010年末森林面积为3804.2千公顷,用科学记数法表示3804.2千正确的是…………………………………………………………………………………………………【 】A.3804.2×103B.380.42×104C.3.842×106D.3.842×1053. 下图是五个相同的小正方体搭成的几体体,其左视图是…………………………………【 】4.设191a =-,a 在两个相邻整数之间,则这两个整数是………………………………【 】 A.1和2 B.2和3 C.3和4 D.4 和55.从下五边形的五个顶点中,任取四个顶点连成四边形,对于事件M ,“这个四边形是等腰梯形”.下列推断正确的是……………………………………………………………………………【 】 A.事件M 是不可能事件 B. 事件M 是必然事件 C.事件M 发生的概率为15D. 事件M 发生的概率为256如图,D 是△ABC 内一点,BD ⊥CD ,AD=6,BD=4,CD=3,E 、F 、G 、H 分别是AB 、AC 、CD 、BD 的中点,则四边形EFGH 的周长是……………【 】 A.7 B.9 C.10 D. 117. 如图,⊙半径是1,A 、B 、C 是圆周上的三点,∠BAC=36°,则劣弧 BC的长是…………………………………………………………………………………【 】第3题图 第6题图A.5π B. 25π C. 35π D.45π8.一元二次方程()22x x x -=-的根是………………【 】 A.-1 B. 2 C. 1和2D. -1和29.如图,四边形ABCD 中,∠BAD=∠ADC=90°,AB=AD=22,CD=2,点P 在四边形ABCD 上,若P 到BD 的距离为32,则点P 的个数为……………………………【 】 A.1 B.2 C.3 D.410.如图所示,P 是菱形ABCD 的对角线AC 上一动点,过P 垂直于AC 的直线交菱形ABCD 的边于M 、N 两点,设AC=2,BD=1,AP=x ,则△AMN 的面积为y ,则y 关于x 的函数图象的大致形状是…………………………………………………………………………………………【 】二、填空题(本题共4小题,每小题5分,满分20分)11.因式分解:22a b ab b ++=_________.12.根据里氏震级的定义,地震所释放的相对能量E 与地震级数n 的关系为:10nE =,那么9级地震所释放的相对能量是7级地震所释放的相对能量的倍数是 .13.如图,⊙O 的两条弦AB 、CD 互相垂直,垂足为E ,且AB=CD ,已知CE=1,ED=3,则⊙O 的半径是_________.14.定义运算()1a b a b ⊗=-,下列给出了关于这种运算的几点结论: ① ()226⊗-= ②a b b a ⊗=⊗③若0a b +=,则())(2a b b a ab ⊗+⊗= ④若0a b ⊗=,则a=0.其中正确结论序号是_____________.(把在横线上填上你认为所有正确结论的序号)三、(本题共2小题,每小题8分,满分16分)15.先化简,再求值:第10题图 第3题图第13题图第7题图第9题图21211x x ---,其中x=-2 【解】16.江南生态食品加工厂收购了一批质量为10000千克的某种山货,根据市场需求对其进行粗加工和精加工处理,已知精加工的该种山货质量比粗加工的质量3倍还多2000千克.求粗加工的该种山货质量. 【解】四、(本题共2小题,每小题8分,满分16分)17. 如图,在边长为1个单位长度的小正方形组成的网格中,按要求画出△A 1B 1C 1和△A 2B 2C 2; (1)把△ABC 先向右平移4个单位,再向上平移1个单位,得到△A 1B 1C 1;(2)以图中的O 为位似中心,将△A 1B 1C 1作位似变换且放大到原来的两倍,得到△A 2B 2C 2. 【解】18、在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如下图所示.(1)填写下列各点的坐标:A 1(____,_____),A 3(____,_____),A 12(____,____); (2)写出点A n 的坐标(n 是正整数); 【解】(3)指出蚂蚁从点A 100到A 101的移动方向. 【解】第17题图 第18题图五、(本题共2小题,每小题10分,满分20分)19.如图,某高速公路建设中需要确定隧道AB 的长度.已知在离地面1500m ,高度C 处的飞机,测量人员测得正前方A 、B 两点处的俯角分别为60°和45°,求隧道AB 的长. 【解】20、一次学科测验,学生得分均为整数,满分10分,成绩达到6分以上(包括6分)为合格.成绩达到9分为优秀.这次测验中甲乙两组学生成绩分布的条形统计图如下(1)请补充完成下面的成绩统计分析表:(2)甲组学生说他们的合格率、优秀率均高于乙组,所以他们的成绩好于乙组.但乙组学生不同意甲组学生的说法,认为他们组的成绩要高于甲组.请你给出三条支持乙组学生观点的理由. 【解】六、(本题满分12分)21. 如图函数11y k x b =+的图象与函数2k y x=(x >0)的图象交于A 、B 两点,与y 轴交于C 点.已知A 点的坐标为(2,1),C 点坐标为(0,3). (1)求函数1y 的表达式和B 点坐标; 【解】第19题图(2)观察图象,比较当x >0时,1y 和2y 的大小.七、(本题满分12分)22.在△ABC 中,∠ACB=90°,∠ABC=30°,将△ABC 绕顶点C 顺时针旋转,旋转角为θ(0°<θ<180°),得到△A /B /C.(1)如图(1),当AB ∥CB /时,设AB 与CB /相交于D.证明:△A /CD 是等边三角形; 【解】(2)如图(2),连接A /A 、B /B ,设△ACA /和△BCB /的面积分别为S △ACA /和S △BCB /. 求证:S △ACA /∶S △BCB /=1∶3;【证】(3)如图(3),设AC 中点为E ,A / B /中点为P ,AC=a ,连接EP ,当θ=_______°时,EP 长度最大,最大值为________. 【解】八、(本题满分14分)23.如图,正方形ABCD 的四个顶点分别在四条平行线l 1、l 2、l 3、l 4上,这四条直线中相邻两条之间的距离依次为h 1、h 2、h 3(h 1>0,h 2>0,h 3>0).第22题图(1)第22题图(2)第22题图(3)(1)求证h 1=h 3; 【解】(2) 设正方形ABCD 的面积为S.求证S=(h 2+h 3)2+h 12; 【解】(3)若12312h h +=,当h 1变化时,说明正方形ABCD 的面积为S 随h 1的变化情况. 【解】2011年安徽省初中毕业学业考试数学参考答案1~5ACACB 6~10DBDBC11. ()21+a b ; 12. 100; 13. 5 14. ①③.15. 原式=112111)1)(1(1)1)(1(21-=+-=+=-+-=-+-+x x x x x x x .16. 设粗加工的该种山货质量为x 千克,根据题意,得 x+(3x+2000)=10000. 解得 x=2000.答:粗加工的该种山货质量为2000千克. 17. 如下图CC 1B 2C 218.⑴A 1(0,1) A 3(1,0) A 12(6,0)⑵A n (2n,0) ⑶向上 19. 简答:∵OA 350033150030tan 1500=⨯=⨯=, OB=OC=1500, ∴AB=635865150035001500=-≈-(m).答:隧道AB 的长约为635m.20. (1)甲组:中位数 7; 乙组:平均数7, 中位数7(2)(答案不唯一)①因为乙组学生的平均成绩高于甲组学生的平均成绩,所以乙组学生的成绩好于甲组; ②因为甲乙两组学生成绩的平均分相差不大,而乙组学生的方差低于甲组学生的方差,说明乙组学生成绩的波动性比甲组小,所以乙组学生的成绩好于甲组;③因为乙组学生成绩的最低分高于甲组学生的最低分,所以乙组学生的成绩好于甲组. 21. (1)由题意,得⎩⎨⎧==+.3,121b b k 解得⎩⎨⎧=-=.3,11b k ∴ 31+-=x y又A 点在函数x k y 22=上,所以 212k =,解得22=k 所以x y 22=解方程组⎪⎩⎪⎨⎧=+-=x y x y 2,3 得⎩⎨⎧==.2,111y x ⎩⎨⎧==.1,222y x 所以点B 的坐标为(1, 2)(2)当0<x <1或x >2时,y 1<y 2;当1<x <2时,y 1>y 2; 当x=1或x=2时,y 1=y 2.22.(1)易求得60='∠CD A , DC C A =', 因此得证.(2)易证得A AC '∆∽B BC '∆,且相似比为3:1,得证. (3)120°,a 23 23.(1)过A 点作AF ⊥l 3分别交l 2、l 3于点E 、F ,过C 点作CH ⊥l 2分别交l 2、l 3于点H 、G , 证△ABE ≌△CDG 即可.(2)易证△ABE ≌△BCH ≌△CDG ≌△DAF,且两直角边长分别为h 1、h 1+h 2,四边形EFGH 是边长为h 2的正方形, 所以()2122122212122211)(22214h h h h h h h h h h h S ++=++=++⨯=. (3)由题意,得12321h h -= 所以 5452451452312112121211+⎪⎭⎫ ⎝⎛-=+-=+⎪⎭⎫ ⎝⎛-+=h h h h h h S又1103102h h >⎧⎪⎨->⎪⎩ 解得0<h 1<32∴当0<h 1<52时,S 随h 1的增大而减小; 当h 1=52时,S 取得最小值54;当52<h 1<32时,S 随h 1的增大而增大.。
2011年安徽省初中毕业学业考试数 学本试卷共8大题,计23小题,满分150分,考试时间120分钟一、选择题(本题共10小题,每小题4分,满分40分)每小题都给出代号为A 、B 、C 、D 的四个选项同,其中只有一个正确的,请把正确选项的代号写在题 后的括号内.每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分.1.-2,0,2,-3这四个数中最大的是……………………………【 】 A.-1 B.0 C.1 D.22. 安徽省2010年末森林面积为3804.2千公顷,用科学记数法表示3804.2千正确的是……………………………………………………【 】 A.3804.2×103 B.380.42×104 C.3.842×106 D.3.842×1053. 下图是五个相同的小正方体搭成的几体体,其左视图是…………………………………【 】4.设1a =,a 在两个相邻整数之间,则这两个整数是………………【 】A.1和2B.2和3C.3和4D.4 和55.从下五边形的五个顶点中,任取四个顶点连成四边形,对于事件M ,“这个四边形是等腰梯形”.下列推断正确的是……………………………【 】 A.事件M 是不可能事件 B. 事件M 是必然事件 C.事件M 发生的概率为15D. 事件M 发生的概率为256如图,D 是△ABC 内一点,BD ⊥CD ,AD=6,BD=4,CD=3,E 、F 、G 、H 分别是AB 、AC 、CD 、BD 的中点,则四边形EFGH 的周长是……【 】 A.7 B.9 C.10 D. 117. 如图,⊙半径是1,A 、B 、C 是圆周上的三点,∠BAC=36°,则劣弧BC 的长是………………………………………………【 】 A.5π B. 25π C. 35π D.45π第3题图 第6题图第7题图8.一元二次方程()22x x x -=-的根是………………【 】 A.-1 B. 2 C. 1和2D. -1和29.如图,四边形ABCD 中,∠BAD=∠ADC=90°,AB=AD=P 在四边形ABCD 上,若P 到BD 的距离为32,则点P 的个数为……【 】 A.1 B.2 C.3 D.410.如图所示,P 是菱形ABCD 的对角线AC 上一动点,过P 垂直于AC 的直线交菱形ABCD 的边于M 、N 两点,设AC=2,BD=1,AP=x ,则△AMN 的面积为y ,则y 关于x 的函数图象的大致形状是………………………【 】二、填空题(本题共4小题,每小题5分,满分20分) 11.因式分解:22a b ab b ++=_________.12.根据里氏震级的定义,地震所释放的相对能量E 与地震级数n 的关系为:10nE =,那么9级地震所释放的相对能量是7级地震所释放的相对能量的倍数是 . 13.如图,⊙O 的两条弦AB 、CD 互相垂直,垂足为E ,且AB=CD ,已知CE=1,ED=3,则⊙O 的半径是_________. 14.定义运算()1a b a b ⊗=-,下列给出了关于这种运算的几点结论: ① ()226⊗-= ②a b b a ⊗=⊗③若0a b +=,则())(2a b b a ab ⊗+⊗= ④若0a b ⊗=,则a=0.其中正确结论序号是_________.(把在横线上填上你认为所有正确结论的序号) 三、(本题共2小题,每小题8分,满分16分) 15.先化简,再求值:21211x x ---,其中x=-2 【解】第10题图 第13题图第9题图16.江南生态食品加工厂收购了一批质量为10000千克的某种山货,根据市场需求对其进行粗加工和精加工处理,已知精加工的该种山货质量比粗加工的质量3倍还多2000千克.求粗加工的该种山货质量.【解】四、(本题共2小题,每小题8分,满分16分)17. 如图,在边长为1个单位长度的小正方形组成的网格中,按要求画出△A1B1C1和△A2B2C2;(1)把△ABC先向右平移4个单位,再向上平移1个单位,得到△A1B1C1;(2)以图中的O为位似中心,将△A1B1C1作位似变换且放大到原来的两倍,得到△A2B2C2.【解】第17题图18、在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如下图所示.第18题图(1)填写下列各点的坐标:A1(____,____),A3(____,____),A12(___,___);(2)写出点A n的坐标(n是正整数);【解】(3)指出蚂蚁从点A100到A101的移动方向.【解】五、(本题共2小题,每小题10分,满分20分)19.如图,某高速公路建设中需要确定隧道AB 的长度.已知在离地面1500m ,高度C 处的飞机,测量人员测得正前方A 、B 两点处的俯角分别为60°和45°,求隧道AB 的长. 【解】20、一次学科测验,学生得分均为整数,满分10分,成绩达到6分以上(包括6分)为合格.成绩达到9分为优秀.这次测验中甲乙两组学生成绩分布的条形统计图如下(1)请补充完成下面的成绩统计分析表:(2)甲组学生说他们的合格率、优秀率均高于乙组,所以他们的成绩好于乙组.但乙组学生不同意甲组学生的说法,认为他们组的成绩要高于甲组.请你给出三条支持乙组学生观点的理由. 【解】六、(本题满分12分)21. 如图函数11y k x b =+的图象与函数2k y x=(x >0)的图象交于A 、B 两点,与y 轴交于C 点.已知A 点的坐标为(2,1),C 点坐标为(0,3). (1)求函数1y 的表达式和B 点坐标; 【解】第19题图(2)观察图象,比较当x >0时,1y 和2y 的大小.七、(本题满分12分) 22.在△ABC 中,∠ACB=90°,∠ABC=30°,将△ABC 绕顶点C 顺时针旋转,旋转角为θ(0°<θ<180°),得到△A /B /C.(1)如图(1),当AB ∥CB /时,设AB 与CB /相交于D.证明:△A / CD 是等边三角形; 【解】(2)如图(2),连接A /A 、B /B ,设△ACA /和△BCB /的面积分别为 S △ACA /和S △BCB /. 求证:S △ACA /∶S △BCB /=1∶3;【证】(3)如图(3),设AC 中点为E ,A / B /中点为P ,AC=a ,连接EP ,当θ=_______°时,EP 长度最大,最大值为________. 【解】 八、(本题满分14分)23.如图,正方形ABCD 的四个顶点分别在四条平行线l 1、l 2、l 3、l 4上,这四条直线中相邻两条之间的距离依次为h 1、h 2、h 3(h 1>0,h 2>0,h 3>0). (1)求证h 1=h 3; 【解】(2) 设正方形ABCD 的面积为S.求证S=(h 2+h 3)2+h 12;【解】第22题图(1)第22题图(2) 第22题图(3) 第23题图(3)若12312h h +=,当h 1变化时,说明正方形ABCD 的面积为S 随h 1的变化情况. 【解】2011年安徽省初中毕业学业考试数学参考答案1~5ACACB 6~10DBDBC 新课标第一网 11. ()21+a b ; 12. 100; 13.5 14. ①③.15. 原式=112111)1)(1(1)1)(1(21-=+-=+=-+-=-+-+x x x x x x x .16. 设粗加工的该种山货质量为x 千克,根据题意,得 x+(3x+2000)=10000. 解得 x=2000.答:粗加工的该种山货质量为2000千克. 17. 如下图18.⑴A 1(0,1) A 3(1,0) A 12(6,0)⑵A n (2n,0) ⑶向上 19. 简答:∵OA 350033150030tan 1500=⨯=⨯=, OB=OC=1500, ∴AB=635865150035001500=-≈-(m).答:隧道AB 的长约为635m.20. (1)甲组:中位数 7; 乙组:平均数7, 中位数7(2)(答案不唯一)①因为乙组学生的平均成绩高于甲组学生的平均成绩,所以乙组学生的成绩好于甲组; ②因为甲乙两组学生成绩的平均分相差不大,而乙组学生的方差低于甲组学生的方差,说明乙组学生成绩的波动性比甲组小,所以乙组学生的成绩好于甲组;③因为乙组学生成绩的最低分高于甲组学生的最低分,所以乙组学生的成绩好于甲组.A A 1 BC B 1 C 1A 2B 2C 2· O21. (1)由题意,得⎩⎨⎧==+.3,121b b k 解得⎩⎨⎧=-=.3,11b k ∴ 31+-=x y又A 点在函数x k y 22=上,所以 212k =,解得22=k 所以x y 22=解方程组⎪⎩⎪⎨⎧=+-=x y x y 2,3 得⎩⎨⎧==.2,111y x ⎩⎨⎧==.1,222y x 所以点B 的坐标为(1, 2)(2)当0<x <1或x >2时,y 1<y 2;当1<x <2时,y 1>y 2; 当x=1或x=2时,y 1=y 2.22.(1)易求得60='∠CD A , DC C A =', 因此得证.(2)易证得A AC '∆∽B BC '∆,且相似比为3:1,得证. (3)120°,a 23 23.(1)过A 点作AF ⊥l 3分别交l 2、l 3于点E 、F ,过C 点作CH ⊥l 2分别交l 2、l 3于点H 、G , 证△ABE ≌△CDG 即可.(2)易证△ABE ≌△BCH ≌△CDG ≌△DAF,且两直角边长分别为h 1、h 1+h 2,四边形EFGH 是边长为h 2的正方形, 所以()2122122212122211)(22214h h h h h h h h h h h S ++=++=++⨯=. (3)由题意,得12321h h -= 所以 5452451452312112121211+⎪⎭⎫ ⎝⎛-=+-=+⎪⎭⎫ ⎝⎛-+=h h h h h h S又1103102h h >⎧⎪⎨->⎪⎩ 解得0<h 1<32∴当0<h 1<52时,S 随h 1的增大而减小; 当h 1=52时,S 取得最小值54;当52<h 1<32时,S 随h 1的增大而增大.。
A BCD E FGH A B C OCD 二O 一一年安徽省中考数学试题一、选择题(本大题共10小题,每小题4分,满分40分)1.-2、0、2、-3这四个数中最大的是【 】A .2B .0C .-2D .-32.我省2010年末森林面积为3804.2千公顷,用科学记数法表示3804.2千.正确的是【 】 A .3804.2×103 B .380.42×104 C .3.8042×106 D .3.8042×107 3.下图是五个相同的小正方体搭成的几何体,其左视图是【 】4.设a =19-1,a 在两个相邻整数之间,则这两个整数是【 】A .1和2B .2和3C .3和4D .4和5 5.从正五边形的五个顶点中,任取四个顶点连成四边形,对于事件M :“这个四边形是等腰梯形”,下列推断正确的是【 】 A .事件M 是不可能事件 B .事件M 是必然事件 C .事件M 发生的概率为1 5 D .事件M 发生的概率为2 56.如图,D 是△ABC 内一点,BD ⊥CD ,AD =6,BD =4,CD =3,E 、F 、G 、H 分别是AB 、AC 、CD 、BD 的中点,则四边形EFGH 的周长是【 】A .7B .9C .10D .117.如图,⊙O 的半径为1,A 、B 、C 是圆周上的三点,∠BAC =36°, 则劣弧BC 的长是【 】A .π51B .π52C .π53D .π548.一元二次方程x (x -2)=2-x 的根是【 】A .-1B .2C .1和2D .-1和2 9.如图,在四边形ABCD 中,∠BAD =∠ADC =90°,AB =AD =22,CD =2,点P 在四边形ABCD 的边上.若点P 到BD 的距离为23,则点P 的个数为【 】A .1B .2C .3D .410.如图,点P 是菱形ABCD 的对角线AC 上的一个动点,过点P 垂直于AC 的直线交菱形ABCD 的边于M 、N 两点.设AC =2,BD =1,AP =x ,△AMN 的面积为y ,则y 关于x 的函数图象大致形状是【 】A .B .C .D .ACDMNPAB C D E O二、填空题(本大题共4小题,每小题5分,满分20分)11.因式分解:a 2b +2ab +b = .12.根据里氏震级的定义,地震所释放出的相对能量E 与震级n 的关系为:E =10n ,那么9级地震所释放出的相对能量是7级地震所释放出的相对能量的倍数是 . 13.如图,⊙O 的两条弦AB 、CD 互相垂直,垂足为E ,且AB =CD , CE =1,DE =3,则⊙O 的半径是 .14.定义运算a ⊗b =a (1-b ),下面给出了关于这种运算的四个结论: ①2⊗(-2)=6 ②a ⊗b =b ⊗a ③若a +b =0,则(a ⊗a )+(b ⊗b )=2ab ④若a ⊗b =0,则a =0. 其中正确结论的序号是 (填上你认为所有正确结论的序号).三、(本大题共2小题,每小题8分,满分16分)15.先化简,再求值:12112---x x ,其中x =-2. 【解】16.江南生态食品加工厂收购了一批质量为10000kg 的某种山货,根据市场需求对其进行粗加工和精加工处理,已知精加的这种山货质量比粗加工的质量的3倍还多2000kg ,求粗加工的这种山货的质量. 【解】四、(本大题共2小题,每小题8分,满分16分)17.如图,在边长为1个单位长度的小正方形组成的网格中,按要求画出△A 1B 1C 1和△A 2B 2C 2:(1)将△ABC 先向右平移4个单位,再向上平移1个单位,得到△A 1B 1C 1;(2)以图中的点O 为位似中心,将△A 1B 1C 1作位似变换且放大到原来的两倍,得到△A 2B 2C 2.18.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如下图所示.(1)填写下列各点的坐标:A 4( , )、A 8( , )、A 12( , ); (2)写出点A 4n 的坐标(n 是正整数); 【解】(3)指出蚂蚁从点A 100到点A 101的移动方向. 【解】五、(本大题共2小题,每小题10分,满分20分)19.如图,某高速公路建设中需要确定隧道AB 的长度.已知在离地面1500m 高度C 处的飞机上,测量人员测得正前方A 、B 两点处的俯角分别为60°和45°.求隧道AB 的长(3≈1.73).【解】20.一次学科测验,学生得分均为整数,满分为10分,成绩达到6分以上(包括6分)为合格,成绩达到9分为优秀.这次测验甲、乙两组学生成绩分布的条形统计图如下:(1)(2)甲组学生说他们的合格率、优秀率均高于乙组,所以他们的成绩好于乙组.但乙组学生不/分同意甲组学生的说法,认为他们组的成绩要好于甲组.请你给出三条支持乙组学生观点的理由. 【解】六、(本题满分12分)21.如图,函数y 1=k 1x +b 的图象与函数y 2=k 2x(x >0)的图象交于点A (2,1)、B ,与y 轴交于点C (0,3).(1)求函数y 1的表达式和点B 的坐标; 【解】(2)观察图象,比较当x >0时y 1与y 2的大小. 【解】七、(本题满分12分)22.在△ABC 中,∠ACB =90°,∠ABC =30°,将△ABC 绕顶点C 顺时针旋转,旋转角为θ(0°<θ<180°),得到△A 1B 1C .(1)如图1,当AB ∥CB 1时,设A 1B 1与BC 相交于点D .证明:△A 1CD 是等边三角形; 【证】A A C CA 1A 1BB11E P图1图2图3θl 1l 2l 3l 4(2)如图2,连接AA 1、BB 1,设△ACA 1和△BCB 1的面积分别为S 1、S 2.求证:S 1∶S 2=1∶3; 【证】(3)如图3,设AC 的中点为E ,A 1B 1的中点为P ,AC =a ,连接EP .当 = °时,EP 的长度最大,最大值为 .八、(本题满分14分)23.如图,正方形ABCD 的四个顶点分别在四条平行线l 1、l 2、l 3、l 4上,这四条直线中相邻两条之间的距离依次为h 1、h 2、h 3(h 1>0,h 2>0,h 3>0). (1)求证:h 1=h 2; 【证】(2)设正方形ABCD 的面积为S ,求证:S =(h 1+h 2)2+h 12; 【证】(3)若32h 1+h 2=1,当h 1变化时,说明正方形ABCD 的面积S 随h 1的变化情况. 【解】2011年安徽省初中毕业学业考试数学参考答案1~10 ACACB DBDBC11. ()21+a b ; 12. 100; 13.5 14. ①③.15. 原式=112111)1)(1(1)1)(1(21-=+-=+=-+-=-+-+x x x x x x x .16. 设粗加工的该种山货质量为xkg ,根据题意,得 x+(3x+2000)=10000. 解得 x=2000.答:粗加工的该种山货质量为2000kg. 17. 如下图18.⑴A 1(0,1) A 3(1,0) A 12(6,0)⑵A n (2n,0) ⑶向上 19. 简答:∵OA 350033150030tan 1500=⨯=⨯=, OB=OC=1500,∴AB=635865150035001500=-≈-(m).答:隧道AB 的长约为635m.20. (1)甲组:中位数 7; 乙组:平均数7, 中位数7(2)(答案不唯一)①因为乙组学生的平均成绩高于甲组学生的平均成绩,所以乙组学生的成绩好于甲组; ②因为甲乙两组学生成绩的平均分相差不大,而乙组学生的方差低于甲组学生的方差,说明乙组学生成绩的波动性比甲组小,所以乙组学生的成绩好于甲组;③因为乙组学生成绩的最低分高于甲组学生的最低分,所以乙组学生的成绩好于甲组。
2011年安徽中考数学试卷一、选择题(共10小题,每小题4分,满分40分)1、(2010•安徽)在﹣1,0,1,2这四个数中,既不是正数也不是负数的是(B)A、﹣1B、0C、1D、22、(2010•安徽)计算(2x)3÷x的结果正确的是(A)A、8x2B、6x2C、8x3D、6x33、(2010•安徽)如图,直线l1∥l2,∠1=55°,∠2=65°,则∠3为(C)A、50°B、55°C、60°D、65°4、(2010•安徽)2010年一季度,全国城镇新增就业人数为289万人,用科学记数法表示289万正确的是(B)A、2.89×107B、2.89×106C、2.89×105D、2.89×1045、(2010•安徽)如图,下列四个几何体中,其主视图、左视图、俯视图中只有两个相同的是(D)A、B、C、D、6、(2010•安徽)某企业1~5月分利润的变化情况图所示,以下说法与图中反映的信息相符的是(C)A、1~2月分利润的增长快于2~3月分利润的增长B、1~4月分利润的极差于1~5月分利润的极差不同C、1~5月分利润的众数是130万元D、1~5月分利润的中位数为120万元7、(2010•安徽)若二次函数y=x2+bx+5配方后为y=(x﹣2)2+k,则b、k的值分别为(D)A、0,5B、0,1C、﹣4,5D、﹣4,18、(2010•安徽)如图,⊙O过点B、C.圆心O在等腰直角△ABC的内部,∠BAC=90°,OA=1,BC=6,则⊙O的半径为(D)A、B、2C、3D、9、(2010•安徽)下面两个多位数1248624…、6248624…,都是按照如下方法得到的:将第一位数字乘以2,若积为一位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位.对第2位数字再进行如上操作得到第3位数字…,后面的每一位数字都是由前一位数字进行如上操作得到的.当第1位数字是3时,仍按如上操作得到一个多位数,则这个多位数前100位的所有数字之和是(A)A、495B、497C、501D、50310、(2010•安徽)甲、乙两个准备在一段长为1200米的笔直公路上进行跑步,甲、乙跑步的速度分别为4m/s和6m/s,起跑前乙在起点,甲在乙前面100米处,若同时起跑,则两人从起跑至其中一人先到达终点的过程中,甲、乙两之间的距离y(m)与时间t(s)的函数图象是(C)A、B、C、D、二、填空题(共4小题,每小题5分,满分20分)11、(2010•安徽)计算:×﹣=2.12、(2010•安徽)不等式组的解集是:2<x≤4..13、(2010•安徽)如图,△ABC内接于⊙O,AC是⊙O的直径,∠ACB=50°,点D是BAC上一点,则∠D=40°度.14、(2010•安徽)如图,AD是△ABC的边BC上的高,由下列条件中的某一个就能推出△ABC 是等腰三角形的是②③④.(把所有正确答案的序号都填写在横线上)①∠BAD=∠ACD;②∠BAD=∠CAD;③AB+BD=AC+CD;④AB﹣BD=AC﹣CD.三、解答题(共9小题,满分90分)15、(2010•安徽)先化简,再求值:(1﹣)÷,其中a=﹣1.解答:解:原式=•=,当a=﹣1时,原式==.16、(2010•安徽)若河岸的两边平行,河宽为900米,一只船由河岸的A处沿直线方向开往对岸的B处,AB与河岸的夹角是60°,船的速度为5米/秒,求船从A到B处约需时间几分.(参考数据:≈1.7)考解答:解:如图,过点B做BC垂直河岸,垂足为C.在Rt△ACB中,有:AB===600.∴t==2≈3.4(分).即船从A处到B处约需3.4分.17、(2010•安徽)点P(1,a)在反比例函数y=的图象上,它关于y轴的对称点在一次函数y=2x+4的图象上,求此反比例函数的解析式.解答:解:点P(1,a)关于y轴的对称点是(﹣1,a),∵点(﹣1,a)在一次函数y=2x+4的图象上,∴a=2×(﹣1)+4=2,∵点P(1,2)在反比例函数y=的图象上,∴k=2,∴反比例函数的解析式为为y=.18、(2010•安徽)在小正方形组成的15×15的网络中,四边形ABCD和四边形A′B′C′D′的位置如图所示.(1)现把四边形ABCD绕D点按顺时针方向旋转90°,画出相应的图形A1B1C1D1,(2)若四边形ABCD平移后,与四边形A′B′C′D′成轴对称,写出满足要求的一种平移方法,并画出平移后的图形A2B2C2D2.解答:解:(1)旋转后得到的图形A1B1C1D1如图所示;(2)将四边形ABCD先向右平移4个单位,再向下平移6个单位,四边形A2B2C2D2如图所示.答案不唯一.19、(2010•安徽)在国家下身的宏观调控下,某市的商品房成交价由今年3月分的14000元/m2下降到5月分的12600元/m2(1)问4、5两月平均每月降价的百分率是多少?(参考数据:≈0.95)(2)如果房价继续回落,按此降价的百分率,你预测到7月分该市的商品房成交均价是否会跌破10000元/m2?请说明理由.解答:解:(1)设4、5两月平均每月降价的百分率是x,依题意得14000(1﹣x)2=12600,∴(1﹣x)2=0.9,∴x1≈0.05=5%,x2≈1.95(不合题意,舍去).答:4、5两月平均每月降价的百分率是5%;(2)如果按此降价的百分率继续回落,∴估计7月分该市的商品房成交均价为12600(1﹣x)2=12600×0.9025=11371.5>10000.由此可知7月分该市的商品房成交均价不会跌破10000元/m2.20、(2010•安徽)如图,AD∥FE,点B、C在AD上,∠1=∠2,BF=BC.(1)求证:四边形BCEF是菱形;(2)若AB=BC=CD,求证:△ACF≌△BDE.解答:证明:(1)∵AD∥FE,∴∠FEB=∠2.∵∠1=∠2,∴∠FEB=∠1.∴BF=EF.∵BF=BC,∴BC=EF.∴四边形BCEF是平行四边形.∵BF=BC,∴四边形BCEF是菱形.(2)∵EF=BC,AB=BC=CD,AD∥EF,∴四边形ABEF、CDEF均为平行四边形.∴AE=BE,FC=ED.又∵AC=2BC=BD,∴△ACF≌△BDE.21、(2010•安徽)上海世博会门票价格如表所示:某旅行社准备了1300元,全部用来购买指定日普通票和平日优惠票,且每种至少买一张.(1)有多少种购票方案?列举所有可能结果;(2)如果从上述方案中任意选中一种方案购票,求恰好选到11张门票的概率.解答:解:列表得:(2)由(1)得共有6种情况,恰好选到11张门票的情况有1种,所以概率是.22、(2010•安徽)春节期间某水库养殖场为适应市场需求,连续用20天时间,采用每天降低水位以减少捕捞成本的办法,对水库中某种鲜鱼进行捕捞、销售.九(1)班数学建模兴趣小组根据调查,整理出第x天(1≤x≤20且x为整数)的捕捞与销售的相关信息如表:(1)在此期间该养殖场每天的捕捞量与前一末的捕捞量相比是如何变化的?(2)假定该养殖场每天捕捞和销售的鲜鱼没有损失,且能在当天全部售出,求第x天的收入y(元)与x(天)之间的函数关系式?(当天收入=日销售额﹣日捕捞成本)试说明(2)中的函数y随x的变化情况,并指出在第几天y取得最大值,最大值是多少?解答:解:(1)该养殖场每天的捕捞量与前一天减少10kg;(2)由题意,得y=20(950﹣10x)﹣(5﹣)(950﹣10x)=﹣2x2+40x+14250;(3)∵﹣2<0,y=﹣2x2+40x+14250=﹣2(x﹣10)2+14450,又∵1≤x≤20且x为整数,∴当1≤x≤10时,y随x的增大而增大;当10≤x≤20时,y随x的增大而减小;当x=10时即在第10天,y取得最大值,最大值为14450.23、(2010•安徽)如图,已知△ABC∽△A1B1C1,相似比为k(k>1),且△ABC的三边长分别为a、b、c(a>b>c),△A1B1C1的三边长分别为a1、b1、c1.(1)若c=a1,求证:a=kc;(2)若c=a1,试给出符合条件的一对△ABC和△A1B1C1,使得a、b、c和a1、b1、c1进都是正整数,并加以说明;(3)若b=a1,c=b1,是否存在△ABC和△A1B1C1使得k=2?请说明理由.解答:(1)证明:∵△ABC∽△A1B1C1,且相似比为k(k>1),∴=k,a=ka1;又∵c=a1,∴a=kc;(2)解:取a=8,b=6,c=4,同时取a1=4,b1=3,c1=2;此时=2,∴△ABC∽△A1B1C2且c=a1;(3)解:不存在这样的△ABC和△A1B1C1,理由如下:若k=2,则a=2a1,b=2b1,c=2c1;又∵b=a1,c=b1,∴a=2a1=2b=4b1=4c;∴b=2c;∴b+c=2c+c<4c=a,而b+c>a;故不存在这样的△ABC和△A1B1C1,使得k=2.。
2011安徽数学中考试题参考答案及评分标准2011年安徽省初中毕业学业考试数学一、选择题(本题共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C、D的四个选项同,其中只有一个正确的,请把正确选项的代号写在题后的括号内.每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分.1.-2,0,2,-3这四个数中最大的是………………………………………………………【】A.-1B.0C.1D.22. 安徽省2010年末森林面积为3804.2千公顷,用科学记数法表示3804.2千正确的是…………………………………………………………………………………………………【】A.3804.2×103B.380.42×104C.3.842×106D.3.842×1053. 下图是五个相同的小正方体搭成的几体体,其左视图是…………………………………【】第3题图4.设,a在两个相邻整数之间,则这两个整数是………………………………【】A.1和2B.2和3C.3和4D.4 和55.从下五边形的五个顶点中,任取四个顶点连成四边形,对于事件M,“这个四边形是等腰梯形”.下列推断正确的是……………………………………………………………………………【】第6题图A.事件M是不可能事件B. 事件M是必然事件C.事件M发生的概率为D. 事件M发生的概率为6如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD 的中点,则四边形EFGH的周长是……………【】A.7B.9C.10D. 117. 如图,⊙半径是1,A、B、C是圆周上的三点,∠BAC=36°,则劣弧的长是…………………………………………………………………………………【】第7题图A. B. C. D.8.一元二次方程的根是………………【】A.-1B. 2C. 1和2D. -1和2第9题图9.如图,四边形A BCD中,∠BAD=∠ADC=90°,AB=AD= ,CD= ,点P在四边形ABCD上,若P到BD的距离为,则点P的个数为……………………………【】A.1B.2C.3D.410.如图所示,P是菱形ABCD的对角线AC上一动点,过P垂直于AC的直线交菱形ABCD的边于M、N 两点,设AC=2,BD=1,AP=x,则△AMN的面积为y,则y关于x的函数图象的大致形状是…………………………………………………………………………………………【】第10题图二、填空题(本题共4小题,每小题5分,满分20分)11.因式分解:=_________.12.根据里氏震级的定义,地震所释放的相对能量E与地震级数n的关系为:,那么9级地震所释放的相对能量是7级地震所释放的相对能量的倍数是.第13题图13.如图,⊙O的两条弦A B、CD互相垂直,垂足为E,且AB=CD,已知CE=1,ED=3,则⊙O 的半径是_________.14.定义运算,下列给出了关于这种运算的几点结论:①②③若,则④若,则a=0.其中正确结论序号是_____________.(把在横线上填上你认为所有正确结论的序号)第3题图三、(本题共2小题,每小题8分,满分16分)15.先化简,再求值:,其中x=-2【解】16.江南生态食品加工厂收购了一批质量为10000千克的某种山货,根据市场需求对其进行粗加工和精加工处理,已知精加工的该种山货质量比粗加工的质量3倍还多2000千克.求粗加工的该种山货质量.【解】四、(本题共2小题,每小题8分,满分16分)17. 如图,在边长为1个单位长度的小正方形组成的网格中,按要求画出△A1B1C1和△A2B2C2;(1)把△ABC先向右平移4个单位,再向上平移1个单位,得到△A1B1C1;(2)以图中的O为位似中心,将△A1B1C1作位似变换且放大到原来的两倍,得到△A2B2C2.第17题图【解】18、在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如下图所示.第18题图(1)填写下列各点的坐标:A1(____,_____),A3(____,_____),A12(____,____);(2)写出点A n的坐标(n是正整数);【解】(3)指出蚂蚁从点A100到A101的移动方向.【解】五、(本题共2小题,每小题10分,满分20分)19.如图,某高速公路建设中需要确定隧道AB的长度.已知在离地面1500m,高度C处的飞机,测量人员测得正前方A、B两点处的俯角分别为60°和45°,求隧道AB的长.第19题图【解】20、一次学科测验,学生得分均为整数,满分10分,成绩达到6分以上(包括6分)为合格.成绩达到9分为优秀.这次测验中甲乙两组学生成绩分布的条形统计图如下(1)请补充完成下面的成绩统计分析表:(2)甲组学生说他们的合格率、优秀率均高于乙组,所以他们的成绩好于乙组.但乙组学生不同意甲组学生的说法,认为他们组的成绩要高于甲组.请你给出三条支持乙组学生观点的理由.【解】六、(本题满分12分)21. 如图函数的图象与函数(x>0)的图象交于A、B两点,与y轴交于C点.已知A点的坐标为(2,1),C点坐标为(0,3).第21题图(1)求函数的表达式和B点坐标;【解】(2)观察图象,比较当x>0时,和的大小.七、(本题满分12分)22.在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋转角为θ(0°<θ<180°),得到△A/B/C.(1)如图(1),当AB∥CB/时,设AB与CB/相交于D.证明:△A/ CD是等边三角形;第22题图(1)【解】(2)如图(2),连接A/A、B/B,设△ACA/和△BCB/的面积分别为S△ACA/和S△BCB/. 求证:S△A CA/∶S△BCB/=1∶3;第22题图(2)【证】第22题图(3)(3)如图(3),设A C中点为E,A/ B/中点为P,A C=a,连接EP,当θ=_______°时,EP长度最大,最大值为________.【解】八、(本题满分14分)第23题图23.如图,正方形A BCD的四个顶点分别在四条平行线l1、l2、l3、l4上,这四条直线中相邻两条之间的距离依次为h1、h2、h3(h1>0,h2>0,h3>0).(1)求证h1=h3;【解】(2) 设正方形ABCD的面积为S.求证S=(h2+h3)2+h12;【解】(3)若,当h1变化时,说明正方形ABCD的面积为S随h1的变化情况. 【解】2011年安徽省初中毕业学业考试数学参考答案1~5ACACB 6~10DBDBC11. ;12. 100;13. 14. ①③.15. 原式= .16. 设粗加工的该种山货质量为x千克,根据题意,得x+(3x+2000)=10000.解得x=2000.答:粗加工的该种山货质量为2000千克.17. 如下图AA1BCB1C1A2B2C2·O18.⑴A1(0,1) A3(1,0) A12(6,0)⑵A n(2n,0)⑶向上19. 简答:∵OA ,OB=OC=1500,∴AB= (m).答:隧道AB的长约为635m.20. (1)甲组:中位数7;乙组:平均数7,中位数7(2)(答案不唯一)①因为乙组学生的平均成绩高于甲组学生的平均成绩,所以乙组学生的成绩好于甲组;②因为甲乙两组学生成绩的平均分相差不大,而乙组学生的方差低于甲组学生的方差,说明乙组学生成绩的波动性比甲组小,所以乙组学生的成绩好于甲组;③因为乙组学生成绩的最低分高于甲组学生的最低分,所以乙组学生的成绩好于甲组.21. (1)由题意,得解得∴又A点在函数上,所以,解得所以解方程组得所以点B的坐标为(1, 2)(2)当0<x<1或x>2时,y1<y2;当1<x<2时,y1>y2;当x=1或x=2时,y1=y2.22.(1)易求得, , 因此得证.(2)易证得∽,且相似比为,得证.(3)120°,23.(1)过A点作AF⊥l3分别交l2、l3于点E、F,过C点作CH⊥l2分别交l2、l3于点H、G,证△ABE≌△CDG即可.(2)易证△ABE≌△BCH≌△CDG≌△DAF,且两直角边长分别为h1、h1+h2,四边形EFGH是边长为h2的正方形,所以.(3)由题意,得所以又解得0<h1<∴当0<h1<时,S随h1的增大而减小;当h1= 时,S取得最小值;当<h1<时,S随h1的增大而增大.。