2017-2018学年高中化学 第2章 化学键与分子间作用力 2
- 格式:doc
- 大小:150.52 KB
- 文档页数:6
第二章 化学键与分子间作用力一、共价键【基础回归】 1. 本质 原子之间形成。
2. 特征 具有性和性。
3.4. 键参数 (1)键能①键能:气态基态原子形成化学键释放的最低能量。
②单位:,用E A -B 表示,如H -H 键的键能为436.0kJ 〃mol -1,N N 键的键能为946kJ 〃mol -1。
③应为气态基态原子:保证释放能量最低。
④键能为衡量共价键稳定性的参数:键能越大,即形成化学键时释放的能量越,形成的化学键越。
⑤结构相似的分子中,化学键键能越大,分子越稳定。
(2)键长①键长:形成共价键的两个原子之间的为键长。
因成键时原子轨道发生重叠,键长小于成键原子的原子半径之和。
②键长是衡量共价键稳定性的另一个参数。
键长越短,键能越,共价键越。
(3)键角①键角:在原子数超过2的分子中,两个共价键之间的夹角称为键角。
②键角决定了分子的。
③多原子分子中共价键间形成键角,表明共价键具有性。
④常见分子中的键角:CO 2分子中的键角为,为形分子;H 2O 分子中键角为,为形分子;CH 4分子中键角为,为形分子。
NH 3分子中键角为,为形分子。
5. 等电子原理原子总数、价电子总数均相同的分子具有相似的化学键特征,具有许多相近的性质。
【误区警示】1. H 2分子中的共价键无方向性。
2. 一般σ键比π键键能大,但在N 2分子中的σ键比π键键能小。
3. σ键和π键的判断 (1)σ键稳定,π键活泼。
(2)共价单键是σ键,共价双键中有一个σ键和一个π键;共价叁键中有一个σ键和两个π键。
CH 2=CH 2有 个σ键,有 个π键,CH CH 中有 个σ键, 个π键二、分子的空间结构【基础回归】 1. 杂化轨道理论当原子成键时,原子的价轨道相互混杂,形成与原轨道数相等的能量相同的杂化轨道。
杂化轨道数不同,轨道间的夹角不同,形成分子的立体构型不同。
2. 价层电子对互斥模型、杂化轨道理论与分子立体构型的关系 (13. 配位化合物(1)配位键:成键原子一方提供孤对电子,如,另一方提供空轨道,比如。
2017-2018学年高中化学第2章化学键与分子间作用力第1节共价键模型教学案鲁科版选修3编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017-2018学年高中化学第2章化学键与分子间作用力第1节共价键模型教学案鲁科版选修3)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017-2018学年高中化学第2章化学键与分子间作用力第1节共价键模型教学案鲁科版选修3的全部内容。
第1节共价键模型[课标要求]1.知道共价键的主要类型σ键和π键。
2.能用键能、键长、键角说明简单分子的某些性质。
1。
共价键:原子间通过共用电子形成的化学键.2.共价键分为:σ键和π键;极性键和非极性键;单键、双键和叁键。
3.共价键的特征:方向性和饱和性。
4.共价键的键参数:键能、键长、键角。
5.键能越大,键长越短,形成的共价键越牢固,含有该键的分子越稳定。
错误!1.共价键的形成及本质概念原子间通过共用电子形成的化学键本质高概率地出现在两个原子核之间的电子与两个原子核之间的电性作用形成元素通常是电负性相同或差值小的非金属元素原子表示方法用一条短线表示由一对共用电子所形成的共价键,如H—H、H—Cl;“===”表示原子间共用两对电子所形成的共价键;“≡”表示原子间共用三对电子所形成的共价键2.共价键的分类(1)σ键和π键①分类标准:按电子云的重叠方式.②σ键和π键:共价键σ键原子轨道以“头碰头”方式相互重叠导致电子在核间出现的概率增大而形成的共价键。
π键原子轨道以“肩并肩”方式相互重叠导致电子在核间出现的概率增大而形成的共价键。
(2)极性键和非极性键①分类标准:根据共用电子对是否偏移.②极性键和非极性键:共价键极性键非极性键形成元素不同种元素同种元素共用电子的偏移共用电子偏向电负性较大的原子成键原子电负性相同,共用电子不偏移原子电性电负性较大的原子显负电性,另一原子显正电性两原子均不显电性3.共价键的特征(1)饱和性:每个原子所能形成共价键的总数或以单键连接的原子数目是一定的。
2017-2018学年高中化学第2章化学键与分子间作用力第2节共价键与分子的空间构型素材鲁科版选修3编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017-2018学年高中化学第2章化学键与分子间作用力第2节共价键与分子的空间构型素材鲁科版选修3)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017-2018学年高中化学第2章化学键与分子间作用力第2节共价键与分子的空间构型素材鲁科版选修3的全部内容。
第二节共价键与分子的空间构型柯塞尔和路易斯——化学键理论的开创者到现在为止,人们已经发现一百多种元素.这一百多种元素能够形成无数的化合物(人类发现和合成的化合物已超过3000万种)。
各种原子是以什么力量和什么方式相结合的,这历来是化学家关心的化学理论的核心问题。
在20世纪以前,化学家曾用“化学亲和力”、“原子价”等概念来表示原子结合的秘密,但是对其本质却谁也说不清楚.当卢瑟福的行星式原子模型及玻尔的核外电子分层排布理论提出后,化学键理论也逐步向前发展了。
1916年德国物理学家柯塞尔(Walther Kossel,1881—1956年)提出原子的价电子理论。
他认为:(1)必须用原子结构理论,特别是原子的外层电子的得失来说明原子结合成分子的原因。
(2)原子稳定的电子层结构是稀有气体(旧称惰性气体)的8电子结构。
其他元素的原子都有获得或失去电子,以达到8电子结构的倾向,形成稳定的离子。
(3)阴、阳离子间靠静电引力而形成稳定的化学键——离子键。
柯塞尔的理论成功地解释了典型金属和非金属相互作用形成离子化合物.虽然这个理论不能解释氢气、氯化氢和二氧化碳分子的形成,但他把离子化合物从化合物中区别出来,并用原子核外电子排布加以解释,是一大成功。
2017-2018学年高中化学第2章化学键与分子间作用力第2节共价键与分子的空间型教学案鲁科版选修3编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017-2018学年高中化学第2章化学键与分子间作用力第2节共价键与分子的空间型教学案鲁科版选修3)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017-2018学年高中化学第2章化学键与分子间作用力第2节共价键与分子的空间型教学案鲁科版选修3的全部内容。
第2节共价键与分子的空间构型第1课时一些典型分子的空间构型[课标要求]1.认识共价分子结构的多样性和复杂性。
2.能根据有关理论判断简单分子或离子的构型。
3.结合实例说明“等电子原理"的应用。
1。
CH4、NH3、H2O、H2S、NH错误!、CCl4、CF4分子中中心原子均采用sp3杂化。
2.CH2===CH2、C6H6、BF3、CH2O分子中中心原子均采用sp2杂化.3.CH≡CH、CO2、BeCl2、CS2分子中中心原子均采用sp1杂化.4.正四面体形分子:CH4、CCl4、CF4;三角锥形分子:NH3、PH3;V形分子:H2O、H2S、SO2;平面三角形分子:BF3;平面形分子:C2H4、C6H6、CH2O;直线形分子:C2H2、CO2、BeCl2、CS2.5.等电子体:化学通式相同(组成原子数相同),价电子数相等的微粒。
错误!1.轨道杂化和杂化轨道2。
甲烷分子中碳原子的杂化类型3.杂化轨道形成的分子空间构型(杂化轨道全部用于形成σ键时)杂化类型sp1sp2sp3参与杂化的原s轨道一个一个一个子轨道及数目p轨道一个两个三个杂化轨道数目(或σ键数)234杂化轨道间的夹角180°120°109.5°分子空间构型直线形平面三角形正四面体形实例BeCl2BF3CH4、CF4、CCl41.什么是成键电子对、孤电子对?其与中心原子的轨道数或价层电子对数有什么关系?提示:分子或离子中,中心原子与其他原子以共价键结合的电子对为成键电子对,中心原子上不参与成键的电子对为孤电子对,两者之和等于中心原子的轨道数,也等于价层电子对数。
第2课时 氢键与物质性质 学习目标 1.掌握氢键的概念、特征、表示方法以及形成条件。
2.知道氢键的分类以及对物质性质的影响。
氢键与物质性质
1.氢键的概念
当氢原子与电负性大的原子X 以__________结合时,H 原子与另一个______________的原子Y 之间的____________,它是一种较强的____________。
2.表示形式
(1)通常用__________表示氢键,其中X —H 表示氢原子和X 原子以__________相结合。
(2)氢键的键长是指__________间的距离,氢键的键能是指X —H…Y 分解为__________和____所需要的能量。
3.形成条件
(1)氢原子位于X 原子和Y 原子之间。
(2)X 、Y 原子具有______________________________________________________。
(3)X 、Y 原子一般是位于元素周期表________的__________、__________和__________。
4.类型
氢键⎩
⎨⎧ 分子间氢键⎩⎪⎨⎪⎧ 分子间氢键 分子间氢键
5.特征 (1)氢键的作用能比____________的作用能大一些,比____________的键能小的多。
(2)氢键具有一定的__________和____________。
6.氢键对物质性质的影响
(1)当形成分子间氢键时,物质的熔、沸点将______________。
(2)当形成分子内氢键时,物质的熔、沸点将______________。
(3)氢键也影响物质的________、________等过程。
思维点拨 1.分子间作用力分为范德华力和氢键。
2.液态水中有三种作用力:(1)分子内氢氧原子间的共价键。
(2)水分子间的范德华力。
(3)水分子间的氢键。
1.下列叙述错误的是( )
A.范德华力是普遍存在的一种分子间作用力,属于电性作用
B.范德华力比较弱,但范德华力越强,物质的熔点和沸点越高
C.氢键属于一种较强的分子间作用力,只能存在于分子间
D.形成氢键时必须含有氢原子,另外氢原子两边的原子必须具有很强的电负性、很小的原子半径
2.下列各组分子之间存在氢键的是( )
①C2H6和CCl4②NH3和C6H6③CH3COOH和H2O ④CHCl3和CH2Cl2⑤HCHO和C2H5OH
A.①②④ B.③⑤
C.①②③④⑤ D.都不存在
3.下列现象中,不能用氢键解释的是( )
A.氨极易溶于水
B.醋酸与水能以任意比互溶
C.碘易溶于酒精
D.氨易液化
4.已知E元素在元素周期表的各元素中电负性最大,请用氢键表示式写出E的氢化物溶液中存在的所有氢键:_______________________________________________。
练基础落实
知识点一氢键
1.如果取一块冰放在容器里,不断地升高温度,可以实现“冰→水→水蒸气→氢气和氧气”的变化,在各步变化时破坏的粒子间的相互作用力依次是( )
A.氢键、极性键、非极性键
B.氢键、氢键、极性键
C.氢键、氢键、非极性键
D.氢键、非极性键、极性键
2.下列说法不正确的是( )
A.分子间作用力是分子间相互作用力的总称
B.分子间氢键的形成除使物质的熔、沸点升高,对物质的溶解、电离等也都有影响C.范德华力与氢键可同时存在于分子之间
D.氢键是一种特殊的化学键,它广泛存在于自然界中
3.下列说法中,正确的是( )
A.氢键是一种化学键
B.氢键使物质具有较高的熔、沸点
C.能与水分子形成氢键的物质易溶于水
D.水结成冰体积膨胀与氢键无关
知识点二形成氢键的条件
4.下列物质中不存在氢键的是( )
A.冰醋酸中醋酸分子之间
B.液态氟化氢中氟化氢分子之间
C.一水合氨分子中的氨分子与水分子之间
D.可燃冰(CH4·8H2O)中甲烷分子与水分子之间
5.图中每条折线表示周期表ⅣA族~ⅦA族中的某一族元素氢化物的沸点变化,每个小黑点代表一种氢化物,其中a点代表的是( )
A.H2S B.HCl
C.PH3 D.SiH4
知识点三氢键对物质性质的影响
6.H2O与H2S结构相似,都是V形的极性分子,但是H2O的沸点是100℃,H2S的沸点是-60.7℃。
引起这种差异的主要原因是( )
A.范德华力 B.共价键
C.氢键 D.相对分子质量
7.下列有关水的叙述中,不能用氢键的知识进行解释的是( )
A.水比硫化氢气体稳定
B.水的熔、沸点比硫化氢的高
C.氨气极易溶于水
D.冰的密度比水小,冰是一种具有许多空洞结构的晶体
练综合拓展
8.下列说法中正确的是( )
A.化学键的极性越大,键就越强
B.凡能形成氢键的物质,其熔、沸点比同类物质的熔、沸点高
C.CFH3分子中,既有H原子,又有电负性大、半径小的F原子,因此,CFH3分子间可以形成氢键
D.稀有气体能在温度充分降低时液化,而且随相对分子质量的增大熔点升高
9.利用蒸气密度法测量下列物质的相对分子质量时,哪种物质的测量值与真实的相对分子质量相差最大( )
A.HF B.NO2
C.CH3CH2CH3 D.HBr
10.判断下列几组化合物的熔、沸点由高到低的顺序,并简要说明判断理由。
(1)CCl4、CF4、CBr4、CI4:_______________________________________________
________________________________________________________________________ __________________________________。
(2)乙醇、溴乙烷、乙烷:________________________________________________
________________________________________________________________________。
11.物质形成分子间氢键和分子内氢键对物质性质的影响有显著差异。
根据下表数据,形成分子间氢键的物质是______(填物质字母代号)。
第2课时氢键与物质性质
双基落实
一、
1.共价键电负性很大静电作用静电作用
2.(1)X—H…Y共价键(2)X和Y X—H Y
3.(2)强的电负性和很小的原子半径(3)右上角氮原子氧原子氟原子
4.分子内氢键相同不同
5.(1)范德华力化学键(2)方向性饱和性
6.(1)升高(2)降低(3)电离溶解
课堂练习
1.C
2.B [根据氢键形成的条件可判断:只有CH3COOH和H2O、HCHO和C2H5OH分子之间可以形成氢键。
]
3.C [氨自身易形成氢键,所以易液化,氨气分子与水分子间,醋酸分子与水分子间均形成氢键,所以二者都易溶于水,而C中碘与酒精不形成氢键,碘易溶于酒精,与氢键无关。
] 4.F—H…F、F—H…O、O—H…F、O—H…O
解析E元素在元素周期表的各元素中电负性最大,应为氟元素,其氢化物为HF,在溶液中存在的氢键有F—H…F、F—H…O、O—H…F、O—H…O。
课时作业
1.B [本题主要考查物质性质变化与氢键和共价键的关系。
冰→水→水蒸气破坏的是分子间的氢键,而水蒸气→氢气和氧气,破坏的是极性键,B正确。
]
2.D 3.C
4.D [只有非金属性很强的元素(如N、O、F)才能与氢元素形成强极性的共价键,分子间才能形成氢键,C—H不是强极性共价键。
]
5.D [因为第2周期的非金属元素的气态氢化物中,NH3、H2O、HF分子之间存在氢键,它们的沸点高于同族其他元素气态氢化物的沸点,A、B、C不合题意,而CH4分子间不能形成氢键,所以a点代表的是SiH4。
]
6.C 7.A
8.D [A说法错误,影响化学键强度的因素很多,键的极性只是其中之一;B说法错误,分子内氢键使化合物的熔、沸点降低;C说法错误,因为在CFH3分子中,是C—F和C—H间形成共价键,而在H与F之间并没有形成共价键,不符合形成氢键的条件,所以CFH3分子间不能形成氢键;D说法正确,稀有气体是非极性的单原子分子,分子间存在范德华力,所以在温度充分降低时液化,而且范德华力随着相对分子质量的增大而增大,所以熔点依次升高。
] 9.A [HF由于氢键的原因易形成多聚分子(HF)n,因此测量的密度实际上是多聚氟化氢的相对分子质量,与HF的相对分子质量相比差距最大;测量NO2的相对分子质量时,由于存在2NO22O4,NO2和N2O4必然同时存在,因此实际测量的相对分子质量应介于46(NO2)和
92(N2O4)之间;CH3CH2CH3和HBr测量的气体密度不会有偏差。
]
10.(1)CI4>CBr4>CCl4>CF4,相对分子质量增大,分子间作用力增大,熔、沸点升高
(2)乙醇>溴乙烷>乙烷,乙醇形成分子间氢键
解析对于结构相似的物质,如果分子间只存在范德华力,物质熔、沸点一般随相对分子质量的增大而升高。
如果有氢键则会出现反常,含氢键的物质熔、沸点较高。
11.B。