鲁科版高中化学选修3-第二章章末复习:《化学键与分子间作用力》知识总结
- 格式:doc
- 大小:400.50 KB
- 文档页数:3
高中化学学习材料课时2 化学键与分子间作用力1.X和Y是原子序数大于4的短周期元素,X m+和Y n-两种离子的核外电子排布相同,下列说法中正确的是( )A.X的原子半径比Y小 B.X和Y的核电荷数之差为m-nC.电负性X>Y D.第一电离能X<Y解析:X m+与Y n-的核外电子排布相同,则质子数X>Y,原子半径X>Y。
X比Y更易失电子,第一电离能X小于Y,电负性X小于Y。
答案:D2.下列说法中不正确的是( )A.σ键比π键重叠程度大,形成的共价键强B.两个原子之间形成共价键时,最多有一个σ键C.气体单质中,一定有σ键,可能有π键D.N2分子中有一个σ键,2个π键解析:从原子轨道的重叠程度看,π键轨道重叠程度比σ键重叠程度小,故π键稳定性低于σ键,A项正确;根据电子云的形状和成键时的重叠原则,两个原子形成的共价键最多只有一个σ键,可能没有π键,也可能有1个或2个π键,B正确;稀有气体为单原子分子,不存在化学键,故C项错误。
答案:C3.若AB n的中心原子A上没有未用于形成共价键的孤对电子,运用价层电子对互斥模型,下列说法正确的是( )A.若n=2,则分子的立体结构为V形B.若n=3,则分子的立体结构为三角锥型C.若n=4,则分子的立体结构为正四面体型D.以上说法都不正确解析:若中心原子A上没有未用于成键的孤对电子,则根据斥力最小的原则,当n=2时,分子结构为直线型;n=3时,分子结构为平面三角形;n=4时,分子结构为正四面体型。
答案:C4.在下列空格中,填上适当的元素符号:(1)在第三周期中,第一电离能最小的元素是________,第一电离能最大的元素是________。
(2)最活泼的金属元素是________。
(3)最活泼的气态非金属原子是________。
(4)第二、三、四周期原子中p轨道半径充满的元素是________。
解析:同周期中从左到右,元素的第一电离能(除ⅢA族、ⅥA族反常外)逐渐增大,同周期中金属元素最小,稀有气体最大,故第三周期中第一电离能最小的为Na,最大的为Ar。
第二章化学键与分子间作用力知识建构:专题归纳:一、微粒间相互作用力的比较1、化学键的比较键比较离子键共价键金属键非极性键极性键配位键本质阴、阳离子间的静电作用相邻原子间通过共用电子对(电子云重叠)与原子核间的静电作用形成电性作用成键条件电负性相差较大的活泼金属元素的阳离子和活泼非金属元素的阴离子(成键电子的得、失电子能力相差较大)成键原子得失电子能力相同成键原子得失电子能力差别较小(不同种非金属)成键原子一方有孤对电子,一方有空规道同种金属或不同种金属(合金)特征无方向性、饱合性有方向性、饱合性无方向性成键微粒阴、阳离子原子金属阳离子和自由电子存在离子化合物非金属双原子单质、共价化合物(H2O2),离子化合物(Na2O2)共价化合物(HCl)离子化合物(NaOH)离子化合物(NH4Cl)金属或合金2、范德华力和氢键的比较范德华力氢键概念范德华力是分子之间普遍存在的一种相互作用,它使得许多由分子构成的物质能以一定的聚集态存在正电性较强的氢原子与电负性很大且半径小的原子间存在的一种静电相互作用存在范围分子间某些强极性键氢化物的分子间(HF、H2O、NH3)强度比较比化学键弱得多比化学键弱得多,比范德华力强影响因素①随着分子极性和相对分子量的增大而增大②组成和结构相似的物质,相对分子质量越大,范德华力越大形成氢键的非金属原子吸引电子的能力越强,半径越小,则氢键越强特征无方向性和饱合性有方向性和饱合性对物质性质的影响影响物质的物理性质,如熔点、沸点等。
组成和结构相似的物质,相对分子质量越大,熔沸点越高,如熔沸点:O2>N2,HI>HBr>HCl分子间氢键的存在,使得物质的熔沸点升高,在水中的溶解度增大,如熔沸点:H2O > H2S二、分子的极性和键的极性、分子构型的关系分子类型分子形状键角键的极性分子极性代表物A 球形非极性He、NeA2直线形非极性非极性H2、O2AB 直线形极性极性HCl、NOABA 直线形180°极性非极性CO2、CS2ABA 角形≠180°极性极性H2O、SO2A4正四面体形60°非极性非极性P4AB3平面三角形120°极性非极性BF3、SO3AB3三角锥形≠120°极性极性NH3、NCl3AB4正四面体形109°28′极性非极性CH4、CCl4AB3C 四面体形≠109°28′极性极性CH3Cl、CHCl3AB2C2四面体形≠109°28′极性极性CH2Cl2由上表可知:分子的极性取决于键的极性,分子中每一个键两端的原子的电负性的差异,差异越大的,键的极性越强;很明显,若分子中没有极性键,则相应的分子不可能是极性分子,但含有极性键的分子也不一定都是极性分子,若成键的原子在空间呈对称分布的话,则键的极性彼此抵消,分子仍为非极性分子,否则的话为极性分子。
第2章化学键与分子间作用力知识点总结化学键与分子间作用力是化学中的重要概念和原理,研究它们能够深入理解化学反应和化学物质性质的变化规律。
本文总结了化学键与分子间作用力的基本概念、种类以及它们在化学中的应用。
一、化学键的基本概念化学键是由原子之间相互吸引形成的,能够保持原子在分子或晶体中相对位置的力。
化学键的形成能够使原子稳定,并使分子或晶体得到更低的能量状态。
根据化学键的形成机制和原子间电荷转移的程度,可以分为离子键、共价键和金属键。
1.离子键离子键是由正负电荷之间的电子转移形成的,通常是金属与非金属元素之间的结合。
在离子键中,正离子和负离子通过电子转移相互吸引,形成离子晶体。
2.共价键共价键是由原子间电子的共享形成的,通常是非金属元素之间的结合。
在共价键中,共享电子对维持原子之间的相互吸引力,使得原子形成稳定的化学键。
3.金属键二、分子间作用力的种类1.范德华力范德华力,也称为分子间引力,是由于电子的运动而引起的偶极矩的形成和分子之间的吸引力。
范德华力是分子之间最普遍的作用力,也是影响物质物理性质的重要因素。
2.氢键氢键是氢原子与氮、氧、氟等电负性较高的原子之间的吸引力。
氢键常见于氢氧化物、醇、酮、酰胺和DNA等分子中。
氢键的强度介于共价键和范德华力之间,对分子的性质具有重要影响。
3.离子-离子作用力离子-离子作用力是正离子和负离子之间的相互吸引力。
正离子和负离子之间的吸引力较强,使离子晶体具有高熔点和高硬度特点。
三、化学键与分子间作用力在化学中的应用化学键和分子间作用力在化学中有重要应用,影响物质的性质和反应过程。
1.物质的性质化学键的强度和类型决定了物质的性质。
例如,金属键决定了金属导电、导热和延展性能;离子键决定了离子晶体的高熔点和硬度特点;共价键决定了分子的稳定性和化学反应能力等。
2.溶解过程在溶解过程中,分子间作用力起重要作用。
溶质分子通过与溶剂分子之间的范德华力、氢键等作用力形成溶解,进入溶剂中形成溶液。