坐标系与参数方程总结 (1)
- 格式:doc
- 大小:183.00 KB
- 文档页数:3
坐标系与参数方程直角坐标系是由X轴和Y轴组成的二维平面。
在直角坐标系中,一个点的位置可以通过它在X轴和Y轴上的坐标值来确定。
例如,点P的坐标为(x,y),其中x是点P在X轴上的位置,y是点P在Y轴上的位置。
直角坐标系可以方便地表示直线、抛物线、圆等曲线。
参数方程是一种描述曲线的数学表达方式,其中曲线上的每个点都是由参数变量的函数关系决定的。
参数方程中通常有两个参数变量,例如t和s,分别表示曲线上一些点的位置。
通过固定其中一个参数变量并对另一个参数变量进行取值,可以得到曲线上的一系列坐标点,从而描绘出整个曲线。
参数方程可以用于描述比较复杂的曲线,例如椭圆、双曲线等。
与直角坐标系不同,参数方程可以很方便地表示曲线上的点的倾斜和弯曲程度。
通过调整参数变量的取值范围,还可以对曲线进行调整和变形。
举一个简单的例子来说明直角坐标系和参数方程的区别和应用。
考虑一条直线y=2x+1、在直角坐标系中,我们可以通过给定的函数关系来确定直线上任意点的坐标。
例如,当x=0时,y=1,这表示直线过点(0,1)。
当x=2时,y=5,这表示直线过点(2,5)。
而在参数方程中,我们可以将直线表示为x=t,y=2t+1,其中t是参数变量。
通过对参数变量t进行取值,可以得到直线上的一系列坐标点。
例如,当t=0时,x=0,y=1,这表示直线过点(0,1);当t=1时,x=1,y=3,这表示直线过点(1,3)。
可以看出,直角坐标系和参数方程在表示曲线上的点的方式上有所不同。
直角坐标系通过给定的函数关系来确定曲线上的点的坐标,而参数方程通过参数变量的函数关系来确定曲线上的点的坐标。
在实际应用中,根据不同的需要和问题,我们可以选择使用直角坐标系或参数方程来描述曲线。
直角坐标系更适用于描述直线、抛物线和圆等简单的曲线,而参数方程更适用于描述复杂的曲线,例如椭圆、双曲线等。
通过选择适当的表示方式,我们可以更方便地理解和分析曲线的形状和特性。
总之,坐标系与参数方程是数学中常用的表示曲线的方式。
坐标系与参数方程知识点在数学中,坐标系与参数方程是两个重要且密切相关的概念。
坐标系是我们描述点的位置和相互关系的工具,而参数方程则是一种表示曲线或曲面的常用方法。
让我们来深入了解这两个知识点,它们的应用领域和一些实际问题的解决方法。
一、坐标系在平面几何学和空间几何学中,坐标系用于表示点的位置。
常用的坐标系有直角坐标系和极坐标系。
1. 直角坐标系直角坐标系是最常见的坐标系之一,由两条相互垂直的直线组成。
通常,水平直线被称为x轴,垂直直线被称为y轴。
任何点P都可以通过其与这两条轴的交点来表示,用一个有序数对(x, y)表示。
其中,x 称为横坐标,y称为纵坐标。
这种表示方法可以简化许多几何问题的求解,如计算两点之间的距离、判断点是否在某一区域内等。
2. 极坐标系极坐标系是另一种常用的坐标系,用于描述平面上的点。
与直角坐标系不同,它使用极径和极角来表示点的位置。
极径表示点到坐标原点的距离,极角则表示点与正半轴的夹角。
在极坐标系下,点的坐标用一个有序数对(r, θ)表示。
这种坐标系在描述圆形运动、天文学等领域具有重要应用。
二、参数方程参数方程是一种常用的表示曲线或曲面的方法,它使用一个或多个参数来描述点的位置。
通常,参数方程将x和y(或x、y、z)用一个或多个参数t表示。
1. 二维参数方程对于二维参数方程,曲线上的点可以用参数t与x、y的关系表示。
例如,对于抛物线y = x^2,我们可以使用参数方程x = t和y = t^2来表示。
通过改变参数t的值,我们可以得到这条曲线上的各个点。
参数方程的优势在于它可以描述一些传统的直角坐标系难以表示的曲线,如椭圆、双曲线等。
此外,参数方程还可以用于描述运动轨迹、弹道轨迹等。
2. 三维参数方程三维参数方程与二维参数方程类似,不同之处在于曲面上的点需要用参数t与x、y、z的关系表示。
例如,对于球体的参数方程x = r *sinθ * cosφ,y = r * sinθ * sinφ,z = r * cosθ,其中r、θ和φ是参数,描述了点与球心的关系。
数学极坐标方程与参数方程总结
数学中有两种表示平面上点的方式:极坐标和参数方程。
这两种方式都可以描述点的位置,但使用的方法不同。
1. 极坐标方程
极坐标方程是一种表示平面上点的方式,它使用极坐标系来描述点的位置。
极坐标系中,每个点用一个半径和一个角度来表示,其中半径是点到极点的距离,角度是点到极轴的角度。
极坐标方程就是用半径和角度的函数来表示点的位置。
例如,一个点的极坐标为(r,θ),那么它的极坐标方程可以表示为:
r = f(θ)
其中,f(θ)是一个关于θ的函数,描述了点在极坐标系中的位置。
极坐标方程可以用来表示各种曲线,如圆、椭圆、双曲线等。
2. 参数方程
参数方程是另一种表示平面上点的方式,它使用参数来描述点的位置。
参数方程中,每个坐标用一个参数t来表示,其中x和y是t 的函数。
参数方程可以表示各种曲线,如直线、圆、椭圆、双曲线等。
例如,一个点的坐标为(x,y),那么它的参数方程可以表示为:
x = f(t)
y = g(t)
其中,f(t)和g(t)是关于t的函数,描述了点在平面上的位置。
参数方程可以用来描述各种复杂的曲线,如螺旋线、心形线等。
总结:
极坐标方程和参数方程都是表示平面上点的方式,它们使用不同的方法来描述点的位置。
极坐标方程使用极坐标系,用半径和角度的函数来表示点的位置;参数方程使用参数,用x和y的函数来表示点的位置。
两种方式都可以用来描述各种曲线,但有时一个曲线的极坐标方程和参数方程并不相同,需要根据具体情况选择合适的表示方式。
千里之行,始于足下。
极坐标系与参数方程学问点总结极坐标系和参数方程是数学中的两种常用的描述曲线的方法。
它们可以用来描述平面内的曲线,其优点是能够更简洁地描述某些特殊外形的曲线,且能够涵盖直角坐标系不能完全表示的曲线。
下面将对极坐标系和参数方程进行具体的介绍和总结。
一、极坐标系:极坐标系是一种用极角和极径来表示平面上的点的坐标系统。
其中,极径表示原点与点之间的距离,极角表示极径与一个固定轴之间的夹角。
极坐标系的坐标表示通常用 (r,θ) 表示,其中 r 是极径,θ是极角。
在极坐标系中,曲线方程可以用极坐标 (r,θ) 表示。
例如,直线的极坐标方程可表示为 r = a / cos(θ - α),其中 a 是直线与极径轴的交点到原点的距离,α是直线与极径轴的夹角。
另外,很多曲线在极坐标系中的方程具有简洁的形式。
例如,圆的极坐标方程是 r = a,椭圆的极坐标方程是 r = a / (1 - εcosθ),其中 a 是椭圆焦点到原点的距离,ε是椭圆的离心率。
极坐标系的优点是能够更简洁地表示某些特殊外形的曲线,如圆、椭圆和螺线等。
然而,极坐标系也有一些限制,例如不能表示某些直线和很多多重曲线。
因此,在具体问题中选择使用直角坐标系还是极坐标系要依据具体状况来定。
二、参数方程:第1页/共2页锲而不舍,金石可镂。
参数方程是一种用参数来表示曲线上的点的坐标的方法。
其中,参数是一个实数变量,曲线上的每个点都可以由参数的函数表示。
参数方程通常以向量形式表示,例如(x(t), y(t)),其中 x(t) 和 y(t) 是参数 t 的函数。
通过参数方程,可以更机敏地描述曲线。
例如,直线的参数方程可以表示为 x(t) = a + mt,y(t) = b + nt,其中 a、b 是直线上的一个点的坐标,m、n 是直线的斜率。
另外,很多曲线在参数方程中具有简洁的形式,如抛物线的参数方程是 x(t) = a + t,y(t) = b + t²。
极坐标与参数方程一、参数方程1.参数方程的概念一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x 、y 都是某个变数t 的函数,即 ⎩⎨⎧==)()(t f y t f x 并且对于t 每一个允许值,由方程组所确定的点M (x ,y )都在这条曲线上(即曲线上的点在方程上,方程的解都在曲线上),那么方程组就叫做这条曲线的参数方程,联系x 、y 之间关系的变数叫做参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.2.参数方程和普通方程的互化曲线的参数方程和普通方程是曲线方程的不同形式,一般地可以通过消去参数而从参数方程得到普通方程.练习1.若直线的参数方程为,则直线的斜率为( )12()23x tt y t=+⎧⎨=-⎩为参数A .B .C .D .2323-3232-2.下列在曲线上的点是( )sin 2()cos sin x y θθθθ=⎧⎨=+⎩为参数A .B .C .D .1(,231(,)42-3.将参数方程化为普通方程为( )222sin ()sin x y θθθ⎧=+⎪⎨=⎪⎩为参数A .B .C .D .2y x =-2y x =+2(23)y x x =-≤≤2(01)y x y =+≤≤注:普通方程化为参数方程,参数方程的形式不一定唯一(由上面练习(1、3可知))。
应用参数方程解轨迹问题,关键在于适当地设参数,如果选用的参数不同,那么所求得的曲线的参数方程的形式也不同。
3.圆的参数方程如图所示,设圆的半径为,点从初始位置出发,按逆时针方向在圆上作匀速圆周运动,设,则。
这就是圆心在原点,半径为的圆的参数方程,其中的几何意义是转过的角度(称为旋转角)。
圆心为,半径为的圆的普通方程是,它的参数方程为:。
4.椭圆的参数方程以坐标原点为中心,焦点在轴上的椭圆的标准方程为其参数方程为,其中参数称为离心角;焦点在轴上的椭圆的标准方程是其参数方程为其中参数仍为离心角,通常规定参数的范围为∈[0,2)。
直角坐标系与参数方程1. 引言直角坐标系和参数方程是数学中常用的两种描述点、线、曲面等几何对象的方式。
直角坐标系是我们通常使用的坐标系,由x、y、z三个坐标轴组成。
而参数方程是用参数表示点的坐标,通过设定参数的范围,可以绘制出特定曲线或曲面。
在本文中,我们将对直角坐标系和参数方程进行详细介绍,并比较它们在几何描述中的优缺点。
2. 直角坐标系2.1 坐标轴直角坐标系由三条相互垂直的坐标轴组成,分别是x轴、y轴和z轴。
x轴与y轴的交点称为原点,通常记为O。
我们可以用(x, y, z)表示直角坐标系中的一个点P,其中x、y、z分别是点P在x轴、y轴和z轴上的投影长度。
2.2 坐标表示在直角坐标系中,我们可以通过两点之间的距离和角度来计算点的坐标。
例如,对于二维坐标系,给定点P的极坐标表示(r, θ),其中r是点P到原点O的距离,θ是向量OP与x轴的夹角。
对于三维坐标系,我们可以使用球坐标或柱坐标来表示点的位置。
球坐标表示为(r, θ, φ),其中r是点P到原点O的距离,θ是向量OP在xy平面上的投影与x轴的夹角,φ是向量OP与z轴的夹角。
柱坐标则表示为(r, θ, z),其中r是点P在xy平面上到原点O的距离,θ是向量OP与x轴的夹角,z是点P在z轴上的投影长度。
2.3 坐标转换在直角坐标系中,我们可以通过坐标之间的转换关系,在不同的坐标系之间进行转换。
例如,球坐标和直角坐标的转换公式为:x = r * sinθ * cosφy = r * sinθ * sinφz = r * cosθ通过这些转换公式,我们可以方便地在直角坐标系中描述各类点、线、曲面等几何对象。
3. 参数方程3.1 参数方程的定义参数方程是用参数表示点的坐标的方式。
给定参数t的范围,我们可以通过参数方程来描述出一条曲线或曲面。
参数方程可以是二维的,用于描述曲线,也可以是三维的,用于描述曲面。
3.2 参数方程与解析几何参数方程与直角坐标系相比,更加灵活且简洁。
千里之行,始于足下。
极坐标系与参数方程知识点总结
极坐标系与参数方程是描述平面上的点与曲线的两种坐标系统。
1. 极坐标系:
极坐标系由极径(r)和极角(θ)组成,其中极径表示点到原点的距离,极角表示点在极坐标系中的方向。
- 极径:通常用正数表示,表示点到原点的距离。
- 极角:一般用弧度表示,表示点所在的射线与参考射线(通常为 x 轴正半轴)的夹角。
2. 参数方程:
参数方程是一组用参数表示的方程,通过为变量赋予不同的值来表示曲线上的点。
- 参数:参数是代表自变量的符号,可以用任意字母表示。
- 方程组:在参数方程中,通常会有两个或更多的方程,每个方程用参数表示一个坐标分量,用来描述曲线上的点。
极坐标系和参数方程在描述一些特殊曲线时非常有用,例如圆、椭圆、双曲线等。
其中,使用极坐标系描述曲线更加方便,而使用参数方程描述曲线更加灵活。
应用场景:
1. 极坐标系常用于描述圆心在原点的圆形曲线,以及玫瑰线、阿基米德螺线等特殊曲线。
2. 参数方程常用于描述具有特定形状的曲线,如椭圆的参数方程为 x = a * cos(t), y = b * sin(t),其中 t 为参数,a 和 b 分别为椭圆在 x 轴和 y 轴上的半径。
第1页/共2页
锲而不舍,金石可镂。
3. 参数方程也常用于描述轨迹问题,例如描述一个物体在运动过程中的位置随时间而变化的轨迹。
总结:
极坐标系和参数方程是两种用于描述平面上曲线的坐标系统,它们在不同场景下有不同的应用。
熟练掌握这两种坐标系统的表示方法和转换方法,可以更好地理解和描述曲线的性质和特点。
极坐标与参数方程知识点总结大全[技巧] 1(平面直角坐标系中的坐标伸缩变换设点P(x,y)是平面直角坐标系中的任意一点,在变换的作用下,点P(x,y)对应到点,称为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.2.极坐标系的概念(1)极坐标系如图所示,在平面内取一个定点,叫做极点,自极点引一条射线,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可.但极坐标系和平面直角坐标系都是平面坐标系.(2)极坐标设M是平面内一点,极点与点M的距离|OM|叫做点M的极径,记为;以极轴为始边,射线为终边的角叫做点M的极角,记为.有序数对叫做点M的极坐标,记作.一般地,不作特殊说明时,我们认为可取任意实数.特别地,当点在极点时,它的极坐标为(0, )(?R).和直角坐标不同,平面内一个点的极坐标有无数种表示.如果规定,那么除极点外,平面内的点可用唯一的极坐标表示;同时,极坐标表示的点也是唯一确定的.3.极坐标和直角坐标的互化(1)互化背景:把直角坐标系的原点作为极点,x轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图所示:(2)互化公式:设是坐标平面内任意一点,它的直角坐标是,极坐标是(),于是极坐标与直角坐标的互化公式如表:点直角坐标极坐标互化公式在一般情况下,由确定角时,可根据点所在的象限最小正角.4.常见曲线的极坐标方程曲线图形极坐标方程圆心在极点,半径为的圆圆心为,半径为的圆圆心为,半径为的圆(1)过极点,倾斜角为的直线(2)过点,与极轴垂直的直线过点,与极轴平行的直线注:由于平面上点的极坐标的表示形式不唯一,即都表示同一点的坐标,这与点的直角坐标的唯一性明显不同.所以对于曲线上的点的极坐标的多种表示形式,只要求至少有一个能满足极坐标方程即可.例如对于极坐标方程点可以表示为等多种形式,其中,只有的极坐标满足方程.二、参数方程1.参数方程的概念一般地,在平面直角坐标系中,如果曲线上任意一点的坐标都是某个变数的函数?,并且对于的每一个允许值,由方程组?所确定的点都在这条曲线上,那么方程?就叫做这条曲线的参数方程,联系变数的变数叫做参变数,简称参数,相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.2.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式,一般地可以通过消去参数而从参数方程得到普通方程.(2)如果知道变数中的一个与参数的关系,例如,把它代入普通方程,求出另一个变数与参数的关系,那么就是曲线的参数方程,在参数方程与普通方程的互化中,必须使的取值范围保持一致.注:普通方程化为参数方程,参数方程的形式不一定唯一。
坐标系与参数方程_知识点总结一、坐标系1.直角坐标系直角坐标系是最常见的坐标系,在平面上由两个垂直的坐标轴组成,分别为x轴和y轴。
一个点在直角坐标系中的位置可以用坐标(x,y)来表示,其中x为横坐标,y为纵坐标。
2.极坐标系3.球坐标系球坐标系是一种用于描述空间点位置的坐标系统,它由径向距离、极角和方位角组成。
一个点的位置可以用有序数组(r,θ,φ)来表示,其中r为点到原点的距离,θ为点与一些固定轴的夹角,φ为点的方位角。
二、参数方程1.一维参数方程一维参数方程是指由一个参数确定的直线或曲线的方程。
例如,一个点在直线上的一维参数方程可以表示为x=f(t),其中x为点在直线上的位置,t为参数,f(t)为关于参数t的函数。
2.二维参数方程二维参数方程是指由两个参数确定的平面曲线的方程。
一个点在平面上的位置可以表示为(x(t),y(t)),其中x(t)和y(t)分别为关于参数t的函数。
二维参数方程常用于描述曲线、圆、椭圆等几何图形。
3.三维参数方程三维参数方程是指由三个参数确定的空间曲线的方程。
一个点在空间中的位置可以表示为(x(t),y(t),z(t)),其中x(t)、y(t)和z(t)分别为关于参数t的函数。
三维参数方程常用于描述空间曲线、曲面等几何图形。
三、坐标系与参数方程的关系坐标系和参数方程之间存在着密切的关系。
在直角坐标系中,一个函数的参数方程可以通过将x和y用参数表示来得到,即将x=f(t)和y=g(t)的参数方程转化为直角坐标系中的函数y=f(x)的形式。
反之,一个函数的直角坐标系方程也可以通过将x和y用参数表示来得到参数方程。
参数方程在极坐标系和球坐标系中也可以通过类似的方式转化。
总结:坐标系是描述点的位置的系统,常见的坐标系有直角坐标系、极坐标系和球坐标系。
参数方程是用参数表示的函数方程,常用于描述直线、曲线、曲面等几何图形。
坐标系和参数方程之间存在密切的关系,可以通过转化将一个方程从坐标系表示转化为参数方程,反之亦然。
第一部分:坐标系与参数方程【考纲知识梳理】1.平面直角坐标系中的坐标伸缩变换设点P(x,y)是平面直角坐标系中的任意一点,在变换的作用下,点对应到点()()⎩⎨⎧>∙='>∙='0,0,:μμλλϕy y x x ()y x P ,,称为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.()y x P '',ϕ2.极坐标系的概念(1)极坐标系如图(1)所示,在平面内取一个定点,叫做极点,自极点引一条射线,叫做极轴;再选定一个长度单位,一O O Ox 个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可.但极坐标系和平面直角坐标系都是平面坐标系.(2)极坐标设M 是平面内一点,极点O 与点M 的距离|OM|叫做点M 的极径,记为;以极轴为始边,射线为终ρOx OM 边的角叫做点M 的极角,记为.有序数对叫做点M 的极坐标,记作M .一般地,不作特xOM ∠θ()θρ,()θρ,殊说明时,我们认为可取任意实数.特别地,当点M 在极点时,它的极坐标为。
和直角坐θρ,0≥()()R ∈θθ,0标不同,平面内一个点的极坐标有无数种表示.如果规定,那么除极点外,平面内的点可用πθρ20,0<≤>唯一的极坐标表示;同时,极坐标表示的点也是唯一确定的.()θρ,()θρ,3.极坐标和直角坐标的互化(1)互化背景:把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图(2)所示:(2)互化公式:设M 是坐标平面内任意一点,它的直角坐标是,极坐标是,于()y x ,()()0,≥ρθρ是极坐标与直角坐标的互化公式如表:点M直角坐标()y x ,极坐标()θρ,互化公式⎩⎨⎧==θρθρsin cos y x ()0tan 222≠=+=x xyy x θρ在一般情况下,由确定角时,可根据点M 所在的象限最小正角.θtan 4.常见曲线的极坐标方程曲线图形极坐标方程圆心在极点,半径为的圆r ()πθρ20<≤=r 圆心为,半径为的圆()0,r r ⎪⎭⎫ ⎝⎛<≤-=222πθπρr 圆心为,半径为的圆⎪⎭⎫⎝⎛2,πr r ()πθθρ<≤=0sin 2r 过极点,倾斜角为的直线α(1)()()R R ∈+=∈=ραπθραθ或(2)()()00≥+=≥=ραπθραθ或过点,与极轴垂直的直线()0,a ⎪⎭⎫ ⎝⎛<<-=22cos πθπθρa 过点,与极轴平行的直⎪⎭⎫⎝⎛2,πa 线()πθθρ<<=0sin a 注:由于平面上点的极坐标的表示形式不唯一,即都表示同一()()()()θπρθπρθπρθρ+--+-+,,,,2,,,点的坐标,这与点的直角坐标的唯一性明显不同.所以对于曲线上的点的极坐标的多种表示形式,只要求至少有一个能满足极坐标方程即可.例如对于极坐标方程点可以表示为θρ=⎪⎭⎫⎝⎛4,4ππM 等多种形式,其中,只有的极坐标满足方程⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+45,424,424,4ππππππππM M M 或或⎪⎭⎫⎝⎛4,4ππM .θρ=二、参数方程1.参数方程的概念一般地,在平面直角坐标系中,如果曲线上任意一点的坐标都是某个变数的函数①,并且对()y x ,t ()()⎩⎨⎧==t g y t f x于的每一个允许值,由方程组①所确定的点都在这条曲线上,那么方程①就叫做这条曲线的参数方t ()y x M ,程,联系变数的变数叫做参变数,简称参数,相对于参数方程而言,直接给出点的坐标间关系的方程叫()y x ,t 做普通方程.2.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式,一般地可以通过消去参数而从参数方程得到普通方程.(2)如果知道变数中的一个与参数的关系,例如,把它代入普通方程,求出另一个变数与参数()y x ,t ()t f x =的关系,那么就是曲线的参数方程,在参数方程与普通方程的互化中,必须使的取()t g y =()()⎩⎨⎧==t g y t f x ()y x ,值范围保持一致.注:普通方程化为参数方程,参数方程的形式不一定唯一。
极坐标系
1 极坐标系和点的极坐标
极点、极轴、长度单位、角度单位和它的方向构成极坐标系的四要素,缺一不可。
规定:当点M 在极点时,它的极坐标θρ,0=可以取任意值。
2、极坐标系内一点的极坐标的规定
对于平面上任意一点M ,用 ρ 表示线段OM 的长度,用 θ 表示从OX 到OM 的角度,ρ 叫做点M 的极径, θ叫做点M 的极角,有序数对(ρ,θ)就叫做
M 的极坐标。
3平面直角坐标与极坐标的区别
在平面直角坐标系内,点与有序实数对(x ,y )是一一对应的,可是在极坐标系中,虽然一个有序实数对),(θρ只能与一个点P 对应,但一个点P 却可以与无数多个有序实数对对应),(θρ,极坐标系中的点与有序实数对极坐标),(θρ不是一一对应的。
4极坐标系中P (ρ,θ)(极点除外)的全部坐标为(ρ,θ+πk 2)或(ρ-,θ+π)12(+k ),(∈k Z ).极点的极径为0,而极角任意取.
5如果规定πθρ20,0<≤>,那么除极点外,平面内的点可用唯一的极坐标),(θρ表示,同时,极坐标),(θρ表示的点也是唯一确定的。
6极坐标与直角坐标的互化
(1) 互化的前提:①极点与直角坐标的原点重合;②极轴与X 轴的正方向重合;③两种坐标系中
取相同的长度单位。
(2) 互化公式⎩⎨⎧==θρθρsin cos y x ,⎪⎩
⎪⎨⎧≠=+=0,tan 222x x y y x θρ。
参数方程
解题方法:去掉参数
(一)曲线的参数方程的定义:
在取定的坐标系中,如果曲线上任意一点的坐标x 、y 都是某个变数t 的函数,即 ⎩⎨⎧==)
()(t f y t f x
并且对于t 每一个允许值,由方程组所确定的点M (x ,y )都在这条曲线上,那么方程组就叫做这条曲线的参数方程,联系x 、y 之间关系的变数叫做参变数,简称参数.
图1
(二)常见曲线的参数方程如下:
1.过定点(x 0,y 0),倾角为α的直线:
αα
sin cos 00t y y t x x +=+= (t 为参数)
其中参数t 是以定点P (x 0,y 0)为起点,对应于t 点M (x ,y )为终点的有向线段PM 的数量,又称为点P 与点M 间的有向距离.
2.中心在(x 0,y 0),半径等于r 的圆:
θθ
sin cos 00r y y r x x +=+= (θ为参数)
3.中心在原点,焦点在x 轴(或y 轴)上的椭圆:
θ
θsin cos b y a x == (θ为参数) (或
θθsin cos a y b x ==) 中心在点(x0,y0)焦点在平行于x 轴的直线上的椭圆的参数方程为参数)ααα(.
sin ,cos 00⎩⎨
⎧+=+=b y y a x x 5.顶点在原点,焦点在x 轴正半轴上的抛物线: pt
y pt x 222
== (t 为参数,p >0) 直线的参数方程和参数的几何意义
过定点P (x 0,y 0),倾斜角为α的直线的参数方程是 ⎩⎨⎧+=+=αα
sin cos 00t y y t x x (t 为参数). 练 习 题
1.上截得的弦长。
为参数)被双曲线(求直线13222=-⎩⎨⎧=+=y x t t
y t x
2、在极坐标系中,已知圆C 的圆心C ⎪⎭⎫ ⎝⎛6,
3π,半径=1,Q 点在圆C 上运动。
(1)求圆C 的极坐标方程;
(2)若P 在直线OQ 上运动,且OQ∶QP=2∶3,求动点P 的轨迹方程。
3.已知点(,)P x y 是圆22
2x y y +=上的动点,
(1)求2x y +的取值范围;(2)若0x y a ++≥恒成立,求实数a 的取值范围。
4
.求直线11:()5x t l t y =+⎧⎪⎨=-+⎪⎩为参数
和直线2:0l x y --=的交点P 的坐标,及点P 与(1,5)Q -的距离。
5.在椭圆22
11612
x y +=上找一点,使这一点到直线2120x y --=的距离的最小值。
6.已知直线l 经过点(1,1)P ,倾斜角6πα=
,
(1)写出直线l 的参数方程。
(2)设l 与圆422=+y x 相交与两点,A B ,求点P 到,A B 两点的距离之积。
7
.过点P 作倾斜角为α的直线与曲线22121x y +=交于点,M N , 求PM PN ⋅的最小值及相应的α的值。
8.在平面直角坐标系xoy 中,将曲线)(sin cos 4{为参数αα
α==y x 上的每一个点的纵坐标不变,横坐标变为原来的一半,然后整个图像向右平移1个单位,最后横坐标不变,纵坐标变为原来的2倍得到曲线1C ,以射线Ox 为极轴建立极坐标系,曲线2C 的极坐标方程为θρsin 4=。
(1)分别写出曲线1C ,2C 的普通方程;(2)求1C 和2C 的公共弦的长度。
9.在直角坐标系中圆C 的参数方程为)(sin 22cos 2{为参数αα
α+==y x ,以原点O 为极点,以x 轴为极轴建立极坐标系,直线l 的极坐标方程为1)6
cos(=+πθρ。
(1)求直线l 的普通方程;(2)判断直线l 与圆C 的位置关系并说明理由。
10.已知直线l :)(214{为参数t t y t a x --=+=,圆C 的极坐标方程为)4
cos(22πθρ+= (1)求圆心C 到直线l 的距离;(2)若直线l 被圆C 截得的弦长为
556,求a 的值。
11.已知椭圆C 的极坐标方程为,sin 4cos 312222θ
θρ+=点21,F F 为其左,右焦点, 直线l 的参数方程为),(22222{R t t t y t x ∈=+
=为参数 (1) 求直线l 和曲线C 的普通方程;(2)求点21,F F 到直线l 的距离之和。