第讲--序列密码的编码层次
- 格式:ppt
- 大小:940.00 KB
- 文档页数:18
第三章 序列密码在第二章中,咱们证明了理论上保密的密码体制是存在的,这种密码体制是利用随机的密钥序列∞=1}{i i k 对明文序列∞=1}{i i m 加密取得密文序列∞=1}{i i c 。
可是,由于随机的密钥序列∞=1}{i i k 必需与明文等长,因此其生成、分派、存储和利用都存在必然的困难,因这人们假想利用少量的真随机数按必然的固定规那么生成的“伪随机”的密钥序列代替真正的随机序列,这就产生了序列密码。
因此,序列密码脱胎于“一次一密”密码体制。
由于序列密码中的密钥序列是由少量的真随机数按必然的固定规那么生成的,因此不可能是真正随机的。
因此,如何刻画密钥序列的“伪随机性”,如何保证密钥序列的“伪随机性”可不能造成加密算法在实际中被破,是序列密码设计中需要解决的问题。
另外,由于序列密码只需分派和存储少量的真随机数就可对任意长度的明文加密,因此克服了完全保密的密码体制在实践中在密钥分派中碰到的难题。
序列密码中利用的少量真随机数确实是序列密码的密钥,有人也称之为“种子密钥”。
由于序列密码算法在公布资料中不多,而且所需的理论基础也较多,因此本章不对序列密码做过量介绍。
本章仅从伪随机序列的常规特性、序列密码的大体模型、理论基础、Walsh 谱理论、大体编码技术和具体实例动身,介绍序列密码的设计理论,同时也简单介绍对序列密码的分析方式。
为幸免序列密码的密钥与密钥序列的概念混淆,以下本书均称序列密码的由密钥产生的密钥序列为乱数序列。
在本书中,n Z 2和n }1,0{都表示所有二元n 维向量组成的集合和二元域上的n 维线性空间,并将12Z 简记为2Z ;)/(n Z 表示集合}1,,2,1,0{-n 和模n 剩余类环,)(q GF 表示q 元域。
本书有时也将n 维二元向量),,,(021x x x n n --不加说明地等同于)2/(n Z 中的元素011211222x x x x x n n n n ++++=---- 。
【密码学】序列密码序列密码就是对密⽂进⾏逐⼀的加密或者解密和分组密码⽐起来,分组密码是⼀组⼀组加密,序列密码就是逐个加密序列密码的安全性能主要取决于密钥流或者密钥流产⽣器的特性。
优点:实现简单、加密和解密速度快、安全性能较好、没有或少有差错传播序列密码的基本结构1.同步序列密码 同步序列密码的原理: 种⼦密钥k经过由安全信道传送给收、发双⽅后,由密钥流产⽣器⽣成加密和解密所需要的密钥流,⽽加、解密本⾝就是简单的模2加法运算。
同步序列密码的特点: ①密钥流仅仅依赖于种⼦密钥和密钥流产⽣器的结构,⽽与明⽂流(或密⽂流)⽆关。
②如果密钥流完全随机产⽣且长度⾄少和明⽂流⼀样长,则可实现绝对安全的“⼀次⼀密”。
但实际上,这很难做到。
③⽆差错传播。
因为密钥流独⽴于密⽂流,所以⼀个密⽂的传输错误不会影响下⼀个密⽂的解密。
④为了保障接收端能够正确解密,要求收、发双⽅必须严格同步。
2.⾃同步序列密码 ⾃同步序列密码的简介: 与同步序列密码需要收、发双⽅严格同步不同,⾃同步序列密码能够依靠⾃⾝的能⼒“⾃动地”实现收、发双⽅的同步,因⽽是⼀种不需要外部同步的序列密码系统。
⾃同步序列密码的特点: ①密钥流不仅依赖于种⼦密钥和密钥流产⽣器的结构,还与密⽂流(或明⽂流)有关。
初始向量IV在这⾥相当于初始密⽂的作⽤,要求收、发双⽅必须相同。
②⾃同步。
解密只取决于先前特定数量的密⽂字符,因此,即使出现删除、插⼊等⾮法攻击,收⽅最终都能够⾃动重建同步解密,因⽽收、发双⽅不再需要外部同步。
③有差错传播。
因为密钥流与密⽂流有关,所以⼀个密⽂的传输错误会影响下⾯有限个密⽂的解密。
密钥流产⽣器密钥流产⽣器是决定序列密码安全性能的主要因素,因⽽线性反馈寄存器是密钥流产⽣器最基本也是最重要的部件。
1.线性反馈移位寄存器定义:如果将移位寄存器的某些级的输出通过异或(模2加)运算函数运算后反馈回它的第⼀级输⼊端,便构成了线性反馈移位寄存器。