第4章(序列密码)
- 格式:ppt
- 大小:834.00 KB
- 文档页数:83
一、名词解释:转录:是指以DNA为模板,在依赖于DNA的RNA聚和酶催化下,以4中NTP(ATP、CTP、GTP和UTP)为原料,合成RNA的过程。
转录单位 (transcription unit):从启动子到终止子的序列 (转录起始点)。
模板链(template strand):又称反义链, 指与转录物互补的DNA链(极性方向3’→5’)。
编码链:又称有义链, 指不作模板的DNA单链(极性方向5’→3’)。
hnRNA:核内不均一RNA,是存在于真核细胞核中的不稳定,大小不均一的一组高分子RNA的总称。
转录的极性:转录的效率与转录单位的位置有关。
转录起始:RNA聚合酶与DNA转录启动子结合形成有功能的转录起始复合物的过程。
启动子(Promoters):指DNA分子上被RNA聚合酶、转录调节因子等识别并结合形成转录起始复合物的区域。
核心启动子:RNA聚合酶能够直接识别并结合的启动子。
RNA聚合酶:是催化以DNA为模板(template)、三磷酸核糖核苷为底物、通过磷酸二酯键而聚合的合成RNA的酶。
C端结构域(CTD):RNApolⅡ的大亚基中有 C 末端结构域。
CTD中含一保守氨基酸序列的多个重复Tyr-Ser p-Pro-Thr p-Ser p-Pro-Ser p C端重复七肽。
沉默子(silencer):沉默子能够同反式因子结合从而阻断增强子及反式激活因子作用并最终抑制该基因的转录活性的真核基因中的一种特殊的序列。
增强子(enhancer):是一类正调控元件,能够从转录起始位点的上游或下游数千个碱基处来激活转录。
绝缘子(insulater):阻断增强子或沉默子的DNA序列。
上游:转录起点上游的序列,是调控区,与转录的方向相反。
下游:转录起点下游的区域,是编码区,与转录的方向一致。
转录起点:+1位点,RNA聚合酶的转录起始位点,起始NTP多为ATP或GTP。
转录泡:在转录时RNA聚合酶Ⅱ(RNAPⅡ)与DNA模板结合,会形成一个泡状结构,成为转录泡。
第二节线性反馈移位寄存器序列1基本概念和性质反馈移位寄存器, 特别线性反馈移位寄存器是许多密钥序列生成器的重要部件, 这一节引进线性反馈移位寄存器的模型, 并用数学(特别是代数)工具描述线性反馈移位寄存器.2设n是正整数, n级反馈移位寄存器的模型见下图a k+n−1 a k+n−2……… a k+1a k输出f (x n,…, x2, x1)反馈函数其中f(x1,…, x n)是一逻辑函数, 即f(x1,…, x n)∈2[x1,…, x n]这里2= {0, 1}表示二元域, n≥ 1.3当f(x1,…, x n)是线性函数时, 即f(x1, x2, … , x n) =c1x1+c2x2+ … +c n x n, c i∈2,称对应的反馈移位寄存器为线性反馈移位寄存器(简称LFSR), 所产生的序列称为线性(反馈)移位寄存器序列, 简记为LFSR序列.45此时所产生的序列适合关系式a n +k = 10n i −=∑c n −i a k +i , k = 0, 1, 2, ….并称序列a = (a 0, a 1,…)为n 级线性递归序列。
线性递归序列是LFSR 序列的数学描述, 但为书写简便, 以后在称谓上我们就用LFSR 序列.定义4.1 设a是LFSR序列, 称a的次数最小的特征多项式为a的极小多项式.定理4.1 设a是LFSR序列, 则a的极小多项式是唯一的.6进一步, 设m(x)是a的极小多项式, 则f(x)是a的一a(x)|f(x).个特征多项式当且仅当ma显然, LFSR序列的极小多项式刻画了生成该序列的最短LFSR,而定理4.1进一步说明, 这样的最短LFSR是唯一的.78设f (x )是F 2上n 次多项式, a =(a 0,a 1,a 2,…)是以f (x )为特征多项式的线性递归序列, 则a 由前n 比特a 0,a 1,…,a n −1唯一确定.例如: 设f (x )=x 3+x +1, a =(0,1,1,…)是以f (x )为特征多项式的线性递归序列, 则a =(0,1,1,1,0,0,1,0,1,1,1,…).定义4.2 对于F上序列a, 若存在非负整数k和正2整数T, 使得对任意i≥k, 都有a=a i, 则称a是准周i+T期序列, 最小这样的T称为a的周期, 记为per(a); 若k=0, 则称a是(严格)周期序列.注4.1 设per(a)=T, R是正整数, 若对任意i≥k, 有a i+R=a i, 则T|R.9显然, LFSR是一种有限状态机, 因此, 由LFSR生成的序列必然是准周期的. 下面的定理表明反之也是成立的, 即所有的准周期序列都可用LFSR来生成.定理4.2 a是准周期序列当且仅当a是LFSR序列.10利用序列的极小多项式可以判断序列是否严格周期.(x)是a的极小多项定理4.3 设a是LFSR序列, ma(0)≠0.式, 则a是周期序列当且仅当ma11进一步, 序列的周期由其极小多项式的周期完全确定.定理4.4 设a是周期序列, f(x)是它的极小多项式, 则per(a)=per(f(x)).12注4.2 若a是非严格周期序列, 定理4.4也成立. 由于非周期序列总可以转化成周期序列, 并且实际中使用的序列也都是周期序列, 故后面的讨论仅针对周期序列.13推论4.1 设f(x)是F上不可约多项式, 则以f(x)为2特征多项式的非零序列a有per(a)=per(f(x)).14最后, 我们给出LFSR序列的根表示.[x]是n次无重因子多项式,f(0)≠0, 定理4.5 设f(x)∈F2F2m是f(x)的分裂域, α1,α2,…,αn∈F2m是f(x)的全部根, 则,a1,…), 存在唯对任意以f(x)为特征多项式的序列a=(a一一组β,β2,…,βn∈F2m, 使得1a k=β1α1k+β2α2k+⋅⋅⋅+βnαn k, k≥0.15反之,设β,β2,…,βn∈F2m,若1a k=β1α1k+β2α2k+⋅⋅⋅+βnαn k∈F2, k≥0,,a1,…)以f(x)为特征多项式, 且f(x)是a的极则a=(a≠0, 1≤i≤n.小多项式当且仅当βi16m-序列注意到LFSR总是将0状态转化成0状态, 因此对于一个n级LFSR, 最多可输出周期为2n−1的周期序列.定义4.3 设a是n级LFSR序列, 若per(a)=2n−1, 则称a为n级最大周期序列, 简称为n级m-序列.17由定义显然有定理4.6 设a是n级LFSR序列, 则a是n级m-序列当且仅当a的极小多项式是n次本原多项式18定理4.7 若a是以n次本原多项式f(x)为极小多项式的m-序列, 则0, a, La,…, L2n−2a是以f(x)为特征多项式的序列全体.定理4.7说明, 由同一个本原多项式生成的两条m-序列彼此平移等价. 由定理4.7, 容易证明m-序列满足以下平移可加性.19定理4.8 设a是n级m-序列, 则对于非负整数s和t, 有L s a+L t a=L k a或0, 其中0≤k≤2n−2.注4.3 实际上, 定理4.8给出的平移可加性是m-序列的特有性质, 即对于周期为T的序列a, 非负整数s和t, 若L s a+L t a=L k a或0, 0≤k≤2n−2, 则a是m-序列.20m-序列是最重要的线性反馈移位寄存器序列, 不仅是因为m-序列的周期可达到最大, 而且因为m-序列的统计特性完全满足Golomb S.W.提出的三条随机性假设.2122(1) 元素分布设a 是周期为T 的序列, 将a 的一个周期依次排列在一个圆周上, 并且使得a 0和a T −1相邻, 我们称这样的圆为a 的周期圆.23引理4.1 设a 是n 级m-序列, 0 < k ≤ n , 则F 2上任意一个k 维向量(b 1,b 2,…,b k )在 a 的一个周期圆中出现的次数N (b 1,b 2,…,b k )为N (b 1,b 2,…,b k ) = 122, (,,,)(0,0,...,0)21,.n k k n k b b b −−⎧≠⎪⎨−⎪⎩…若,否则特别地, 分别取k=1和k=n, 有推论4.2 在n级m-序列的一个周期中1出现2n−1次, 0出现2n−1−1次.推论4.3 在n级m-序列的一个周期(圆)中每个(n维)非零状态出现且仅出现1次.2425(2) 游程分布设a 是周期序列, a 在一个周期圆中形如010...01全为 和 101...10全为的项分别叫做a 的0游程和1游程. 而0游程中连续0的个数及1游程中连续1的个数称为游程长度. m -序列具有非常理想的游程分布.定理4.9 设0<k≤n−2, 在n级m-序列的一个周期圆中, 长为k的0游程和1游程各出现2n−k−2次; 长度大于n的游程不出现; 长度为n的1游程和长度为n−1的0游程各出现一次; 长度为n的0游程和长度为n−1的1游程不出现; 游程总数为2n−1.2627(3) 自相关函数m-序列的自相关函数满足二值性, 即定理4.10 设a 是n 级m -序列, 则C a (t ) = 10(1)k k t T a a k +−+=−∑=1, 0(mod 21);21,0(mod 21).n n n t t ⎧−≠−⎪⎨−≡−⎪⎩若若.线性复杂度与Berlekamp-Massey算法线性复杂度的概念是针对LFSR结构提出的, 它衡量了用LFSR来生成给定序列的最小代价. 由于特征多项式完全刻画了生成序列的LFSR, 故自然有以下定义.28定义4.4 设a是周期序列, 称序列a的极小多项式的次数为a的线性复杂度, 记为LC(a).注4.4 对于周期序列a, 显然有LC(a)≤per(a)291969年提出的Berlekamp-Massey算法[14]解决了求序列极小LFSR的问题. 对于线性复杂度为L的序列a, 该算法在已知a的连续2L比特的前提下即可还原出整条序列, 计算时间复杂度仅为O(L2).30第四章序列密码因此, 好的伪随机序列必须具有高的线性复杂度. 对于上一小节介绍的n级m-序列, 其周期为2n−1, 是n 级LFSR能输出的最大周期序列, 但n级m-序列的极小多项式是n次本原多项式, 这意味着n级m-序列的线性复杂度等于n, 则在已知2n比特的条件下, 利用Berlekamp-Massey算法可还原出长为2n−1的原序列. 可见, n级m-序列绝不可单独作为密钥流序列使用.31。
第一章 基本概念1. 密钥体制组成部分:明文空间,密文空间,密钥空间,加密算法,解密算法2、一个好密钥体制至少应满足的两个条件:(1)已知明文和加密密钥计算密文容易;在已知密文和解密密钥计算明文容易;(2)在不知解密密钥的情况下,不可能由密文c 推知明文3、密码分析者攻击密码体制的主要方法:(1)穷举攻击(解决方法:增大密钥量)(2)统计分析攻击(解决方法:使明文的统计特性与密文的统计特性不一样)(3)解密变换攻击(解决方法:选用足够复杂的加密算法)4、四种常见攻击(1)唯密文攻击:仅知道一些密文(2)已知明文攻击:知道一些密文和相应的明文(3)选择明文攻击:密码分析者可以选择一些明文并得到相应的密文(4)选择密文攻击:密码分析者可以选择一些密文,并得到相应的明文【注:✍以上攻击都建立在已知算法的基础之上;✍以上攻击器攻击强度依次增加;✍密码体制的安全性取决于选用的密钥的安全性】第二章 古典密码(一)单表古典密码1、定义:明文字母对应的密文字母在密文中保持不变2、基本加密运算设q 是一个正整数,}1),gcd(|{};1,...,2,1,0{*=∈=-=q k Z k Z q Z q q q(1)加法密码✍加密算法:κκ∈∈===k X m Z Z Y X q q ;,;对任意,密文为:q k m m E c k m od )()(+== ✍密钥量:q(2)乘法密码✍加密算法:κκ∈∈===k X m Z Z Y X q q ;,;*对任意,密文为:q km m E c k m od )(==✍解密算法:q c k c D m k mod )(1-==✍密钥量:)(q ϕ(3)仿射密码✍加密算法:κκ∈=∈∈∈===),(;},,|),{(;21*2121k k k X m Z k Z k k k Z Y X q q q 对任意;密文✍解密算法:q k c k c D m k mod )()(112-==- ✍密钥量:)(q q ϕ(4)置换密码✍加密算法:κσκ∈=∈==k X m Z Z Y X q q ;,;对任意上的全体置换的集合为,密文✍密钥量:!q ✍仿射密码是置换密码的特例3.几种典型的单表古典密码体制(1)Caeser 体制:密钥k=3(2)标准字头密码体制:4.单表古典密码的统计分析(1)26个英文字母出现的频率如下:频率 约为0.12 0.06到0.09之间 约为0.04 约0.015到0.028之间小于0.01 字母 e t,a,o,i.n,s,h,r d,l c,u,m,w,f,g,y,p,b v,k,j,x,q ,z【注:出现频率最高的双字母:th ;出现频率最高的三字母:the 】(二)多表古典密码1.定义:明文中不同位置的同一明文字母在密文中对应的密文字母不同2.基本加密运算(1)简单加法密码✍加密算法:κκ∈=∈====),...,(,),...,(,,11n n n n q n q n n k k k X m m m Z Z Y X 对任意设,密文:✍密钥量:n q(2)简单乘法密码✍密钥量:n q )(ϕ1.简单仿射密码✍密钥量:n n q q )(ϕ2.简单置换密码✍密钥量:n q )!((3)换位密码✍密钥量:!n(4)广义置换密码✍密钥量:)!(n q(5)广义仿射密码✍密钥量:n n r q3.几种典型的多表古典密码体制(1)Playfair 体制:✍密钥为一个5X5的矩阵✍加密步骤:a.在适当位置闯入一些特定字母,譬如q,使得明文字母串的长度为偶数,并且将明文字母串按两个字母一组进行分组,每组中的两个字母不同。