无穷等比数列各项的和
- 格式:ppt
- 大小:1.37 MB
- 文档页数:37
7.7 无穷等比数列各项的和课表解读1.理解无穷等比数列各项的和的含义,掌握无穷等比数列各项的和的公式,会求无穷等比数列各项的和。
2.会利用求无穷等比数列各项的和的方法把循环小数化为分数。
3. 会用无穷等比数列各项和解决相关问题。
目标分解1. 无穷等比数列的各项和的定义:我们把1||<q 的无穷等比数列的前n 项的和n S ,当∞→n 时的极限叫做无穷等比数列的各项和,并用符号S 表示,记作)1|(|11<-==∞→q qa S lin S n n 2. 无穷递缩等比数列的定义:把1||<q 的无穷等比数列成为无穷递缩等比数列。
解释“无穷递减缩等比数列”:(1)数列}{n a 本身是等比数列; (2)当1||<q 时,数列|}{|n a 单调递减,故称“递缩”; (3)当∞→n 时,数列为无穷数列。
强调:(1)只有当无穷等比数列的公比q 满足1||0<<q 时,其前n 项和的极限才存在;(当1=q 时,1lim lim na S n n n ∞→∞→=,极限不存在;当1-=q 时,nn q ∞→lim 不存在;当1||>q 时,nn q ∞→lim 不存在)(2)无穷等比数列各项的“和”已经不同于初等数学中的有限项的“和”,它已经不是代数和,实质上是一个无穷数列}{n S 的极限!(3)应用:化循环小数为分数。
问题分析一、无穷等比数列各项和例1. 计算1131)1(9131121814121lim --∞→-+++-++++n n n n分析:n n 21814121lim++++∞→ 是无穷等比数列前n 项和的极限,即等于n 21814121++++ +…,可以利用无穷等比数列各项和的公式qa S -=11来计算,同理,分母也可以作类似计算,由于分子、分母都有极限,因此可以利用极限运算法则。
解:1131)1(9131121814121lim --∞→-+++-++++n n n n=]31)1(91311[lim )21814121(lim 11--∞→∞→-+++-++++n n n n n=34431)31(1121121==---例2. 无穷递缩等比数列}{n a 各项和是4,各项的平方和是6,求各项的立方和。
一、引言无穷等比数列是数学中一个重要的概念,它具有广泛的应用。
无穷等比数列各项和的研究,对于理解数列的性质、解决实际问题以及深入探索数学领域具有重要意义。
本文将介绍无穷等比数列各项和的概念、性质、计算方法以及应用,旨在为广大读者提供一份关于无穷等比数列各项和的全面概述。
二、无穷等比数列的定义及性质1. 定义无穷等比数列是指一个数列,其中任意一项与其前一项的比值是一个常数。
设无穷等比数列的首项为a1,公比为q,则该数列可表示为:a1, a1q, a1q^2, a1q^3, ...2. 性质(1)若公比q≠1,则无穷等比数列各项和S不存在。
(2)若公比q=1,则无穷等比数列各项和S=a1。
(3)若公比q≠1,且|q|<1,则无穷等比数列各项和S存在,且S=a1/(1-q)。
三、无穷等比数列各项和的计算方法1. 公比q=1时此时,无穷等比数列各项和S=a1。
2. 公比q≠1时此时,无穷等比数列各项和S=a1/(1-q)。
四、无穷等比数列各项和的应用1. 解决实际问题(1)计算无限级数的和在物理学、工程学等领域,许多实际问题都涉及到无限级数的和。
例如,计算电子在导体中的电阻、计算卫星在轨道上的能量等。
无穷等比数列各项和的计算方法为解决这类问题提供了有力工具。
(2)计算人口增长在生物学、经济学等领域,人口增长模型常常采用无穷等比数列。
利用无穷等比数列各项和的计算方法,可以预测未来人口数量。
2. 深入探索数学领域(1)研究数列的性质无穷等比数列各项和的研究有助于我们更好地理解数列的性质,如收敛性、极限等。
(2)探索数学问题无穷等比数列各项和的计算方法在解决一些数学问题中具有重要意义。
例如,在解析几何中,利用无穷等比数列各项和可以证明圆的面积公式。
五、总结无穷等比数列各项和是数学中一个重要的概念,它具有广泛的应用。
本文介绍了无穷等比数列的定义、性质、计算方法以及应用。
通过对无穷等比数列各项和的研究,我们可以更好地理解数列的性质,解决实际问题,并深入探索数学领域。
无穷等比数列各项的和教学目的:掌握无穷等比数列各项的和公式;教学重点:无穷等比数列各项的和公式的应用教学过程:一、复习引入1、等比数列的前n 项和公式是_________________________________________________2、设AB 是长为1的一条线段,等分AB 得到分点A 1,再等分线段A 1B 得到分点A 2,如此无限继续下去,线段AA 1,A 1A 2,…,A n -1A n ,…的长度构成数列,21,,81,41,21n ① 可以看到,随着分点的增多,点A n 越来越接近点B ,由此可以猜想,当n 无穷大时,AA 1+A 1A 2+…+ A n -1A n 的极限是________.下面来验证猜想的正确性,并加以推广二、新课讲授1、无穷等比数列各项的和:公比的绝对值小于1的无穷等比数列前n 项的和当n 无限增大时的极限,叫做这个无穷等比数列各项的和. 设无穷等比数列 ,,,,,112111-n q a q a q a a 的公比q 的绝对值小于1,则其各项的和S 为qa S -=11 )1(<q 例1、求无穷等比数列0.3, 0.03, 0.003,…各项的和.例2、将无限循环小数。
92.0化为分数.三、课堂小结:1、无穷等比数列各项的和公式;2、化循环小数为分数的方法四、练习与作业1、求下列无穷等比数列各项的和:(1); ,83,21,32,98-- (2) ,,,,754154311326A B Cah 第4题(3) ,,,131311313+--+ (4))1(,,,,132<--x x x x ,2、化循环小数为分数:(1)。
72.0 (2)。
603.0(3)。
832.1 (4)。
3204.0-3、如图,等边三角形ABC 的面积等于1,连结这个三角形各边的中点得到一个小三角形,又连结这个小三角形各边的中点得到一个更小的三角形,如此无限继续下去,求所有这些三角形的面积的和.4、如图,三角形的一条底边是a ,这条边上的高是h(1)过高的5等分点分别作底边的平行线,并作出相应的4个矩形,求这些矩形面积的和(2)把高n 等分,同样作出n -1个矩形,求这些矩形面积的和;(3)求证:当n 无限增大时,这些矩形面积的和的极限等于三角形的面积ah/2。
无穷项等比数列求和公式无穷级数等价于其所对应的数列的各项和,\sum_{n=0}^{\infty}{xn}\Leftrightarrow\sum_{n=0}^{\inf ty}{an}, 其中 an=xn 。
无穷级数求和存在意义的前提是该级数收敛,也就是limx\rightarrow\infty=0,但这个条件不够强大,因为存在发散无穷级数的无穷项趋势于0,调和级数就是一个例子。
\sum_{n=1}^{\infty}{}\frac{1}{n}\rightarrow\infty ,该级数是发散的,从而总项求和无意义。
因此,证明无穷级数收敛需要另一个有力的条件,就是证明与无穷级数等价数列的各项和存在且有意义,这便是在用级数的各项和去证明其敛散性。
利用级数敛散性判别公式也可以证明级数的敛散性,只是适用范围较为狭窄如达朗贝尔判别法或柯西根值法。
达朗贝尔比值判别法:limn\rightarrow\infty\frac{x_{n+1}}{x_{n}}=m , 当m>1时该级数发散,而m<1时该级数收敛,m=1时待判。
但值得注意的是,达朗贝尔比值判别法只是级数收敛的充分条件而非必要条件。
(只适用于正项级数)若 \sum_{n=k}^{\infty}{xn}=C, C是常数,则\sum_{n=k}^{\infty}{xn} 收敛于C。
幂级数 \sum_{n=0}^{\infty}a_{n}{x^{n}} 是一种特殊的函数项级数,并且存在唯一收敛半径R与收敛域。
在收敛半径R 内,该幂级数绝对收敛,而在R外则发散,在R点处敛散性待判。
正项幂级数可以通过达朗贝尔比值判别法来判别其敛散性,即limn\rightarrow\infty\frac{a_{n+1}x^{n+1}}{a_{n}x^{n}} =limn\rightarrow\infty\frac{a_{n+1}x}{a_{n}}=m本文主要目标为无穷级数求和,所以在无穷级数性质上的介绍就先闭幕了。