解
(2)A,B 两点在直线 l 的同侧,P 是直线 l 上的一点, 则||PB|-|PA||≤|AB|, 当且仅当 A,B,P 三点共线时, ||PB|-|PA||取得最大值,为|AB|, 点 P 即是直线 AB 与直线 l 的交点, 又直线 AB 的方程为 y=x-2, 解yx= -x2-y+28,=0, 得xy= =1120, , 故所求的点 P 的坐标为(12,10).
2.常用对称的特例 (1)A(a,b)关于 x 轴的对称点为 A′(a,-b); (2)B(a,b)关于 y 轴的对称点为 B′(-a,b); (3)C(a,b)关于直线 y=x 的对称点为 C′(b,a); (4)D(a,b)关于直线 y=-x 的对称点为 D′(-b,-a); (5)P(a,b)关于直线 x=m 的对称点为 P′(2m-a,b); (6)Q(a,b)关于直线 y=n 的对称点为 Q′(a,2n-b).
解
题型四 平行与垂直的综合应用
例 4 已知 A(-4,3),B(2,5),C(6,3),D(-3,0)四点,若顺次连接 A,B,
C,D 四点,试判定图形 ABCD 的形状.
[解] 由题意知 A,B,C,D 四点在坐标平面内的位置,如图所示,由
斜率公式可得
kAB=2-5--34=13,
kCD=-0- 3-36=13,
mn--02=-2, 则
m+2 n+0 2 -2· 2 +8=0,
解得mn==8-,2,
故 A′(-2,8).
解
因为 P 为直线 l 上的一点, 则|PA|+|PB|=|PA′|+|PB|≥|A′B|, 当且仅当 B,P,A′三点共线时,|PA|+|PB|取得最小值,为|A′B|,点 P 即是直线 A′B 与直线 l 的交点, 解xx= -- 2y+2,8=0, 得xy= =- 3,2, 故所求的点 P 的坐标为(-2,3).