(最新)2019届九年级数学上册 第四章 图形的相似 4.2 平行线分线段成比例知能演练提升 (新版)北师大版
- 格式:doc
- 大小:260.50 KB
- 文档页数:4
平行线分线段成比例的基本事实教材分析
是在学生认识相似图形,了解相似多边形的性质及判定的基础上进行学习的,是本章的重点内容.
首先,教材编写者给出了相似三角形的定义.根据定义,要判定两个三角形相似,必须同时满足三个角分别相等,三条边成比例;接着,类比判定三角形全等存在简便方法(SSS,SAS,ASA,AAS等),提出判定相似三角形是否也存在简便方法的问题;接下来,教材编写者设置了一个“探究”,通过探究,给出了平行线分线段成比例的基本事实,然后将其应用于三角形中,得到推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.平行线分线段成比例的基本事实及其推论,是判定三角形相似的第一个定理(平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似)的基础.
本节课的教学重点是,平行线分线段成比例的基本事实及其在三角形中的应用;教学难点应该是,平行线分线段成比例基本事实的探究.
1。
平行线分线段成比例及相似多边形【学习目标】1. 平行线分线段成比例及其推论.2. 平行线分线段成比例及其推论的应用.3. 相似多边形的有关概念. 【要点梳理】要点一、平行线分线段成比例及其推论平行线分线段成比例,一般地,有如下基本事实:两条直线被一组平行线所截,所得的对应线段成比例.推论:平行于三角形一边的直线与其他两边相交,截得的对应线段成比例. 要点诠释:(1).对应线段成比例可用下面的语言形象表示:右全左全右上左上全上全上下上下上===,,等等. (2)有推论可以得出以下结论:要点二、行线分线段成比例及其推论的应用行线分线段成比例及其推论的应用主要是来求线段的长度. 要点三、相似多边形的有关概念 相似多边形:各角分别相等、各边成比例的两个多边形叫做相似多边形.它的符号是“∽”,读作“相似于”.相似比:相似多边形的对应边的比叫做相似比. 要点诠释:(1)相似图形就是指形状相同,但大小不一定相同的图形;(2)“全等”是“相似”的一种特殊情况,即当“形状相同”且“大小相同”时,两个图形是全等.(3)相似多边形的定义既是判定方法,又是它的性质. 【典型例题】类型一、平行线分线段成比例及其推论1、如图,直线AD∥BE∥CF,BC=13AC ,DE=4,那么EF 的值是__________.AB=BC【答案】2.【解析】2、如图,△ABC的顶点A是线段PQ的中点,PQ∥BC,连接PC、QB,分别交AB、AC于M、N,连接MN,若MN=1,BC=3,求线段PQ的长.【思路点拨】【答案与解析】【总结升华】此题考查了平行线段成比例,关键是根据平行线等分线段定理进行解答.举一反三【变式】如图,直线a∥b∥c,直线m、n与a、b、c分别交于点A、C、E、B、D、F,已知AC=4,CE=6,BD=3,则BF等于______________.【答案】7.5.类型二、平行线分线段成比例及其推论的应用3、如图,已知梯形ABCD中,AB∥DC,△AOB的面积等于9,△AOD的面积等于6,AB=7,求CD的长.【思路点拨】根据△AOB的面积等于9,△AOD的面积等于6,可知OB:OD的值,再根据平行线分线段成比例即可求解.【答案与解析】解:∵AB∥DC,4==举一反三=A.4.5 B.8 C.10.5 D.144A 23B32C 6 D16【答案】B.举一反三【变式】如图,已知在△ABC中,点D、E、F分别是边AB、AC、BC上的点,DE∥BC,EF∥AB,且AD:DB=3:5,那么CF:CB等于()A.5:8 B.3:8 C.3:5 D.2:5【答案】解:∵AD:DB=3:5,∴BD:AB=5:8,∵DE∥BC,∴CE:AC=BD:AB=5:8,∵EF∥AB,∴CF:CB=CE:AC=5:8.故选A.类型三、相似多边形的有关概念5、如图是一个由12个相似(形状相同,大小不同)的直角三角形所组成的图案,它是否有点像一个商标图案?你能否也用相似图形设计出几个美丽的图案?最好再给你设计的图案取一个名字.【思路点拨】相似图形是指形状相同的图形.根据相似图形进行变换可以形成一些美丽的图案.【答案与解析】解:由12个相似的直角三角形形成的图案很有创意,给人以美的享受,可以作为一个商标的图案.以下几个图案分别是用相似形设计的美丽图案.【总结升华】考查的是相似图形,相似图形是指形状相同的图形.把一组相似图形进行变换可以得到美丽的图案.。
2018-2019学年九年级数学上册第四章图形的相似《平行线分线段成比例及相似多边形》知识讲解及例题演练(新版)北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018-2019学年九年级数学上册第四章图形的相似《平行线分线段成比例及相似多边形》知识讲解及例题演练(新版)北师大版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018-2019学年九年级数学上册第四章图形的相似《平行线分线段成比例及相似多边形》知识讲解及例题演练(新版)北师大版的全部内容。
平行线分线段成比例及相似多边形【学习目标】1. 平行线分线段成比例及其推论.2。
平行线分线段成比例及其推论的应用.3. 相似多边形的有关概念.【要点梳理】要点一、平行线分线段成比例及其推论平行线分线段成比例,一般地,有如下基本事实:两条直线被一组平行线所截,所得的对应线段成比例.推论:平行于三角形一边的直线与其他两边相交,截得的对应线段成比例.要点诠释:(1).对应线段成比例可用下面的语言形象表示: 右全左全右上左上全上全上下上下上===,,等等. (2)有推论可以得出以下结论:要点二、行线分线段成比例及其推论的应用行线分线段成比例及其推论的应用主要是来求线段的长度。
要点三、相似多边形的有关概念相似多边形:各角分别相等、各边成比例的两个多边形叫做相似多边形.它的符号是“∽”,读作“相似于".相似比:相似多边形的对应边的比叫做相似比.要点诠释:(1)相似图形就是指形状相同,但大小不一定相同的图形;(2)“全等"是“相似”的一种特殊情况,即当“形状相同”且“大小相同"时,两个图形是全等。
2.平行线分线段成比例
知能演练提升
ZHINENG YANLIAN TISHENG
能力提升
1.已知线段a,b,求作线段x,使x=,正确的作法是()
2.
如图,l1∥l2∥l3,则下列说法错误的是()
A.由AB=BC可得FG=GH
B.由AB=BC可得OB=OG
C.由CE=2CD可得CA=2BC
D.由GH=FH可得CD=DE
3.如图,在△ABC中,AD是BC边上的中线,E在AC边上,且AE∶EC=1∶2,BE交AD于点P,则AP∶PD等于()
A.1∶1
B.1∶2
C.2∶3
D.4∶3
(第3题图)
(第4题图)
4.如图,l1∥l2∥l3,CD=2BC=4AB,且AF=2,则EG的长为()
A.2
B.3
C.4
D.6
5.
如图,在△ABC中,AB=AC,E是AC的中点,EF⊥BC于点F,若CF=1.2 cm,则BC=.
6.在△ABC中,AB=6,AC=9,点D在边AB所在的直线上,且AD=2,过点D作DE∥BC,交边AC所在直线于点E,则CE的长为.
7.
如图,在△ABC中,DE∥BC,DF∥AC,小敏经过分析发现,你同意她的结论吗?说说你的想法.
8.
如图,ED∥GH∥BC.
(1)若EC=5,HC=2,DG=4,求BG的长;
(2)若AE=4,AC=6,AD=5,求BD的长.
创新应用
9.
如图,DA⊥AB,CB⊥AB,M是DC的中点.求证:MA=MB.
答案:
能力提升
1.B
2.B
3.A
4.C
5.4.8 cm
6.6或12
7.解同意.因为DE∥BC,DF∥AC,所以四边形DFCE是平行四边形,所以DE=CF,由DE∥BC可得,由DF∥AC可得,故.
8.解 (1)EH=EC-HC=3.
∵ED∥GH∥BC,
∴EH∶HC=DG∶BG,
即3∶2=4∶BG,解得BG=.
(2)∵ED∥BC,∴BA∶AD=CA∶AE,
即BA∶5=6∶4,解得BA=.
∴BD=+5=.
创新应用
9.证明作MN⊥AB,垂足为N(图略).
设AB与CD相交于点O,
∵DA⊥AB,CB⊥AB,
∴MN∥DA,MN∥BC.
∴.
∵M是DC的中点,∴AN=BN.
∴MN是AB的垂直平分线.∴MA=MB.。