第2讲(分离过程热力学)
- 格式:ppt
- 大小:307.50 KB
- 文档页数:50
知识点睛热力学第一定律是能量守恒在热学中的体现,是解决所有涉及动力学过程的热力学题目 的基础。
“活塞”是连接两个互相分离的腔体的一种装置。
由于活塞通常可以自由移动,因此问 题会变得十分复杂。
然而,活塞题通常的特点是烦而不难,希望同学们能够耐心求解。
本讲 将向您介绍热力学第一定律以及一些活塞过程。
学完之后能给你的同学讲明白这几个问题,就算成功了:1) 为什么内能之和状态有关,做功和吸热与过程有关,为什么比热是与过程有关的,而不只是材料的属性。
2) 当活塞两边压强不一样的时候,算体积功,应当怎样选择用哪一边计算。
热力学第一定律:这是能量守恒在热力学过程中的体现。
当系统与外界间的相互作用既有做功又有热传递两种方式时,设系统内能增加量为 ∆E 。
在这一过程中系统从外界吸收的热量为 Q ,外界对系统做功为 W ,则 ∆E = Q + W 。
式中各量是代数量,有正负之分。
系统吸热 Q >0,系统放热 Q <0;外界做功 W >0,系统做功 W <0;内能增加。
△E>0,内能减少△E<0。
热力学第一定律是普遍的能量转化和守恒定律在热现象中的具体表 现。
活塞过程泛指容器中有活塞的气体过程。
通常气体过程是要求准静态的,因此活塞在任意时刻都受力 平衡。
这是沟通两个腔体中的气体的一个条件。
运用理想气体状态方程和热力学第一定律即可解决大部分 活塞问题。
还有一类特殊的活塞问题,是求解在平衡状态下,活塞偏离平衡位置的小振动。
通常,如果没有特殊 说明,那么我们取气体的绝热模型。
我们把满足 PV n=常量的过程称为多方过程,其中 n为多方系数。
n=1 时,即为等温过程,n=γ时为绝 热过程,n=0 为等压过程,n=∞为等体过程。
高二物理竞赛 第 2 讲 热力学第一定律与活塞运动本讲导学2通常,我们可以运用热学和力学来计算我们的大气层高度。
一个模型是等温模型,它假设各个高度的 大气是等温的,进而求解。
另一个模型是绝热模型,它假设气体的热交换是不充分的,不同高度的大气满足绝热关系:PV γ=C 。
热力学过程热力学过程是研究能量转化和能量传递的学科,它涵盖了热力学系统的各种性质和行为。
热力学过程可以分为几种基本类型,包括等温过程、绝热过程、等压过程和等容过程等。
这些过程在自然界和工程领域中都有着广泛的应用,对于我们理解能量转化和控制系统行为至关重要。
等温过程是指系统在恒定温度下发生的过程,系统与外界交换热量,但系统内部温度保持恒定。
在等温过程中,系统对外界做功或从外界获得功,使系统内部能量保持不变。
例如,我们可以通过等温过程来研究热机的效率和性能。
绝热过程是指系统与外界不发生热量交换的过程,系统内部没有热量的流入或流出。
在绝热过程中,系统的内能发生变化,同时系统对外界做功或从外界获得功。
绝热过程常常用于研究理想气体的行为,例如在压缩空气或膨胀气体过程中。
等压过程是指系统在恒定压力下发生的过程,系统与外界交换热量,但系统内部压力保持不变。
在等压过程中,系统内部能量发生变化,同时系统对外界做功或从外界获得功。
等压过程常用于研究恒压条件下的热量传递和功率输出。
等容过程是指系统在体积不发生变化的情况下发生的过程,系统内部不做体积功。
在等容过程中,系统内部能量发生变化,但系统对外界不做功。
等容过程常用于研究恒容条件下的热量传递和内能变化。
热力学过程的研究不仅有助于我们理解自然界中能量转化的规律,也有助于我们设计和优化工程系统。
通过对不同类型热力学过程的研究,我们可以更好地理解系统的行为,并提高系统的效率和性能。
因此,热力学过程在能源、环境保护、材料科学等领域都具有重要意义。
总的来说,热力学过程是研究能量转化和传递的学科,涵盖了各种不同类型的过程。
这些过程在自然界和工程领域中都有着广泛应用,对于我们理解能量转化和控制系统行为至关重要。
通过深入研究热力学过程,我们可以更好地优化系统设计,提高能源利用效率,推动科学技术的发展。
授课教案(Teaching plan)培养目标作为现代高等教育的发端,天津大学在一百一十多年的办学实践中,秉承“实事求是”校训和“严谨治学、严格教学要求”的双严方针,牢固树立学校以育人为本、育人以教育为先、质量是学校的生命线、教学工作在学校具有优先地位的理念。
强化教学管理,深化教学改革,逐步构建了具有天大特色的本科创新人才培养体系。
努力培养专业口径宽、理论基础厚、实践能力强、综合素质高,具有创新精神和国际视野的高层次人才,使之成为推动科技创新、经济发展、社会进步的栋梁。
本课程是高等学校化学工程及工艺专业(本科)的一门专业基础课,是学生在具备了物理化学、化工原理、化工热力学等技术基础知识后的一门专业主干课。
本课程主要讲授化工生产实际中复杂物系的分级、分离、浓缩、提纯等技术。
通过该课程的学习,使学生掌握各种常用分离过程的基本理论,操作特点,简捷和严格计算方法以及强化改进操作的途径,并对一些新型分离技术有一定的了解,能够根据具体的分离任务和分离要求,选择适宜的分离方法,设计合理的分离序贯。
围绕本课程的实验教学、仿真实习、工程案例教学环节使分离理论与实践有机结合,显著增强了课程的工程实践特色,符合工科创新性人才的培养目标。
重点难点(1)课程的重点、难点化工分离过程属于理论性较强的课程,综合运用化工原理、物理化学、化工热力学、传递过程等课程的理论知识,针对化工生产中经常遇到的多组分非理想性物系,从分离过程的共性出发,讨论各种分离方法的特征。
本课程着重基本概念的理解,为分离过程的选择、特性分析和计算奠定基础。
在以基础知识、基本理论为重点的基础上,强调将工程与工艺相结合的观点,以及设计和分析能力的训练;强调理论联系实际,以提高解决实际问题的能力。
另外,在讲授传统分离技术的同时,还不断引进新型分离技术的有关内容,并逐渐加强其重要性,以拓宽学生在分离工程领域的知识面,从而适应多种专业化方向的要求。
难点在于本课程中应用到很多化工热力学和传递过程理论,内容较为深奥和抽象。
化工热力学精ppt课件目录•化工热力学基本概念•流体的热物理性质•化工过程能量分析•相平衡与相图分析•化学反应热力学基础•化工热力学在工艺设计中的应用PART01化工热力学基本概念孤立系统与外界既没有物质交换也没有能量交换的系统。
开放系统与外界既有能量交换又有物质交换的系统。
封闭系统与外界有能量交换但没有物质交换的系统。
热力学系统及其分类热力学基本定律热力学第零定律如果两个系统分别与第三个系统处于热平衡状态,那么这两个系统也必定处于热平衡状态。
热力学第一定律热量可以从一个物体传递到另一个物体,也可以与机械能或其他能量互相转换,但是在转换过程中,能量的总值保持不变。
热力学第二定律不可能把热从低温物体传到高温物体而不产生其他影响,或不可能从单一热源取热使之完全转换为有用的功而不产生其他影响,或不可逆热力过程中熵的微增量总是大于零。
状态方程与状态参数状态方程描述系统或它的性质和本质的一系列数学形式。
将系统的物理性质用数学形式表达出来,即建立该系统各状态参数间的函数关系。
状态参数表征体系特性的宏观性质,多数指具有能量量纲的热力学函数(如内能、焓、吉布斯自由能、亥姆霍茨自由能)。
偏微分与全微分概念偏微分在多元函数中,函数对每一个自变量求导数,就是偏导数。
全微分如果函数z = f(x, y) 在(x, y) 处的全增量Δz = f(x + Δx, y + Δy) -f(x, y) 可以表示为Δz = AΔx + BΔy + o(ρ),其中A、B 不依赖于Δx, Δy 而仅与x, y 有关,ρ = √[(Δx)2 + (Δy)2],此时称函数z = f(x, y) 在点(x, y) 处可微,AΔx + BΔy 称为函数z = f(x, y) 在点(x, y) 处的全微分。
PART02流体的热物理性质基于实验数据的经验方法利用已有的实验数据,通过拟合、插值等数学手段,得到纯物质的热物理性质随温度、压力等条件的变化规律。
化工热力学知识在吸附分离过程中的应用一、基本概念(1)化工热力学“化工热力学”是热力学与化学相结合的学科,它在热力学内容中补充化合物众多及化学变化的特点,又增加了气液溶液及化学反应的内容。
又是热力学与化学工程相结合,除增加化学热力学内容外,又强调了组成变化的规律,要确定反应物与产物的化学平衡组成规律,更要解决各种相平问题,即各相组成分布的规律。
化工热力学是在基本热力学关系基础上,重点讨论能量关系和组成关系。
能量关系要比物理化学中简单的能量守恒大大扩展,在组成计算中包括化学平衡体系组成及相平衡组成计算及预测,对于各种不同种类相平衡,在各相组元化学位相同的基础上提出了使用的关系式,并在各种不对称体系情况下,可以适应或做出修正。
(2)吸附分离过程吸附分离是利用流体相中某一或多种组分积累在多孔固体吸附剂上,使流体各组分浓度改变而得以实现分离的单元操作。
吸附分离过程的性能依赖于流体在多孔固体吸附剂上的吸附性能(吸附容量和选择性)以及在多孔固体吸附剂内的扩散传质行为,其中吸附容量和选择性主要是由流体在吸附剂上的吸附平衡特性所决定的,因而流体的吸附平衡是吸附分离过程应用的基础。
二、吸附分离过程中相关现象及概念与热力学知识的联系(1)吸附的过程是放热的过程由吉布斯函数G的定义,G = H - TS等温下有公式:△G = △H - T△S而吸附作用是典型的熵减小过程(吸附质由自由运动状态到在吸附剂表面定向排列,其混乱度减小),即T△S < 0.要想等温等压下的吸附过程能够自发进行,必有△G ≤0,即△H - T△S ≤0,于是△H ≤T△S < 0 .可以看出吸附作用的△H 恒为负,也就是放热过程.(2)吸附等温线从热力学意义上说,固体的可吸附层是一独特的相,它和周围流体的平衡符合热力学定律,可以用吸附等温线方程来描述,因此对吸附热力学性能的研究可以通过研究吸附等温线来进行。
通过吸附等温线数据可以得到相关吸附热力学特性,如吸附热、吸附能分布函数,同时可得到吸附剂的孔容、比表面、孔径分布等数据,通过不同组分的等温线还可以计算分离系数。
化工分离过程重点1、相平衡:指混合物或溶液形成若干相,这些相保持着物理平衡而共存的状态,从热力学上看,整个物系的自由焓处于最小的状态;从动力学看,相间表观传递速率为零。
2、区域熔炼:是根据液体混合物在冷凝结晶过程中组分重新分布的原理,通过多次熔融和凝固,制备高纯度的金属、半导体材料和有机化合物的一种提纯方法。
3、独立变量数:一个量改变不会引起除因变量以外的其他量改变的量。
4、反渗透:是利用反渗透膜选择性地只透过溶剂(通常是水)的性质,对溶液施加压力克服溶液的渗透压,使溶剂从溶液中透过反渗透膜而分离出来的过程。
5、相对挥发度:溶液中的易挥发组分的挥发度与难挥发组分的挥发度之比。
6、理论板:是一个气、液两相皆充分混合而且传质与传热过程的阻力皆为零的理想化塔板。
7、清晰分割:若馏出液中除了重关键组分外没有其他的重组分,而釜液中除了轻关键组分外没有其他轻组分,这种情况为清晰分割。
8、全塔效率:完成给定任务所需要的的理论塔板数与实际塔板数之比。
默弗里板效率:实际板上的浓度变化与平衡时应达到的浓度变化之比。
9、泡点:在一定压力下,混合液体开始沸腾,即开始有气泡产生时的温度。
露点:在一定压力下,混合气体开始冷凝,即开始出现第一个液滴时的温度。
10、设计变量:设计分离装置中需要确定的各个物理量的数值,如进料流率,浓度、压力、温度、热负荷、机械工的输入(或输出)量、传热面大小以及理论塔板数等。
这些物理量都是互相关联、互相制约的,因此,设计者只能规定其中若干个变量的数值,这些变量称设计变量。
简答题:1、分离操作的重要意义答:分离操作一方面为化学反应提供符合质量要求的原料,清除对反应或者催化剂有害的杂质,减少副反应和提高收率;另一方面对反应产物起着分离提纯的作用,已得到合格的产品,并使未反应的反应物得以循环利用。
此外,分离操作在环境保护和充分利用资源方面起着特别重要的作用。
2、精馏塔的分离顺序答:确定分离顺序的经验法:1)按相对挥发度递减的顺序逐个从塔顶分离出各组分;2)最困难的分离应放在塔序的最后;3)应使各个塔的溜出液的摩尔数与釜液的摩尔数尽量接近;4)分离很高回收率的组分的塔应放在塔序的最后;5)进料中含量高的组分尽量提前分出。