2分离过程热力学
- 格式:ppt
- 大小:851.00 KB
- 文档页数:11
化工原理名词解释
化工原理是研究化学过程和工程原理的学科,涉及到物质的转化、传输、分离、反应等基本过程。
以下是几个与化工原理相关的重要名词解释:
1. 物质转化:指物质经过化学反应或物理改变而发生性质、组成或结构上的变化,例如化学反应中的物质变化过程。
2. 传输过程:指物质在不同相之间传递的过程,包括质量传递和热量传递,例如气体、液体或固体中物质的扩散、对流等过程。
3. 分离过程:指将混合物中的组分分离出来的过程,常见的方法包括蒸馏、萃取、结晶、过滤等。
4. 反应工程:即化学反应的工程化实现,包括反应过程的设计、优化、控制等,以实现高效、可持续的物质转化。
5. 动力学:研究化学反应速率及其影响因素的科学,包括反应速率、反应机制等的研究。
6. 热力学:研究物质在不同条件下的能量转化和热力学性质的科学,包括热力学平衡、熵、焓等的研究。
7. 流体力学:研究流体运动和力学性质的科学,常应用于化工过程中的流体流动、混合等问题的分析和计算。
8. 传热学:研究热量传递过程和传热设备的学科,常用于分析和设计化工过程中的传热过程和设备。
9. 质量平衡:指在化工过程中,通过对物质的输入、输出和转化进行质量守恒的分析,以实现物质平衡的达成。
10. 设备设计:指化工过程中所需的各种设备,如反应器、传热设备、分离设备等的设计和选择,以满足工艺要求和经济效益。
化工原理主要内容
化工原理是化学工程专业的基础课程,它是化学工程学科的核心课程之一,也是学生学习化工专业的重要基础。
化工原理主要内容包括热力学、流体力学、传质与分离过程等方面的知识。
下面将对这些内容逐一进行介绍。
首先,热力学是化工原理中的重要内容之一。
热力学是研究能量转化和能量传递规律的科学,它对于化工过程中的能量平衡和热力学性能分析起着至关重要的作用。
在化工原理课程中,学生需要学习热力学基本定律,如热力学第一定律和热力学第二定律,以及应用这些定律解决化工过程中的实际问题。
其次,流体力学也是化工原理的重要内容之一。
流体力学是研究流体静力学和流体动力学规律的科学,它对于化工过程中的流体流动和传热传质过程具有重要意义。
在化工原理课程中,学生需要学习流体的性质和流体静力学方程,以及应用这些知识分析化工设备中的流体流动和传热传质过程。
此外,传质与分离过程也是化工原理的重要内容之一。
传质与分离过程是研究物质传递和物质分离规律的科学,它对于化工过程
中的物质转化和产品提纯具有重要意义。
在化工原理课程中,学生需要学习物质传递的基本原理和传质过程的数学模型,以及应用这些知识设计化工设备中的分离过程和提纯过程。
综上所述,化工原理主要内容包括热力学、流体力学、传质与分离过程等方面的知识。
这些知识对于化学工程专业的学生来说至关重要,它们是学生理解和掌握化工过程基本原理和工程实践技术的基础。
因此,学生需要认真学习化工原理课程,深入理解其中的知识内容,扎实掌握其中的理论和方法,为日后的学习和工作打下坚实的基础。
课程名称:化工分离工程授课班级:化学工程与工艺专业授课教师:[教师姓名]授课时间:[具体日期]课时安排:2课时教学目标:1. 让学生了解化工分离工程的基本概念、分类和重要性。
2. 掌握常见分离方法的原理、操作特点和设备。
3. 理解分离过程的热力学平衡、传质与扩散的基本理论。
4. 培养学生分析和解决实际化工分离工程问题的能力。
教学内容:一、绪论1. 化工分离工程的基本概念、分类和重要性2. 常见分离方法简介二、传质与分离过程的热力学基础1. 热力学平衡2. 传质与扩散的基本理论三、常见分离方法1. 吸收法- 原理、操作特点、设备- 气液吸收、气固吸收2. 蒸馏法- 原理、操作特点、设备- 简单蒸馏、精馏3. 萃取法- 原理、操作特点、设备- 液-液萃取、液-固萃取4. 膜分离法- 原理、操作特点、设备- 微滤、超滤、纳滤、反渗透教学过程:一、导入1. 提问:什么是化工分离工程?它在化学工业中的重要性是什么?2. 回答并总结化工分离工程的基本概念、分类和重要性。
二、讲授新课1. 传质与分离过程的热力学基础- 讲解热力学平衡、传质与扩散的基本理论,结合实例进行分析。
2. 常见分离方法- 吸收法、蒸馏法、萃取法、膜分离法- 分别介绍每种方法的原理、操作特点、设备,并举例说明。
三、课堂讨论1. 学生分组讨论:针对一个实际化工分离工程问题,分析并选择合适的分离方法。
2. 各组汇报讨论结果,教师点评并总结。
四、课堂小结1. 回顾本节课所学内容,强调重点知识。
2. 布置课后作业,巩固所学知识。
教学评价:1. 学生对化工分离工程的基本概念、分类和重要性的掌握程度。
2. 学生对常见分离方法的原理、操作特点和设备的理解程度。
3. 学生分析和解决实际化工分离工程问题的能力。
教学资源:1. 教材:《化工分离工程》2. 课件:化工分离工程相关课件3. 网络资源:化工分离工程相关网站、文献资料教学反思:本节课通过理论讲解、实例分析和课堂讨论,使学生掌握了化工分离工程的基本概念、分类和重要性,了解了常见分离方法的原理、操作特点和设备。
化工热力学知识在吸附分离过程中的应用一、基本概念(1)化工热力学“化工热力学”是热力学与化学相结合的学科,它在热力学内容中补充化合物众多及化学变化的特点,又增加了气液溶液及化学反应的内容。
又是热力学与化学工程相结合,除增加化学热力学内容外,又强调了组成变化的规律,要确定反应物与产物的化学平衡组成规律,更要解决各种相平问题,即各相组成分布的规律。
化工热力学是在基本热力学关系基础上,重点讨论能量关系和组成关系。
能量关系要比物理化学中简单的能量守恒大大扩展,在组成计算中包括化学平衡体系组成及相平衡组成计算及预测,对于各种不同种类相平衡,在各相组元化学位相同的基础上提出了使用的关系式,并在各种不对称体系情况下,可以适应或做出修正。
(2)吸附分离过程吸附分离是利用流体相中某一或多种组分积累在多孔固体吸附剂上,使流体各组分浓度改变而得以实现分离的单元操作。
吸附分离过程的性能依赖于流体在多孔固体吸附剂上的吸附性能(吸附容量和选择性)以及在多孔固体吸附剂内的扩散传质行为,其中吸附容量和选择性主要是由流体在吸附剂上的吸附平衡特性所决定的,因而流体的吸附平衡是吸附分离过程应用的基础。
二、吸附分离过程中相关现象及概念与热力学知识的联系(1)吸附的过程是放热的过程由吉布斯函数G的定义,G = H - TS等温下有公式:△G = △H - T△S而吸附作用是典型的熵减小过程(吸附质由自由运动状态到在吸附剂表面定向排列,其混乱度减小),即T△S < 0.要想等温等压下的吸附过程能够自发进行,必有△G ≤0,即△H - T△S ≤0,于是△H ≤T△S < 0 .可以看出吸附作用的△H 恒为负,也就是放热过程.(2)吸附等温线从热力学意义上说,固体的可吸附层是一独特的相,它和周围流体的平衡符合热力学定律,可以用吸附等温线方程来描述,因此对吸附热力学性能的研究可以通过研究吸附等温线来进行。
通过吸附等温线数据可以得到相关吸附热力学特性,如吸附热、吸附能分布函数,同时可得到吸附剂的孔容、比表面、孔径分布等数据,通过不同组分的等温线还可以计算分离系数。
开尔文热力学第二定律
开尔文热力学第二定律是一个描述了物理系统在分离过程中动
能变化的物理定律,其中包括了热力学的能量守恒定律及其它物理定律。
它最初由苏格兰物理学家、力学学家弗朗西斯·开尔文(Francis Bacon)提出,也被称为开尔文恒量定律。
开尔文热力学第二定律的全称为:在任何物理过程中,系统的总熵增加不会小于零,即Stotal增加不小于系统接受的热量,并且等于此热量减去系统向环境放出的热量。
另一种说法是:物理系统在任何物理或化学过程中,总的熵增加量大于或等于零。
简而言之,开尔文热力学第二定律指出,物理系统会在化学或物理过程中不断增加总熵,而这些熵增加量不小于系统接受的热量减去系统向环境放出的热量的差。
因此,热能在任何物理过程中都是不可回收的,我们只能对其进行转换和重新利用,但不可能让热量向环境放出的量小于系统接受的量。
- 1 -。
分离过程实质简介摘要简要介绍了分离技术的分类和特征结合实例从热力学角度讨论分离过程的本质。
关键词分离过程实质热力学1 绪言分离技术广泛地应用于物理和化学的基础研究还有环境、医学、药学、材料、化工、食品和石油工程的应用研究。
可以说物质的分离是科学研究的重要步骤分离科学是一门涉及多学科知识反过来又推动其他学科发展的重要科学。
2 分离技术分类分离是利用混合物中各组分在物理性质或化学性质上的差异通过适当的方法或装置使各组分分配至不同的空间区域或在不同的时间依次分配至同一空间区域的过程。
通常用于分离的物质的性质列于表1.1。
表2.1 通常用于分离的物质性质类别物质性质物理性质力学性质密度、摩擦因数、表面张力、尺寸、质量热力学性质熔点、沸点、临界点、蒸气压、溶解度、分配系数、吸附电磁性质电导率、介电常数、签约率、电荷、淌度、磁化率输送性质扩散系数、分子飞行速度化学性质热力学性质反应平衡常数、化学吸附平衡常数、离解常数、电离点位反应速率反应速度常数生物学性质生物亲和力、生物吸附平衡、生物学反应速度常数分离方法的种类很多分类方法也很多从不同角度可将分离方法分成若干各有特色的类型。
2.1 按被分离物质的性质分类 1 物理分离法按被分离组分物理性质的差异采用适当的物理手段进行分离。
如离心分离和电磁分离。
2 化学分离法按被分离组分化学性质的差异通过适当的化学过程使其分离。
如沉淀分离、萃取分离、色谱分离和选择性溶解。
3 物理化学分离法按被分离组分物理化学性质的差异进行分离。
如蒸馏、挥发、电泳、区带熔融和膜分离。
2.2 按分离过程的本质分类1 平衡分离过程平衡分离过程是一种利用外加能量或分离剂使原混合物形成新的相界面利用互不相容的量相界面上的平衡关系使均相混合物得以分离的方法。
表2.2给出了常见的平衡分离方法。
表2.2 常见平衡分离方法第二相第一相气相液相固相超临界流体相气相—汽提、蒸发、蒸馏升华、脱附—液相吸收、蒸馏液-液萃取区带熔融、固相萃取超临界流体吸收固相吸附、逆升华结晶、吸附—超临界流体吸收超临界流体相—超临界流体萃取超临界流体萃取— 2 速度差分离过程速度差分离过程是一种外加能量强化特殊梯度场重力梯度、压力梯度、温度梯度、浓度梯度和电位梯度等用于非均匀相混合物分离的方法。