电子万能试验机的分析原理
- 格式:doc
- 大小:33.00 KB
- 文档页数:5
电液伺服万能试验机工作原理及检验应用分析线材质量检验以及质量数据分析,对于线材企业来说是必不可少的。
它是提高线材质量的重要手段。
文章结合实际,介绍了电液伺服万能试验机的工作原理,及其在线材力学性能检验中的应用,供参考。
标签:电液伺服万能试验机;工作原理;拉伸试验;弯曲试验1.万能试验机的优点试验空间合理,安装调整方便;采用高精度负荷传感器和高精度光电编码器测活塞位移,准确度高;试验方案简单灵活,易得到理想的试验结果;选用优质液压元件,确保系统长期、稳定运行;具有超载、限位、超温、超电压等多种保护功能,安全可靠;负荷全程不分档,性能更为优越[1]。
2.试验机的工作原理电液伺服万能试验机是机电一体化产品,主要由机械部分、液压动力单元、测控系统、计算机数据处理系统、试验结果输出等部分组成。
2.1机械部分机械部分主要由主机、试样夹持装置、防护装置、温度控制装置等部分组成。
主机是试验机的基础,包括一些基础结构件、传动部分、液压执行元件。
基础结构件包括底座、主油缸、试台、上下横梁、光杠等。
传动部分用于调整试验空间,包括丝杠螺母副、链条传动部分、减速机等。
液压执行元件包括主油缸和小活塞组件,主油缸是试验力的来源,小活塞组件提供拉伸试验时的初始夹紧功能[2]。
主机的工作原理是:底座的两侧孔内分别装两根丝杠,丝杠可在底座内转动,但不能轴向移动,传动螺母固定在下横梁上,底座上装有减速机,减速机通过链轮驱动丝杠转动,进而使下横梁上下移动,目的是调整试验空间。
底座中央的孔内装有主油缸组件,活塞上端固定负荷传感器,负荷传感器上端安装试台,试台的4个角上装有4根光杠,光杠的顶端支撑着横梁。
如下页图1、图2所示,下横梁和底座组成一个框架。
试台、光杠、上横梁组成另一个框架。
在试台与下横梁之间装压缩夹具。
在上下横梁上装拉伸夹具,拉伸夹具的原理是两个对称斜面构成楔形夹紧,小活塞组件提供初始夹紧力。
主油缸注入高压油时,通过负荷传感器驱动试台、光杠、上横梁组成的框架向上运动。
电子万能材料试验机
电子万能材料试验机是一种用于材料性能测试的设备,它可以对各种材料的拉伸、压缩、弯曲、剪切等性能进行测试,是材料科学研究和工程实践中不可或缺的重要设备之一。
首先,电子万能材料试验机具有高精度的测量能力。
它可以对材料的各种性能参数进行精确测量,如材料的抗拉强度、屈服强度、断裂伸长率等。
通过这些精确的测量数据,可以全面了解材料的性能特点,为材料的选用和设计提供重要依据。
其次,电子万能材料试验机具有多功能的测试能力。
它可以进行静态测试、动态测试、疲劳测试等多种测试模式,可以满足不同材料在不同加载条件下的性能测试需求。
无论是金属材料、塑料材料、复合材料还是橡胶材料,电子万能材料试验机都可以进行全方位的测试,为材料的研究和应用提供全面的支持。
此外,电子万能材料试验机还具有高效的测试效率。
它可以实现自动化测试,通过预设测试参数和曲线,实现自动加载、自动记录数据、自动分析结果等功能。
这不仅提高了测试的效率,还减少了人为因素对测试结果的影响,保证了测试数据的可靠性和准确性。
另外,电子万能材料试验机还具有良好的用户体验。
它采用了人性化的操作界面和智能化的控制系统,使操作更加简便、快捷。
同时,它还具有完善的安全保护措施,确保了操作人员和设备的安全。
总的来说,电子万能材料试验机是一种功能强大、性能优越的材料性能测试设备,它在材料科学研究、新材料开发、质量控制等领域发挥着重要作用。
随着科技的不断进步和发展,相信电子万能材料试验机将会更加完善和先进,为材料研究和应用领域带来更多的新突破和进展。
万能试验机原理
万能试验机是一种实验设备,它可以进行多种不同类型的试验。
它的原理是通过使用不同的测试装置和传感器来测量和记录试验样品在受力或受力变形情况下的机械性能。
试验样品可以是材料、结构、零件或产品。
万能试验机通常由机架、液压系统、控制系统和测试装置组成。
在实验中,试验样品被置于试验装置中,并施加力或力变形。
通过传感器测量和记录试验样品的受力或机械变形情况。
这些传感器可以是力传感器、位移传感器、压力传感器或其他类型的传感器。
万能试验机的控制系统用于控制试验过程。
它可以通过电脑、按钮或手柄进行操作和调节。
控制系统能够控制加载速度、加载力或加载变形等参数。
通过控制系统,可以进行静态试验、疲劳试验、断裂试验、拉伸试验、弯曲试验等多种试验。
万能试验机的应用范围非常广泛。
它可以用于材料研究、质量控制、产品开发、结构测试等领域。
根据不同的测试需求,可以选择不同的测试装置和传感器,以进行相应的试验。
总之,万能试验机通过使用不同的测试装置和传感器,测量和记录试验样品在受力或受力变形情况下的机械性能。
它的应用范围广泛,可以进行多种类型的试验。
万能材料试验机的工作原理万能试验机是一种用于测试材料力学性能的机械设备,它可以对各种材料进行拉伸、压缩、弯曲、剪切等力学性能测试。
其工作原理主要包括电机驱动系统、传感器系统、控制系统和数据采集系统。
电机驱动系统是整个试验机的动力源,通常采用交直流电机,其功率和转速可以根据实验需要进行调整。
其工作原理是将电能转换成机械能,通过输入的电流和电压控制电机的运行,使其提供所需的力和速度。
传感器系统是万能试验机的重要组成部分,主要是用于测量试验样品在力学性能测试中的各项参数。
常见的传感器包括负荷传感器、位移传感器和应变传感器。
负荷传感器用于测量试验样品在加载过程中施加的力,位移传感器用于测量试验样品在加载过程中的位移,应变传感器用于测量试验样品在加载过程中的应变。
控制系统是万能试验机的核心部分,主要用于控制试验机的加载过程,包括力的加载,速度的控制和试验曲线的绘制。
其工作原理是通过控制电机的转速和加载力的大小,实现试验样品在预设的加载条件下进行测试。
控制系统通常采用电脑控制,可以通过输入预设参数控制测试过程,同时也可以实时监测测试过程中的各项参数。
数据采集系统用于采集和记录试验过程中产生的各项数据,包括负荷、位移、应变等参数。
其工作原理是通过传感器测量产生的信号,经过放大、滤波和数字转换等处理,最终记录到计算机中进行分析和保存。
数据采集系统通常由硬件和软件两部分组成,硬件负责采集和处理信号,软件负责显示和分析数据。
万能试验机的工作原理可以简单总结为:通过电机驱动系统提供动力,传感器系统测量试验样品的力学性能参数,控制系统控制试验样品在加载过程中的力和速度,数据采集系统记录和分析试验过程产生的数据。
电子万能试验机电子万能试验机是采纳各类传感器进行力和变形检测,通过微机掌控的新型机械式试验机,采纳了传感技术、自动化检测和微机掌控等先进的测控技术,不仅可以完成拉伸、压缩、弯曲、剪切等常规试验,还能进行材料的断裂性能讨论以及完成载荷或变形循环、恒加载速率、恒变形速率、蠕变、松弛和应变疲乏等一系列静、动态力学性能试验。
目录电子万能试验机工作原理电子万能试验机应用范围电子万能试验机特点电子万能试验机功能电子万能试验机系统配置电子万能试验机保养程序电子万能试验机与液压万能试验机的区分电子万能试验机工作原理在测试系统接通电源后,微机按试验前设定的数值发出横梁移动指令,该指令通过伺服掌控系统掌控主机内部的伺服电机转动,经过皮带、齿轮等减速机构后驱动左、右丝杠转动,由活动横梁内与之啮合的螺母带动横梁上升或下降。
装上试样后,试验机可通过载荷、应变、位移传感器获得相应的信号,该信号放大后通过A/D进行数据采集和转换,并将数据传递给微机。
微机一方面对数据进行处理,以图形及数值形式在微机显示器上反映出来;另一方面将处理后的信号与初始设定值进行比较,调整横梁移动更改输出量,并将调整后的输出量传递给伺服掌控系统,从而可达到恒速率、恒应变、恒应力等高要求的掌控需要。
电子万能试验机应用范围—2037VB62,广泛应用于各种金属、非金属及复合材料,如木材、塑料型材、电线电缆、纸张、薄膜、橡胶、医药、食品包装材料、织物等进行拉伸性能指标的测试。
同时可依据用户供给的国内、国际标准定做各种试验数据处理软件和试验辅具。
数字显示—2037VB62适合于只求力值、抗拉强度、抗压强度等相关数据的用户,如需求取较为多而杂参数,微机掌控—2037VB62是更好的选择。
电子万能试验机特点—2037VB62重要采纳伺服电机作为动力源,丝杠、丝母作为执行部件,实现试验机移动横梁的速度掌控。
—2037VB62,不用油源,所以更清洁,使用维护更便利;它的试验速度范围可进行调整,试验速度可达0.001mm/min~1000mm/min,速比可达100万倍之多,试验行程可按需要而定,更快捷;测力精度高,有些甚至能达到0.2[[%]];体积小、重量轻、空间大、便利加配相应装置来做各项材料力学试验,真正做到了一机多用。
万能试验机的原理
万能试验机是一种多功能力学试验仪器,它可以用于对材料进行拉、压、弯曲等力学性能测试。
其原理主要包括负载产生和信号测量两个方面。
负载产生方面,万能试验机通常采用液压或电动机驱动机械结构,通过传动机构将力转换为应力和应变。
其中,
1.拉伸试验:试样固定在试验机上,负载通过钳口或者夹具施加在试样上。
拉伸试验时,负载逐渐增加,试样发生塑性变形,负载与应变之间的关系被记录下来。
2.压缩试验:与拉伸试验类似,试样固定在试验机上,负载通过上下升降的平板传递至试样上。
压缩试验时,负载逐渐增加,试样发生变形,负载与应变之间的关系被记录下来。
3.弯曲试验:用钳口或夹具将试样固定在试验机的支撑点上,负载通过上下移动的平板施加在试样上。
弯曲试验时,负载逐渐增加,试样发生弯曲变形,负载与应变之间的关系被记录下来。
信号测量方面,万能试验机通过加载传感器(如压力传感器、应变片等)实时测量试验过程中的负载与位移等参数,并通过数据采集系统将这些信号转换为电信号,然后通过数据处理软件进行数据处理和分析。
总体来说,万能试验机通过施加外力并测量相关信号,可以得到各种材料在不同力学条件下的性能参数,如抗拉、抗压、抗弯刚度、断裂强度等。
这一原理使得万能试验机在材料科学、工程材料研究等领域得到广泛应用。
电子万能试验机的调整方法万能试验机是如何工作的电子万能试验机是材料试验机的一种,紧要由机架、滚珠丝杠、上横梁、中横梁及工作台构成,工作台的底部装有交流伺服电机及掌控器,传动机构是由同步带或者减速机构成,电子式万能材料试验机紧要动力驱动是由伺服电机带来的,所以伺服电机的调试是特别关键的,下面由电子万能试验机我通过多年总结的电子万能试验机安装调试阅历总结的几点方法,以供大家参考。
电子万能试验机调整方法一、首先,在试验机主机安装完毕的情况下,通电试机前应初始化设置参数。
掌控器面板都有调整按钮,应认真参阅掌控器说明书选定掌控方式;并将PID参数清零;使掌控器上默认使能信号关闭;并保存此状态,以确定掌控器再次通电时即为此状态。
在伺服电机上:设置掌控方式;设置使能由外部掌控;编码器信号输出的齿轮比;设置掌控信号与电机转速的比例关系。
二、万能试验机掌控软件与掌控器的链接信号线,首先将掌控软件断电,连接软件与伺服电机间的信号线。
包括掌控软件的模拟量输出线、使能信号线、伺服输出的编码器信号线。
手动施加外力转动电机应当不动,假如用外力轻松转动,应检查使能信号的设置与接线。
三、调整闭环参数,细调掌控参数,确保电子拉力试验机电机依照掌控软件的指令运动,并建立闭环掌控,再次通过试验机掌控软件将伺服使能信号放开,在掌控软件界面上输入一个较小的比例增益,将掌控软件和伺服的使能信号打开。
这时,电机应当已经能够依照运动指令大致做出运动。
四、方向的调试相对于一个闭环掌控系统,假如旋转的方向不正确,会造成严重的后果。
可通过试验机软件内部设置调整方向。
确认给出正数,电机正转,编码器计数加添;给出负数,电机反转转,编码器计数减小。
假如电机带有负载,行程有限,不要接受这种方式。
测试不要给过大的电压,建议在1V以下。
假如方向不一致,可以修改电子万能试验机软件或电机上的参数,保证其一致。
万能试验机的工作原理说明1 、主机紧要有底座、工作台、立柱、丝杠、移动横梁以及上横梁构成。
万能试验机的工作原理
万能试验机是一种实验仪器,用于测试材料的力学性能和相关特性。
它的工作原理主要包括载荷传递系统、测量系统和控制系统三个部分。
在载荷传递系统中,试样被放置在万能试验机的夹具中,通过夹具和传感器传递载荷。
通常夹具由上下夹具组成,通过液压系统或螺杆来控制夹具的运动。
此时,试验机会施加载荷在试样上。
测量系统由测量设备组成,用于测量试样的力学性能参数。
其中最常用的是负荷传感器和位移传感器。
负荷传感器可以测量试样上施加的力或负荷大小,位移传感器则测量试样的位移值。
这些传感器通过电子设备将获取的信号转化为数字信号。
控制系统是万能试验机的核心组成部分,用于控制试验的过程和数据采集。
它包括控制台和计算机系统。
控制台上有操作按钮和控制面板,用于设置试验参数和控制试验机的运行。
计算机系统通过软件与控制台连接,接收并处理来自测量系统的信号,并记录运行过程中的数据。
当试验开始时,控制系统会按照预设的试验参数,通过夹具施加相应的载荷。
同时,测量系统会实时监测和记录试样的力学性能参数,如载荷、位移、应变等。
控制系统根据测量系统的反馈信号,对试验机的运行进行实时调整,以保证试验的准确性和安全性。
总的来说,万能试验机的工作原理是通过载荷传递系统将载荷施加在试样上,测量系统实时监测试样的力学性能参数,控制系统根据测量结果进行调整,以完成试验过程并获取相关数据。
它广泛应用于材料科学、工程结构、制造工艺等领域的实验研究和质量检验工作中。
目次1 主要用途与适用范围 (1)2主要技术指标 (1)3 工作条件 (1)4 结构特征与工作原理 (2)4.1试验机外观结构 (2)4.2工作原理 (2)5 安装与调整 (3)6 使用与操作 (4)7 维护与保养 (5)8常见故障及其排除方法 (6)9附电气原理图 (6)承蒙您选用WDW-20D型微机控制电子式万能试验机,本公司深表感谢。
在使用本机前,请认真阅读《使用说明书》,在充分理解后,方可开机使用,请您爱护本机,正确使用,以便使该机永远保持较高的精度和良好运行状态。
1 主要用途与适用范围该机广泛用于金属和非金属的拉伸、压缩、弯曲等力学性能试验。
适用于质量监督、教学科研、航空航天、钢铁冶金、汽车、橡胶塑料、编织材料等各种试验领域,是生产制造企业、建筑施工单位、产品质量监督检验所及建材产品检测部门必备的检测设备,也适于高等院校为学生做演示试验。
2 主要技术指标最大试验力:20kN;试验力准确度:±1%;试验力测量范围:200N~20kN,全程自动换档;位移测量精度:±0.5%;速度范围:0.05mm/min~500mm/min,无级调速;速度准确度:±1%;最大拉伸行程:700mm;最大压缩行程:700mm;试验空间宽度:370mm;外形尺寸(宽×长×高):720×500×1680mm;主机重量:400Kg;电源:1KW 单相220V;拉伸与压缩:主机结构为双试验空间,上空间为拉伸空间,下空间为压缩、弯曲空间。
3 工作条件3.1 室温10―35℃。
3.2 相对湿度≤80%。
3.3 周围无振动,无腐蚀性介质,无强磁场干扰。
3.4 电源电压波动不超过额定电压的±10%。
3.5 在稳固的基础上水平安装,水平度不大于0.2/1000。
步齿形带减速系统带动滚珠丝杠副旋转,滚珠丝杠副驱动中横梁,带动拉伸辅具(或压缩、弯曲等辅具)上下移动,实现试样的加荷与卸载。
万能材料试验机原理一、引言万能材料试验机是一种用于测试材料力学性能的专用设备,广泛应用于材料科学、航空航天、交通运输、能源等领域。
它的基本原理是通过施加力和测量变形来评估材料的力学性能。
本文将介绍万能材料试验机的工作原理和常见的试验方法。
二、工作原理万能材料试验机主要由加载系统、测量系统和控制系统组成。
加载系统通常由电动机、传感器和执行机构组成。
电动机提供动力,传感器用于测量施加在材料上的力或变形,执行机构通过调整加载系统的位置来实现不同的试验方式。
1. 力的加载万能材料试验机可以施加各种类型的力,如拉伸、压缩、弯曲、剪切等。
在拉伸试验中,材料被夹在两个夹具之间,加载系统施加拉力,直到材料发生断裂。
在压缩试验中,加载系统施加压力,直到材料发生压碎。
在弯曲试验中,加载系统施加弯曲力,以评估材料的弯曲性能。
在剪切试验中,加载系统施加剪切力,以评估材料的剪切性能。
2. 变形的测量测量系统用于测量材料在加载过程中的变形。
常见的变形测量方法有拉伸计、压力传感器、位移传感器等。
拉伸计是一种通过测量材料的伸长量来评估其变形性能的传感器。
压力传感器用于测量材料在受力时的压力变化,以评估其压缩性能。
位移传感器用于测量材料在加载过程中的位移,以评估其弯曲或剪切性能。
3. 控制系统控制系统用于控制加载系统的运动和力的施加。
通过设定不同的加载速度、加载方式和加载时间,可以模拟不同的应力条件。
控制系统还可以根据测量系统的反馈信号来实时调整加载力,以确保试验的准确性和稳定性。
三、常见的试验方法万能材料试验机可以进行多种试验方法,以下是几种常见的试验方法:1. 拉伸试验拉伸试验是最常用的试验方法之一,用于评估材料的强度、弹性模量、延伸性等性能。
在拉伸试验中,材料被夹在两个夹具之间,加载系统施加拉力,测量系统测量拉伸力和伸长量,通过绘制应力-应变曲线来评估材料的力学性能。
2. 压缩试验压缩试验用于评估材料的抗压性能和稳定性。
在压缩试验中,材料被放置在两个平行夹具之间,加载系统施加压力,测量系统测量压缩力和压缩变形,通过绘制应力-应变曲线来评估材料的力学性能。
电子万能试验机的分析原理最近更新时间:2008年11月19日提供商:天源试验机械有限公司资料大小:文件类型:/下载次数:4次资料类型:浏览次数:118 次相关产品:详细介绍:电子万能试验机原理本文通过对材料屈服点含义的分析,说明正确求取材料屈服点的重要性。
分析了屈服点求取时产生误差的原因及解决的办法以及应注意的事项。
对试验机的选型、设计、使用具有一定的参考价值。
任何的材料在受到外力作用时都会产生变形。
在受力的初始阶段,一般来说这种变形与受到的外力基本成线性的比例关系,这时若外力消失,材料的变形也将消失,恢复原状,这一阶段通常称为弹性阶段,物理学中的虎克定律,就是描述这一特性的基本定律。
但当外力增大到一定程度后,变形与受到的外力将不再成线性比例关系,这时当外力消失后,材料的变形将不能完全消失,外型尺寸将不能完全恢复到原状,这一阶段称为塑性变形阶段。
一切的产品与设备都是由各种不同性能的材料构成,它们在使用中会受到各种各样的外力作用,自然就会产生各种各样的变形,,但这种变形必须被限制在弹性范围之内,否则产品的形状将会发生永久变化,影响继续使用,设备的形状也将发生变化,轻则造成加工零部件精度等级下降,重则造成零部件报废,产生重大的质量事故。
那么如何确保变形是在弹性范围内呢?从上面的分析已知材料的变形分为弹性变形与塑性变形两个阶段,只要找出这对已知材料的力学性能进行试验与理论分析,人们总结出了采用屈服点、非比例应力两个阶段的转折点,工程设计人员就可确保产品与设备的可靠运行。
由于材料种类繁多,性能差异很大,弹性阶段与塑性阶段的过渡情况很复杂,通过和残余应力等指标作为材料弹性阶段与塑性阶段的转折点的指标来反应材料的过渡过程的性能,其中屈服点与非比例应力是最常用的指标。
虽然屈服点与非比例应力同是反应材料弹性阶段与塑性阶段“转折点"的指标,但它们反应了不同过渡阶段特性的材料的特点,因此它们的定义不同,求取方法不同,所需设备也不完全相同。
因此笔者将分别对这两个指标进行分析。
本文首先分析屈服点的情况:从上面的描述,可以看出准确求取屈服点在材料力学性能试验中是非常重要的,在许多的时候,它的重要性甚至大于材料的极限强度值(极限强度是所有材料力学性能必需求取的指标之一),然而非常准确的求取它,在许多的时候又是一件不太容易的事。
它受到许多因素的制约,归纳起来有:*夹具的影响;*试验机测控环节的影响;*结果处理软件的影响;*试验人员理论水平的影响等。
这其中的每一种影响都包含了不同的方面。
下面逐一进行分析一、夹具的影响这类影响在试验中发生的机率较高,主要表现为试样夹持部分打滑或试验机某些力值传递环节间存在较大的间隙等因素,它在旧机器上出现的概率较大。
由于机器在使用一段时间后,各相对运动部件间会产生磨损现象,使得摩擦系数明显降低,最直观的表现为夹块的鳞状尖峰被磨平,摩擦力大幅度的减小。
当试样受力逐渐增大达到最大静摩擦力时,试样就会打滑,从而产生虚假屈服现象。
如果以前使用该试验机所作试验屈服值正常,而现在所作试验屈服值明显偏低,且在某些较硬或者较脆的材料试验时现象尤为明显,则一般应首先考虑是这一原因。
这时需及时进行设备的大修,消除间隙,更换夹块。
二、试验机测控环节的影响试验机测控环节是整个试验机的核心,随着技术的发展,目前这一环节基本上采用了各种电子电路实现自动测控。
由于自动测控知识的深奥,结构的复杂,原理的不透明,一旦在产品的设计中考虑不周,就会对结果产生严重的影响,并且难以分析其原因。
针对材料屈服点的求取最主要的有下列几点:1、传感器放大器频带太窄由于目前试验机上所采用的力值检测元件基本上为载荷传感器或压力传感器,而这两类传感器都为模拟小信号输出类型,在使用中必须进行信号放大。
众所周知,在我们的环境中,存在着各种各样的电磁干扰信号,这种干扰信号会通过许多不同的渠道偶合到测量信号中一起被放大,结果使得有用信号被干扰信号淹没。
为了从干扰信号中提取出有用信号,针对材料试验机的特点,一般在放大器中设置有低通滤波器。
合理的设置低通滤波器的截止频率,将放大器的频带限制在一个适当的范围,就能使试验机的测量控制性能得到极大的提高。
然而在现实中,人们往往将数据的稳定显示看的非常重要,而忽略了数据的真实性,将滤波器的截止频率设置的非常低。
这样在充分滤掉干扰信号的同时,往往把有用信号也一起滤掉了。
在日常生活中,我们常见的电子秤,数据很稳定,其原因之一就是它的频带很窄,干扰信号基本不能通过。
这样设计的原因是电子秤称量的是稳态信号,对称量的过渡过程是不关心的,而材料试验机测量的是动态信号,它的频谱是非常宽的,若频带太窄,较高频率的信号就会被衰减或滤除,从而引起失真。
对于屈服表现为力值多次上下波动的情况,这种失真是不允许的。
就万能材料试验机而言,笔者认为这一频带最小也应大于10HZ,最好达到30HZ。
在实际中,有时放大器的频带虽然达到了这一范围,但人们往往忽略了A/D转换器的频带宽度,以至于造成了实际的频带宽度小于设置频宽。
以众多的试验机数据采集系统选用的AD7705、AD7703、AD7701等为例。
当A/D转换器以“最高输出数据速率4KHZ"运行时,它的模拟输入处理电路达到最大的频带宽度10HZ。
当以试验机最常用的100HZ的输出数据速率工作时,其模拟输入处理电路的实际带宽只有0.25HZ,这会把很多的有用信号给丢失,如屈服点的力值波动等。
用这样的电路当然不能得到正确试验结果。
2、数据采集速率太低目前模拟信号的数据采集是通过A/D转换器来实现的。
A/D转换器的种类很多,但在试验机上采用最多的是∑-△型A/D转换器。
这类转换器使用灵活,转换速率可动态调整,既可实现高速低精度的转换,又可实现低速高精度的转换。
在试验机上由于对数据的采集速率要求不是太高,一般达每秒几十次到几百次就可满足需求,因而一般多采用较低的转换速率,以实现较高的测量精度。
但在某些厂家生产的试验机上,为了追求较高的采样分辨率,以及极高的数据显示稳定性,而将采样速度降的很低,这是不可取的。
因为当采样速度很低时,对高速变化的信号就无法实时准确采集。
例如金属材料性能试验中,当材料发生屈服而力值上下波动时信号变化就是如此,以至于不能准确求出上下屈服点,导致试验失败,结果丢了西瓜捡芝麻。
那么如何判断一个系统的频带宽窄以及采样速率的高低呢?严格来说这需要许多的专用测试仪器及专业人员来完成。
但通过下面介绍的简单方法,可做出一个定性的认识。
当一个系统的采样分辨率达到几万分之一以上,而显示数据依然没有波动或显示数据具有明显的滞后感觉时,基本可以确定它的通频带很窄或采样速率很低。
除非特殊场合(如:校验试验机力值精度的高精度标定仪),否则在试验机上是不可使用的。
3、控制方法使用不当针对材料发生屈服时应力与应变的关系(发生屈服时,应力不变或产生上下波动,而应变则继续增大)国标推荐的控制模式为恒应变控制,而在屈服发生前的弹性阶段控制模式为恒应力控制,这在绝大多数试验机及某次试验中是很难完成的。
因为它要求在刚出现屈服现象时改变控制模式,而试验的目的本身就是为了要求取屈服点,怎么可能以未知的结果作为条件进行控制切换呢?所以在现实中,一般都是用同一种控制模式来完成整个的试验的(即使使用不同的控制模式也很难在上屈服点切换,一般会选择超前一点)。
对于使用恒位移控制(速度控制)的试验机,由于材料在弹性阶段的应力速率与应变速率成正比关系,只要选择合适的试验速度,全程采用速度控制就可兼容两个阶段的控制特性要求。
但对于只有力控制一种模式的试验机,如果试验机的响应特别快(这是自动控制努力想要达到的目的),则屈服发生的过程时间就会非常短,如果数据采集的速度不够高,则就会丢失屈服值(原因第2点已说明),优异的控制性能反而变成了产生误差的原因。
所以在选择试验机及控制方法时最好不要选择单一的载荷控制模式。
三、结果处理软件的影响目前生产的试验机绝大部分都配备了不同类型的计算机(如PC机,单片机等)),以完成标准或用户定义的各类数据测试。
与过去广泛采用的图解法相比有了非常大的进步。
然而由于标准的滞后,原有的部分定义,就显得不够明确。
如屈服点的定义,只有定性的解释,而没有定量的说明,很不适应计算机自动处理的需求。
这就造成了:1、判断条件的各自设定就屈服点而言(以金属拉伸GB/T 228-2002为例)标准是这样定义的:“屈服强度:当金属材料呈现屈服现象时,在试验期间达到塑性变形发生而力不增加的应力点,应区分上屈服强度和下屈服强度。
上屈服强度:试样发生屈服而力首次下降前的最高应力。
下屈服强度:在屈服期间,不计初始瞬时效应时的最低应力。
"这个定义在过去使用图解法时一般没有什么疑问,但在今天使用计算机处理数据时就产生了问题。
*屈服强度的疑问:如何理解“塑性变形发生而力不增加(保持恒定)"?由于各种干扰源的存在,即使材料在屈服阶段真的力值保持绝对恒定(这是不可能的),计算机所采集的数据也不会绝对保持恒定,这就需要给出一个允许的数据波动范围,由于国标未作定义,所以各个试验机生产厂家只好自行定义。
由于条件的不统一,所求结果自然也就有所差异。
*上下屈服强度的疑问:若材料出现上下屈服点,则必然出现力值的上下波动,但这个波动的幅度是多少呢?国标未作解释,若取的太小,可能将干扰误求为上下屈服点,若取得太大,则可能将部分上下屈服点丢失。
目前为了解决这一难题,各厂家都想了许多的办法,如按材料进行分类定义“误差带"及“波动幅度",这可以解决大部分的使用问题。
但对不常见的材料及新材料的研究依然不能解决问题。
为此部分厂家将“误差带"及“波动幅度"设计为用户自定义参数,这从理论上解决了问题,但对使用者却提出了极高的要求。
2、对下屈服点定义中“不计初始瞬时效应"的误解什么叫“初始瞬时效应"?它是如何产生,是否所有的试验都存在?这些问题国标都未作解释。
所以在求取下屈服强度时绝大多数的情况都是丢掉了第一个“下峰点"的。
笔者经过多方查阅资料,了解到“初始瞬时效应"是早期生产的通过摆锤测力的试验机所特有的一种现象,其原因是“惯性"作用的影响。
既然不是所有的试验机都存在初始瞬时的效应,所以在求取结果时就不能一律丢掉第一个下峰点。
但事实上,大部分的厂家的试验机处理程序都是丢掉了第一个下峰点的。
四、试验人员的影响在试验设备已确定的情况下,试验结果的优劣就完全取决于试验人员的综合素质。
目前我国材料试验机的操作人员综合素质普遍不高,专业知识与理论水平普遍较为欠缺,再加上新概念、新名词的不断出现,使他们很难适应材料试验的需求。