运算律及简便混合运算
- 格式:doc
- 大小:116.50 KB
- 文档页数:5
运算律和简便运算(一)加减法运算定律1、加法交换律定义:两个加数交换位置,和不变 字母表示:a b b a +=+例如:16+23=23+16 546+78=78+5462、加法结合律定义:先把前两个数相加,或者先把后两个数相加,和不变。
字母表示:)()(c b a c b a ++=++ 注意:加法结合律有着广泛的应用,如果其中有两个加数的和刚好是整十、整百、整千的话,那么就可以利用加法交换律将原式中的加数进行调换位置,再将这两个加数结合起来先运算。
3、减法的性质 注意:这些都是由加法交换律和结合律衍生出来的。
减法性质①:如果一个数连续减去两个数,那么后面两个减数的位置可以互换。
字母表示:b c a c b a --=--减法性质②:如果一个数连续减去两个数,那么相当于从这个数中减去后面两个数的和。
字母表示:)(c b a c b a +-=--4、拆分、凑整法简便计算拆分法:当一个数比整百、整千稍微大一些的时候,我们可以把这个数拆分成整百、整千与一个较小数的和,然后利用加减法的交换、结合律进行简便计算。
例如:103=100+3,1006=1000+6,…凑整法:当一个数比整百、整千稍微小一些的时候,我们可以把这个数写成一个整百、整千的数减去一个较小的数的形式,然后利用加减法的运算定律进行简便计算。
例如:97=100-3,998=1000-2,…注意:拆分凑整法在加、减法中的简便不是很明显,但和乘除法的运算定律结合起来就具有很大的简便了。
(二)乘除法运算定律1.乘法交换律定义:交换两个因数的位置,积不变。
字母表示:a b b a ⨯=⨯例如:85×18=18×85 23×88=88×232、乘法结合律定义:先乘前两个数,或者先乘后两个数,积不变。
字母表示:)()(c b a c b a ⨯⨯=⨯⨯ 乘法结合律的应用基于要熟练掌握一些相乘后积为整十、整百、整千的数。
有理数的计算方法与技巧有理数运算是代数入门的重点,又是难点,是中学数学中一切运算的基础,怎样突破这一难点,除了要正确理解概念和掌握运算法则外,还必须熟练有理数运算的一些技巧和方法,一定要正确运用有理数的运算法则和运算律,从而使复杂问题变得较简单。
一、四个原则:①整体性原则: 乘除混合运算统一化乘,统一进行约分;加减混合运算按正负数分类,分别统一计算,或把带分数的整数、分数部分拆开,分别统一计算。
②简明性原则:计算时尽量使步骤简明,能够一步计算出来的就同时算出来;运算中尽量运用简便方法,如五个运算律的运用。
③口算原则:在每一步的计算中,都尽量运用口算,口算是提高运算率的重要方法之一,习惯于口算,有助于培养反应能力和自信心。
④分段同时性原则: 对一个算式,一般可以将它分成若干小段,同时分别进行运算。
二、运算技巧①归类组合:运用交换律、结合律归类加减,将同类数(如正数或负数)归类计算,如整数与整数结合、如分数与分数结合、同分母与同分母结合等。
例:计算:-(0.5)-(-341) + 2.75-(721) 解法一:-(0.5)-(-341) + 2.75-(721) = (-0.5 + 2.75) + (341-721) = 2.25-441 =-2解法二:-(0.5)-(-341) + 2.75-(721)=-0.5 + 341+ 2.75-721 = (3 + 2-7 ) + (-0.5 + 41+ 0.75 -21)=-2 评析:解法一是小数与小数相结合,解法二整数与整数结合,这样解决了既含分数又含小数的有理数加减运算问题.同学们遇到类似问题时,应学会灵活选择解题方法.②凑整:将相加可得整数的数凑整,将相加得零的数(如互为相反数)相消。
将相加可得整数的数放在一起进行运算(其中包括互为相反数相加),可以降低解题难度,提高解题效率.例:计算:--+-+-11622344551311638. 分析:本题六个数中有两个是同分母的分数,有两个互为相反数,有两个相加和为整数,故可用“凑整”法。
小学四年级:运算定律与简便计算公式整理(附练习题)小学四年级:运算定律与简便计算一、运算定律必须弄清加法交换律 a b = b a例:25 37=37 25加法结合律 a b c=a (b c)例:25 37 63=25 (37 63)(扩展) a-b-c=a-(b c)例:125-37-63=25-(37 63)a-b c=a-(b-c)例:300-159 59=300-(159-59)乘法交换律a×b×c=a×c×b例:25×9×4=25×4×9乘法结合律a×b×c=(a×c) ×b例:128×3×8=(125×8) ×3乘法分配律a×(b c)=a×b a×c例:8×(125 25)=8×125 8×25(扩展)a÷b÷c=a÷(c×b)例:100÷5÷2=100÷(5×2)a÷(c×b)= a÷b÷c例:100÷(5×2)=100÷5÷2二、必须背下来的几个算式2×5=102×50=1004×25=1008×25=20012×5=608×125=100037×3=111333=111×3999=333×3=111×9三、加法简便计算训练1、凑整法简便计算:例:(28 36) 64=28 (36 64)=28 100=128182 18 276 24=(182 18)(276 24)=200 300=500小结:多数相加,看尾数是否能凑成整数,将凑成整数的配对先加。
五年级上册运算律简便运算练习题一、【加法交换律和结合律】1.加法交换律:两个数相加,交换加数的位置,和不变。
用字母表示为:a b=b a。
2.加法结合律:三个数相加,先把前两个数相加,再和第三个数相加,或者先把后两个数相加,再和第一个数相加,和不变。
用字母表示为:(a b) c=a (b c) 。
例题:0.456+6.22+3.78二、【减法的运算性质】1.一个数连续减去两个数等于这个数减去它们的和(两个减数可凑整的)。
用字母表示:a-b-c=a-(b c)2.一个数减去两个数的和等于这个数连续减去和里每个加数。
3.一个数减去两个数的差,等于这个数减去第一个数,加上第二个数。
例题: 5.17-1.8-3.2 3.75-(2.75-1.3)三、【加减混合运算】加减混合运算中,先加后减的可以先减后加,先减后加的也可以先加后减。
例题:3.68+7.56-2.68四、【乘法的交换律和结合律】1.乘法交换律:两个数相乘,交换乘数的位置,积不变。
用字母表示为:a×b=b×a2.乘法结合律:三个数相乘,先把前两个数相乘,再和第三个数相乘;或者先把后两个数相乘,再和第一个数相乘,积不变。
用字母表示为:(a×b) ×c=a×(b×c)例题:0.25×16.2×4 1.25×2.5×32 25×6.4×12.5五、【乘法分配律】(a b)×c=a×c b×c , (a-b)×c=a×c-b×c两个数的和分别和第三个数相乘,等于这两个数分别和第三个数学相乘,再相加。
例题:类型一:3.9×2.7+3.9×7.3 3.65×4.7-36.5×0.37 4.2×99+4.2类型二:(一个乘数扩大到原来的几倍,另一个乘数缩小到原来的几倍,积不变)3.14×0.68+31.4×0.032 12.7×9.9+1.27类型三:(提示:先运用加减法拆数,再用乘法分配律简算)0.65×101 8.9×1.01六、【商不变的规律】a÷b= (a×c) ÷(b×c) c≠0被除数和除数同时乘或除以一个相同的数(0除外),商不变。
乘法运算律与简便计算一、乘法的交换律乘法的交换律是指乘法运算中,两个数交换位置结果不变。
即对于任意实数a和b,有a*b=b*a。
例如,3*4=4*3=12二、乘法的结合律乘法的结合律是指在多个乘法运算的情况下,可以改变运算顺序而不改变结果。
即对于任意实数a、b和c,有(a*b)*c=a*(b*c)。
例如,(2*3)*4=2*(3*4)=24三、乘法的分配律乘法的分配律是指在加法和乘法混合运算中,可以分步进行,先进行乘法再进行加法。
即对于任意实数a、b和c,有a*(b+c)=a*b+a*c。
例如,2*(3+4)=2*3+2*4=14四、乘法的幂次运算乘法的幂次运算是指对一个数进行多次乘法运算,这可以通过重复乘法或指数运算来实现。
例如,2³=2*2*2=8五、负数乘法负数乘法是指一个正数与一个负数相乘,其结果为一个负数。
即正数乘以负数得到负数。
例如,2*(-3)=-6下面是一些简便计算方法,可用于在乘法运算中快速求解。
1.利用零的性质:任何数与0相乘结果都为0,即a*0=0。
这使得在计算中可以通过将0乘以一些数来快速计算结果为0的情况。
2.利用单位元:单位元是指一个数与1相乘结果等于其自身,即a*1=a。
这使得在计算中可以通过将1乘以一些数来快速计算结果为该数的情况。
3.利用相似性:当两个乘数非常相似时,可以通过对其中一个乘数进行微调来快速估算乘积。
例如,计算36*42时,可以将42视为40,结果会接近1440。
然后再通过稍微调整得出准确结果。
4.利用乘积的性质:当一个数字包含多个相同的因子时,可以利用因子的个数和乘法运算律来简化计算。
例如,计算2³*4³可以视为(2*4)³,结果为8³=5125.利用乘法的结合律:当一个乘法式子中有多个因子时,可以改变因子的顺序,以便进行更简单的计算。
例如,计算2*3*4时,可以通过改变顺序为4*3*2来计算,结果为246.利用乘法的逆运算:如果已知一个乘积和其中一个因子,可以通过除法来求解另一个因子。
运算定律和简便计算一、加法运算定律:(1)加法交换律:两个加数交换位置,和不变。
用字母表示:a+b=b+a(2)加法结合律:三个数相加,先把前两个数相加或者先把后两个数相加,和不变。
用字母表示:(a+b)+c=a+(b+c)二、乘法运算定律:(1)乘法交换律:交换两个因数的位置,积不变。
用字母表示:a×b=b×a(2)乘法结合律:三个数相乘,先乘前两个数或者先乘后两个数,积不变。
用字母表示:(a×b)×c=a×(b×c)(3)乘法分配律:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。
用字母表示:(a+b)×c=a×c+b×c a×(b+c)=a×b+a×c三、简便计算(1)连减的简便计算:一个数连续减去两个数,可以用这个数减去两个减数的和。
(注意这种方法的逆向运算)a-b-c=a-(b+c) (2)连除的简便计算:一个数连续除以两个数,可以用这个数除以两个除数的积a÷b÷c=a÷(b×c)(3)加减法、乘加、乘除法的灵活应用a-b+c=a+c-ba÷b×c=a×c ÷b四、运算定律与简便计算的整理和复习小小法官(判断对错)1、25 х102 =25 х100 + 2 ( )2、132-(32 + 47)= 132 –32 + 47 ( )3、350 ÷5 х2 = 350÷( 5 х2 ) ( )4、68 х99 + 68 = 68 х100 ( ) 典型错误分析:错误一:对运算定律混淆不清如:18×101=18×100×1=1800(101变成了100×1,所以错误。
)125×48=125×(40+8)=125×40+8=5008(应该8与125再相乘)125×48=125×(40+8)=125×40×125×8=5000000(40+8)中的加号“+”看乘了乘号“×”,25×64×125=25×(60+4)×125=25×60+4×125=2000(60+4)的括号直接去掉了,把原来的连乘变成了乘法加法。
乘法运算律与简便计算乘法运算律是数学中的一条重要规则,用来描述乘法的性质和运算方式。
简便计算是指通过一些技巧和方法来简化乘法计算的过程。
在日常生活和工作中,我们经常会遇到需要进行乘法计算的情况,掌握乘法运算律和简便计算方法可以提高计算效率和准确性。
本文将详细介绍乘法运算律和一些简便计算方法。
1.乘法结合律:a×(b×c)=(a×b)×c。
即,无论括号怎么分配,相乘的结果是不变的。
例子:2×(3×4)=(2×3)×4=242.乘法交换律:a×b=b×a。
即,两个数相乘的结果与它们的位置无关。
例子:4×3=3×4=123.乘法分配律:a×(b+c)=a×b+a×c。
即,一个数乘以一个加法表达式的和等于这个数分别乘以每个加法项的和。
例子:3×(2+4)=3×2+3×4=18通过乘法运算律,我们可以合理地调整计算的顺序,化简和优化乘法计算。
简便计算方法除了乘法运算律,还有一些简便计算方法可以在乘法运算中帮助我们更快地得到准确的结果。
1.利用倍数关系:当计算一个数的一些倍数时,我们可以利用倍数关系来简化计算。
例如,计算49×3时,我们可以发现49×3=7×7×3=7×21=1472.利用相似性:当计算两个数中一个为另一个的两倍或十倍时,我们可以利用相似性来简化计算。
例如,计算18×10时,我们可以发现18×10=(9×2)×10=9×(2×10)=9×20=180。
3.利用平方数:当计算一些数的平方时,我们可以利用平方数的性质来简化计算。
例如,计算72×72时,我们可以发现72×72=(36×2)×(36×2)=36×36×2×2=1296×4=51844.利用近似值:当计算一个较大的数与一个较小的数相乘时,我们可以利用近似值来简化计算。