力的正交分解法
- 格式:ppt
- 大小:515.00 KB
- 文档页数:13
力的正交分解导读:(1)概念:把力沿着两个经选定的互相垂直的方向分解叫力的正交分解。
(2)目的:在多个共点力作用下,运用正交分解法的目的是用代数运算公式来解决矢量的运算。
分解的目的是为了求合力,尤其适用于物体受多个力的情况。
(3)应用:当物体受到不在同一直线上的多个共点力时,正交分解法可以把物体受到的所有力分解到两个互相垂直的坐标轴上,分别求出两个不同方向上的合力x F 和y F ,然后就可以求出物体所受的合力F 。
(4)应用正交分解法求合力的步骤: ① 确定研究对象,进行受力分析。
② 建立直角坐标系(让尽可能多的力落在坐标轴上)。
③ 将不在坐标轴上的各力分解在坐标轴上。
④ 分别求出x 轴和y 轴上各力的合力x F 和y F F x = F 1x + F 2x + F 3x + … F y = F 2y + F 3y + F 3y +…⑤ 求出x F 和y F 的合力,即为多个力的合力。
合力的大小:22y x F F F +=合力的方向:xy F F =θtan (合力与x 轴的夹角为θ)例1.大小均为F 的三个力共同作用在O 点,如图1所示,F 1、F 2与F 3之间的夹角均为600,求这三个力的合力。
例2. 如图2所示,物体放在粗糙的水平地面上,物体重50N ,受到斜向上与水平面成300角的力F 作用,F = 50N ,物体仍然静止在地面上,求:物体受到的摩擦力和地面的支持力分别是多少?例3:如图3所示,重为G 的物体放在水平面上,推力F 与水平面夹角为α,物体做匀速直线运动,已知物体与地面间的动摩擦因数为μ,则物体所受摩擦力的大小为( )A.G μB.)sin αμF G +(C.F αcos D αμsin F例4.如图4所示,斜面上质量为m 的物体在水平力F 的作用下保持静止,已知斜面的倾角为θ,试分析摩擦力的大小和方向。
图2图1F 1F 2F 3图3 图4。
力的正交分解法1、定义:把力沿着两个选定的互相垂直的方向分解,叫做力的正交分解法。
说明:正交分解法是一种很有用的方法,尤其适于物体受三个或三个以上的共点力作用的情怳。
2、正交分解的原理一条直线上的两个或两个以上的力,其合力可由代数运算求得。
当物体受到多个力的作用,并且这几个力只共面不共线时,其合力用平行四边形定则求解很不方便。
为此,我们建立一个直角坐标系,先将各力正交分解在两条互相垂直的坐标轴上,分别求出两个不同方向上的合力Fx和Fy,然后就可以由F合=,求合力了。
说明:“分”的目的是为了更方便的“合”正交分解法的步骤:(1)以力的作用点为原点作直角坐标系,标出x轴和y轴,如果这时物体处于平衡状态,则两轴的方向可根据方便自己选择。
(2)将与坐标轴不重合的力分解成x轴方向和y轴方向的两个分力,并在图上标明,用符号Fx和Fy表示。
(3)在图上标出力与x轴或力与y轴的夹角,然后列出Fx、Fy的数学表达式。
如:F与x 轴夹角为θ,则Fx=Fcosθ,Fy=Fsinθ。
与两轴重合的力就不需要分解了。
(4)列出x轴方向上的各分力的合力和y轴方向上的各分力的合力的两个方程,然后再求解。
【典型例题】例1、如图所示,用绳AC和BC吊起一个重100N的物体,两绳AC、BC与竖直方向的夹角分别为30°和45°。
求:绳AC和BC对物体的拉力的大小。
例2、如图所示,重力为500N的人通过跨过定滑轮的轻绳牵引重200N的物体,当绳与水平面成60°角时,物体静止。
不计滑轮与绳的摩擦,求地面对人的支持力和摩擦力。
例3、如图所示:将重力为G的光滑圆球用细绳拴在竖直墙壁上,如图,当把绳的长度增长,则绳对球的拉力T和墙对球的弹力N是增大还是减小。
选用方法:A、合成法:B、分解法:C、用正交分解法:说明:合成法分解法主要是对三个力来说的,如果力太多只能应用正交分解法3、一根轻弹簧,当它在100牛的拉力作用下,总长度为0.55米;当它在300牛的压力作用下总长度为0.35米。
正交分解法——把力沿着两个经选定的互相垂直的方向分解,其目的是便于运用普通代数运算公式来解决矢量运算。
利用力的正交分解法求合力:这是一种比较简便的求合力的方法,它实际上是利用了力的分解的原理把力都分解到两个互相垂直的方向上,然后就变成了在同一直线上的力的合成问题了.这样计算起来就简单多了。
力的正交分解法步骤如下:1、正确选定直角坐标系:通常选共点力的作用点为坐标原点,坐标轴的方向的选择则应根据实际问题来确定。
原则是使坐标轴与尽可能多的力重合,即是使需要向两坐标轴投影分解的力尽可能少,在处理静力学问题时,通常选用水平方向和竖直方向上的直角坐标,当然在其它方向较简便时,也可选用。
一般选水平和竖直方向上的直角坐标;也可以选沿运动方向和垂直运动方向上的直角坐标.在力学计算上,这两种选择可以使力的计算最简单,只要计算到互相垂直的两个方向就可以了,不必求总合力.2、分别将各个力投影到坐标轴上:分别求x轴和y轴上各力的投影的合力和其中:(式中的轴上的两个分量,其余类推。
)这样,共点力的合力大小可由公式:求出。
设力的方向与轴正方向之间夹角是。
∴通过数学用表可知数值。
注意:如果这是处理多个力作用下物体平衡问题的好办法。
计算方法举例:例:如图所示,物体A在倾角为θ的斜面上匀速下滑,求物体受到的摩擦力及动摩擦因数。
分析:选A为研究对象分析A受力作受力图如图,选坐标如图:将不在坐标轴上的重力在x,y坐标上分解:Gx=GžsinθGy=Gžcosθf在x轴(反向),N在y轴上(正向)∵物体匀速下滑则有则一、合力与分力:在实际问题中,一个物体往往同时受到几个力的作用。
如果一个力产生的效果与原来几个力产生的效果相同,这个力就叫那几个力的合力,而那几个力就叫这个力的分力。
二、力的合成与分解:求几个力的合力的过程叫力的合成,求一个力的分力的过程叫力的分解。
合力与分力有等效性与可替代性。
求力的合成的过程实际上就是寻找一个与几个力等效的力的过程;求力的分解的过程,实际上是寻找几个与这个力等效的力的过程。