频率的稳定性(一)
- 格式:doc
- 大小:51.50 KB
- 文档页数:3
北师大新版七年级下学期《6.2 频率的稳定性》同步练习卷一.解答题(共17小题)1.在一个不透明的袋子中装有20个球,其中红球6个,白球和黑球若干个,每个球除颜色外完全相同.(1)小明通过大量重复试验(每次将球搅匀后,任意摸出一个球,记下颜色后放回)发现,摸出的黑球的频率在0.4附近摆动,请你估计袋中黑球的个数.(2)若小明摸出的第一个球是白球,不放回,从袋中余下的球中再任意摸出一个球,摸出白球的概率是多少?2.在一个不透明的口袋里装有若干个质地相同的红球,为了估计袋中红球的数量,某学习小组做了摸球实验,他们将30个与红球大小形状完全相同的白球装入袋中,搅匀后从中随机摸出一个球并记下颜色,再把它放回袋中,多次重复摸球.下表是多次活动汇总后统计的数据:(1)请估计:当次数S很大时,摸到白球的频率将会接近;假如你去摸一次,你摸到红球的概率是(精确到0.1).(2)试估算口袋中红球有多少只?3.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:摸到白球的频率(1)完成上表;(2)“摸到白球”的概率的估计值是(精确到0.1);(3)试估算口袋中黑、白两种颜色的球各有多少只?4.一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3,4,5,x.甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复试验.实验数据如下表:解答下列问题:(1)如果实验继续进行下去,根据上表数据,出现“和为8”的频率将稳定在它的概率附近.估计出现“和为8”的概率是0.;(2)当x=7时,请用列表法或树状图法计算“和为8”的概率;并判断x=7是否可能.5.一个不透明的袋子里装着6个黄球,10个黑球和14个红球,他们除了颜色外完全相同.(1)小明和小颖玩摸球游戏,规定每人摸球一次再将球放回为依次游戏,若摸到黑球则小明获胜,摸到黄球则小颖获胜,这个游戏公平吗?说说你的理由.(2)现在裁判向袋子中放入若干个红球,大量重复试验后,发现小明获胜的频率稳定在0.25附近,问裁判放入了多少个红球?6.在一个不透明的口袋里装有颜色不同的红、白两种颜色的球共5只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复,下表是活动进行中的一组统计数据:(1)请估计:当n很大时,摸到白球的频率将会接近;(精确到0.1)(2)试估算口袋中白球有多少只?(3)请画树状图或列表计算:从中先摸出一球,不放回,再摸出一球;这两只球颜色不同的概率是多少?7.某商场“五一”期间为进行有奖销售活动,设立了一个可以自由转动的转盘.商场规定:顾客购物100元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是此次活动中的一组统计数据:落在“可乐”区域的频率(1)完成上述表格;(结果全部精确到0.1)(2)请估计当n很大时,频率将会接近,假如你去转动该转盘一次,你获得“可乐”的概率约是;(结果全部精确到0.1)(3)转盘中,表示“洗衣粉”区域的扇形的圆心角约是多少度?8.在一个不透明的盒子中有2个白球和1个黄球,每个小球除颜色外,其余的都相同,每次从该盒中摸出1个球,然后放回,搅匀再摸,在摸球实验中得到下表中部分数据:(1)将数据表补充完整;(2)根据上表中的数据在下图中绘制折线统计图;(3)观察该图表可以发现,随着实验次数的增加,摸出黄色小球的频率有何特点?(4)请你估计从该盒中摸出1个黄色球的机会是多少.9.问题情景:某学校数学学习小组在讨论“随机掷二枚均匀的硬币,得到一正一反的概率是多少”时,小聪说:随机掷二枚均匀的硬币,可以有“二正、一正一反、二反”三种情况,所以,P(一正一反)=;小颖反驳道:这里的“一正一反”实际上含有“一正一反,一反一正”二种情况,所以P(一正一反)=.(1)的说法是正确的.(2)为验证二人的猜想是否正确,小聪与小颖各做了100次实验,得到如下数据:计算:小聪与小颖二人得到的“一正一反”的频率分别是多少?从他们的实验中,你能得到“一正一反”的概率是多少吗?(3)对概率的研究而言小聪与小颖两位同学的实验说明了什么?10.在“首届中国西部(银川)房•车生活文化节”期间,某汽车经销商推出A、B、C、D 四种型号的小轿车共1000辆进行展销.C型号轿车销售的成交率为50%,其它型号轿车的销售情况绘制在图1和图2两幅尚不完整的统计图中.(1)参加展销的D型号轿车有多少辆?(2)请你将图2的统计图补充完整;(3)通过计算说明,哪一种型号的轿车销售情况最好?(4)若对已售出轿车进行抽奖,现将已售出A、B、C、D四种型号轿车的发票(一车一票)放到一起,从中随机抽取一张,求抽到A型号轿车发票的概率.11.在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,好将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:(1)请估计:当实验次数为5000次时,摸到白球的频率将会接近;(精确到0.1)(2)假如你摸一次,你摸到白球的概率为;(3)求不透明的盒子里黑、白两种颜色的球各有多少只?12.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:(1)请估计:当n很大时,摸到白球的频率将会接近;(2)假如你去摸一次,你摸到白球的概率是,摸到黑球的概率是;(3)试估算口袋中黑、白两种颜色的球各有多少只?(4)解决了上面的问题,小明同学猛然顿悟,过去一个悬而未决的问题有办法了.这个问题是:在一个不透明的口袋里装有若干个白球,在不允许将球倒出来数的情况下,如何估计白球的个数(可以借助其他工具及用品)请你应用统计与概率的思想和方法解决这个问题,写出解决这个问题的主要步骤及估算方法.13.某校九年级兴趣小组进行投针实验,在地面上有一组平行线,相邻两条平行线间的距离都为5cm,将一长为3cm的针任意投向这组平行线,下表是他们的实验数据.(1)计算出针与平行线相交的频率,并完成统计表;(2)估算出针与平行线相交的频率;(3)由表中的数据说明:在以上条件下相交于不相交的可能性相同吗?(4)能否利用列表或树形图法求出针与平行线相交的概率?14.某学习小组做摸球实验,在一个不透明的口袋里装有颜色不同的红、白两种颜色的球共5只,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复,表是活动进行中的一组统计数据:(1)请估计:当n很大时,摸到白球的频率将会接近;(精确到0.1)(2)你能估算出学习小组做摸球实验的口袋中白球个数吗?(3)若摸球实验是从口袋里先摸出一球,不放回,再摸出一球;请用树状图或列表分析计算,这两只球颜色相同的概率是多少?15.某校研究学生的课余爱好情况,采取抽样调查的方法,从阅读、运动、娱乐、上网等四个方面调查了若干名学生的兴趣爱好,并将调查结果绘制成下面两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次调查中,一共调查了名学生;(2)补全条形统计图;(3)若该校共有1500名学生,估计爱好运动的学生有人;(4)在全校同学中随机选取一名学生参加演讲比赛,用频率估计概率,则选出的恰好是爱好阅读的学生的概率是.16.在一个不透明的箱子中装有2个红球、n个白球和1个黄球,这些球除颜色外无其他差别.(1)若每次摸球前先将箱子里的球摇匀,任意摸出一个球记下颜色后再放回箱子里,通过大量重复摸球实验后发现,摸到红球的频率稳定在25%,那么估计箱子里白球的个数n为;(2)如果箱子里白球的个数n为1,小亮随机从箱子里摸出1个球不放回,再随机摸出1个球,请用画树状图或列表法求两次均摸到红球的概率.17.如图,两个转盘A,B都被分成了3个全等的扇形,在每一个扇形内均标有不同的自然数,固定指针,同时转动转盘A,B,两个转盘停止后观察两个指针所指扇形内的数字(若指针停在扇形的边线上,当作指向上边的扇形)(1)用列表法(或树形图)表示两个转盘停止转动后指针所指扇形内的数字的所有可能结果;(2)小明每转动一次就记录数据,并算出两数之和,其中“和为7”的频数及频率如下表:如果实验继续进行下去,根据上表数据,出现“和为7”的频率将稳定在它的概率附近,试估计出现“和为7”的概率;(3)根据(2),若0<x<y,试求出x与y的值.北师大新版七年级下学期《6.2 频率的稳定性》2019年同步练习卷参考答案与试题解析一.解答题(共17小题)1.在一个不透明的袋子中装有20个球,其中红球6个,白球和黑球若干个,每个球除颜色外完全相同.(1)小明通过大量重复试验(每次将球搅匀后,任意摸出一个球,记下颜色后放回)发现,摸出的黑球的频率在0.4附近摆动,请你估计袋中黑球的个数.(2)若小明摸出的第一个球是白球,不放回,从袋中余下的球中再任意摸出一个球,摸出白球的概率是多少?【分析】(1)根据摸出的黑球的频率在0.4附近摆动可估计摸出一球是黑球的概率为0.4,据此可得;(2)根据概率公式可得.【解答】解:(1)∵摸出的黑球的频率在0.4附近摆动,∴估计袋中黑球的个数约为20×0.4=8个;(2)由(1)知袋子中红球6个、黑球8个、白球6个,第一次摸出白球后袋子中还有白球5个,总的球数为19个,故摸出白球的概率是.【点评】本题主要考查频率估计概率和概率公式的应用,用到的知识点为:概率=所求情况数与总情况数之比.2.在一个不透明的口袋里装有若干个质地相同的红球,为了估计袋中红球的数量,某学习小组做了摸球实验,他们将30个与红球大小形状完全相同的白球装入袋中,搅匀后从中随机摸出一个球并记下颜色,再把它放回袋中,多次重复摸球.下表是多次活动汇总后统计的数据:(1)请估计:当次数S很大时,摸到白球的频率将会接近0.3;假如你去摸一次,你摸到红球的概率是0.7(精确到0.1).(2)试估算口袋中红球有多少只?【分析】(1)从表中的统计数据可知,摸到白球的频率稳定在0.3左右,而摸到红球的概率为1﹣0.3=0.7;(2)根据红球的概率公式得到相应方程求解即可;【解答】解:(1)当次数S很大时,摸到白球的频率将会接近0.3;假如你去摸一次,你摸到红球的概率是1﹣0.3=0.7;故答案为:0.3,0.7;(2)估算口袋中红球有x只,由题意得0.7=,解之得x=70,∴估计口袋中红球有70只;【点评】考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.组成整体的几部分的概率之和为1.3.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:摸到白球的频率(1)完成上表;(2)“摸到白球”的概率的估计值是0.6(精确到0.1);(3)试估算口袋中黑、白两种颜色的球各有多少只?【分析】(1)利用频率=频数÷样本容量=频率直接求解即可;(2)根据统计数据,当n很大时,摸到白球的频率接近0.6;(3)根据利用频率估计概率,可估计摸到白球的概率为0.6,然后利用概率公式计算白球的个数.【解答】解:(1)填表如下:摸到白球的频率(2)“摸到白球”的概率的估计值是0.60;(3)由(2)摸到白球的概率为0.60,所以可估计口袋中白种颜色的球的个数=20×0.6=12(个),黑球20﹣12=8(个).答:黑球8个,白球12个.故答案为:(1)0.59,0.58;(2)0.6.【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.4.一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3,4,5,x.甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复试验.实验数据如下表:解答下列问题:(1)如果实验继续进行下去,根据上表数据,出现“和为8”的频率将稳定在它的概率附近.估计出现“和为8”的概率是0.;(2)当x=7时,请用列表法或树状图法计算“和为8”的概率;并判断x=7是否可能.【分析】(1)根据实验次数越大越接近实际概率求出出现“和为8”的概率即可;(2)根据小球分别标有数字3、4、5、x,用列表法或画树状图法说明当x=7时,得出“和为8”的概率,即可得出答案.【解答】解:(1)利用图表得出:实验次数越大越接近实际概率,所以出现“和为8”的概率是.故答案为;(2)当x=7时,画树状图如下:则两个小球上数字之和为8的概率是:=≠,所以x的值不可以取7.【点评】此题主要考查了利用频率估计概率以及树状图法求概率,正确画出树状图是解题关键.5.一个不透明的袋子里装着6个黄球,10个黑球和14个红球,他们除了颜色外完全相同.(1)小明和小颖玩摸球游戏,规定每人摸球一次再将球放回为依次游戏,若摸到黑球则小明获胜,摸到黄球则小颖获胜,这个游戏公平吗?说说你的理由.(2)现在裁判向袋子中放入若干个红球,大量重复试验后,发现小明获胜的频率稳定在0.25附近,问裁判放入了多少个红球?【分析】(1)根据概率公式分别计算小明获胜和小颖获胜的概率,比较即可得;(2)设向袋子中放入了x个红球,根据摸到黑球最终稳定的频率即为概率的估计值,列出方程求解可得.【解答】解:(1)不公平,∵袋子中共有30个小球,从中摸出一个小球,是黑球的概率为=,从中摸出一个小球,是黄球的概率为=,∴这个游戏不公平;(2)设裁判向袋子中放入了x个红球,根据题意可得:=0.25,解得:x=10,经检验:x=10是分式方程的解,∴裁判放入了10个红球.【点评】本题主要考查概率公式和频率估计概率,熟练掌握概率公式:概率等于所求情况数与总情况数之比是解题的关键.6.在一个不透明的口袋里装有颜色不同的红、白两种颜色的球共5只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复,下表是活动进行中的一组统计数据:(1)请估计:当n很大时,摸到白球的频率将会接近0.6;(精确到0.1)(2)试估算口袋中白球有多少只?(3)请画树状图或列表计算:从中先摸出一球,不放回,再摸出一球;这两只球颜色不同的概率是多少?【分析】(1)根据统计数据,当n很大时,摸到白球的频率接近0.6;(2)根据利用频率估计概率,可估计摸到白球的概率为0.6,然后利用概率公式计算白球的个数;(3)先利用列表法展示所有20种等可能的结果数,再找出两只球颜色不同所占结果数,然后根据概率公式求解.【解答】解:(1)答案为:0.6;(2)由(1)摸到白球的概率为0.6,所以可估计口袋中白种颜色的球的个数=5×0.6=3(只);(3)画树状图为:共有20种等可能的结果数,其中两只球颜色不同占12种,所以两只球颜色不同的概率==.【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.也考查了列表法与树状图法.7.某商场“五一”期间为进行有奖销售活动,设立了一个可以自由转动的转盘.商场规定:顾客购物100元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是此次活动中的一组统计数据:落在“可乐”区域的频率(1)完成上述表格;(结果全部精确到0.1)(2)请估计当n很大时,频率将会接近0.6,假如你去转动该转盘一次,你获得“可乐”的概率约是0.6;(结果全部精确到0.1)(3)转盘中,表示“洗衣粉”区域的扇形的圆心角约是多少度?【分析】(1)根据频率的定义计算n=298时的频率和频率为0.59时的频数;(2)从表中频率的变化,可得到估计当n很大时,频率将会接近0.6,然后根据利用频率估计概率得“可乐”的概率约是0.6;(3)可根据获得“洗衣粉”的概率为1﹣0.6=0.4,然后根据扇形统计图的意义,用360°乘以0.4即可得到表示“洗衣粉”区域的扇形的圆心角.【解答】解:(1)298÷500≈0.6;0.59×800=472;(2)估计当n很大时,频率将会接近0.6,假如你去转动该转盘一次,你获得“可乐”的概率约是0.6;(3)(1﹣0.6)×360°=144°,所以表示“洗衣粉”区域的扇形的圆心角约是144°.故答案为0.6,0.6.【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.8.在一个不透明的盒子中有2个白球和1个黄球,每个小球除颜色外,其余的都相同,每次从该盒中摸出1个球,然后放回,搅匀再摸,在摸球实验中得到下表中部分数据:(1)将数据表补充完整;(2)根据上表中的数据在下图中绘制折线统计图;(3)观察该图表可以发现,随着实验次数的增加,摸出黄色小球的频率有何特点?(4)请你估计从该盒中摸出1个黄色球的机会是多少.【分析】(1)根据频数与频率的关系,频数等于频率与样本容量的积,代入数据可得答案,(2)根据(1)的数据,进而可以制折线统计图,(3)由(2)的折线图,观察可得结论,(4)观察折线统计图可知,出现黄色小球的频率逐渐稳定在0.34附近,进而可得答案.【解答】解:(1)根据频数与频率的关系,频数等于频率与样本容量的积,第二行第7列应填的数据为240×0.36=86.4≈86,第三行第3列应填的数据为24÷80=0.3,故答案为:86,0.3.(2)根据(1)的数据,绘制折线统计图如图所示(3)从折线统计图可以看出,随着实验次数的增加,出现黄色小球的频率逐渐平稳;(4)观察折线统计图可知,出现黄色小球的频率逐渐稳定在0.34附近,故摸出黄球的机会约为34%.【点评】用到的知识点为:频率=所求情况数与总情况数之比.部分的具体数目=总体数目×相应频率.大量实验得到的频率接近于概率.9.问题情景:某学校数学学习小组在讨论“随机掷二枚均匀的硬币,得到一正一反的概率是多少”时,小聪说:随机掷二枚均匀的硬币,可以有“二正、一正一反、二反”三种情况,所以,P(一正一反)=;小颖反驳道:这里的“一正一反”实际上含有“一正一反,一反一正”二种情况,所以P(一正一反)=.(1)小颖的说法是正确的.(2)为验证二人的猜想是否正确,小聪与小颖各做了100次实验,得到如下数据:计算:小聪与小颖二人得到的“一正一反”的频率分别是多少?从他们的实验中,你能得到“一正一反”的概率是多少吗?(3)对概率的研究而言小聪与小颖两位同学的实验说明了什么?【分析】(1)要判断谁说的正确只要看他们说的情况有没有漏掉的即可.(2)根据频率=所求情况数与总情况数之比,即可得出结果.(3)在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近.【解答】解:(1)“一正一反”实际上含有“一正一反,一反一正”二种情况,共四种,所以小颖的说法是正确的(2)小明得到的“一正一反”的频率是50÷100=0.50小颖得到的“一正一反”的频率是47÷100=0.47据此,我得到“一正一反”的概率是(3)对概率的研究不能仅仅通过有限次实验得出结果,而是要通过大量的实验得出事物发生的频率去估计该事物发生的概率.我认为小聪与小颖的实验都是合理的,有效的.(8分)【点评】考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.10.在“首届中国西部(银川)房•车生活文化节”期间,某汽车经销商推出A、B、C、D 四种型号的小轿车共1000辆进行展销.C型号轿车销售的成交率为50%,其它型号轿车的销售情况绘制在图1和图2两幅尚不完整的统计图中.(1)参加展销的D型号轿车有多少辆?(2)请你将图2的统计图补充完整;(3)通过计算说明,哪一种型号的轿车销售情况最好?(4)若对已售出轿车进行抽奖,现将已售出A、B、C、D四种型号轿车的发票(一车一票)放到一起,从中随机抽取一张,求抽到A型号轿车发票的概率.【分析】(1)先求出D型号轿车所占的百分比,再利用总数1000辆即可求出答案;(2)利用C型号轿车销售的成交率为50%,求出C型号轿车的售出量,补充统计图即可;(3)分别求出各种型号轿车的成交率即可作出判断;(4)先求出已售出轿车的总数,利用售出的A型号车的数量即可求出答案.【解答】解:(1)∵1﹣35%﹣20%﹣20%=25%,∴1000×25%=250(辆).答:参加销展的D型轿车有250辆;(2)如图,1000×20%×50%=100;(3)四种型号轿车的成交率:A:×100%=48%;B:×100%=49%;C:50%;D:×100%=52%∴D种型号的轿车销售情况最好.(4)∵.∴抽到A型号轿车发票的概率为.【点评】利用统计图解决问题时,要善于从图中寻找各种信息.当一个事件的频率具有稳定性时,可以用该事件发生的频率来估计这一事件发生的概率.用到的知识点为:概率=所求情况数与总情况数之比.部分数目=总体数目乘以相应概率.11.在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,好将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:(1)请估计:当实验次数为5000次时,摸到白球的频率将会接近0.6;(精确到0.1)(2)假如你摸一次,你摸到白球的概率为0.60;(3)求不透明的盒子里黑、白两种颜色的球各有多少只?【分析】(1)求出所有试验得出来的频率的平均值即可;(2)摸一次的概率和大量实验得出来的概率相同;(3)根据频数=总数×频率进行计算即可.【解答】解:(1)摸到白球的频率=(0.63+0.62+0.593+0.604+0.601+0.599+0.601)÷7≈0.6,∴当实验次数为5000次时,摸到白球的频率将会接近0.6.(2)摸到白球的频率为0.6,∴假如你摸一次,你摸到白球的概率P(白球)=0.6.。
数学史实介绍
人们在长期的实践中发现,在随机试验中,由于
众多微小的偶然因素的影响,每次测得的结果虽不
尽相同,但大量重复试验所得结果却能反应客观规
律.
频率稳定性定理是由瑞士数学家雅可比·伯努
利最早阐明的,他还提出了由频率可以估计事件发
生的可能性大小. 雅可比·贝努利( Jokob
1Bernoulli , 1654 -1705) ,十七世纪瑞士著名数
学家。
年青时根据父亲的意愿学习神学,曾获巴塞尔
大学文学硕士和神学硕士学位,同时怀着浓厚的兴趣研习数学和天文学。
1687 年起任巴塞尔大学教授,在多方面作出重要贡献。
对概率论也有深入研究,建立了描述独立试验序列的“贝努利概型”,提出并证明了“贝努利大数定律”。
历史上有许多著名学者做过频率稳定性的试验。
例如,德·摩根(De Morgan) ,蒲丰(Buffon) ,皮尔逊(Pearson) 等人都做过大量的投掷硬币的试验,发现正面出现的频率稳定在0.5 左右。
大量地观察并统计婴儿的出生,发现男孩出生的频率稳定在0.513 左右。
十八世纪,法国数学家拉普拉斯(Laplace) 对伦敦、彼得堡、柏林和整个法国的广大人口资料进行了研究,得出那些地区的男孩出生频率约等于22/43 。
又有人统计过某个国家无法投递的信件数,多年统计的结果发现,这类信件数在全部信件中的比例几乎保持不变,在百万分之五十左右。
在讲数学课的同时,介绍一些数学史是非常必要的,这既可以增加学生的知
识面,扩大学生的视野,还可以从这些史实中,了解相关的数学知识与方法产生的历史背景,体会其中的思想、方法和创立一门新学科的艰辛.。
频率的稳定性教学目标(一)知识认知要求1.如何收集与处理数据.2.会绘制频数分布直方图及折线图.3.了解频数分布的意义,会得出一组数据的频数分布.(二)能力训练要求1.初步经历数据的收集与处理的过程,发展学生初步的统计意识和数据处理能力.2.通过经历调查、统计、研讨等活动,发展学生实践能力与合作意识.(三)情感与价值观要求通过学习,培养学生勇于提出问题,大胆设计,勇于探索与解决问题的能力.教学重点1.了解频数分布的意义,会得出一组数据的频数分布直方图、频数分布折线图.2.数据收集与处理.教学难点1.决定组距与组数.2.数据分布规律.教学过程一、导入新课请大家一起回忆一下,我们如何收集与处理数据.1.首先通过确定调查目的,确定调查对象.2.收集有关数据.3.选择合理的数据表示方式统计数据.4.根据所收集的数据进行数据计算.根据特征数字,估计总体情况,设计可行的计划与方案,并不断实施与改进方案.这位同学总结得很好.你能否帮卖雪糕的李大爷设计一种方案,确定各种牌子的雪糕应进多少?首先应开展调查.统计一下李大爷每天卖出的A、B、C、D、E五个牌子雪糕的数量. 二、讲授新课这是小丽统计的最近一个星期李大爷平均每天能卖出的A、B、C、D、E五个牌子雪糕的数量.(投影)根据上表绘制一张频数分布直方图.(如下)根据小丽的统计结果,请你为李大爷设计一个进货方案. A、B两种雪糕卖出的较多,可以多进些,D种雪糕卖出的少,可以少进些.A多进多少?B多进多少?D进多少?如何通过比例确定?A占总数的25%,B占总数的35%,C占总数的13%,D占总数的8%,E占总数的19%.如何确定进货的总数,还应考虑哪些因素?2.做一做例:学校要为同学们订制校服,为此小明调查了他们班50名同学的身高,结果(单位cm).如下:(投影)141 165 144 171 145 145 158150 157 150 154 168 168 155155 169 157 157 157 158 149150 150 160 152 152 159 152159 144 154 155 157 145 160160 160 158 162 155 162 163155 163 148 163 168 155 145 172(表一)填写下表,并将上述数据用适当的统计图表示出来.想一想,你同父母一起去商店买衣服时,衣服上的号码都有哪些,标志是什么?我看到有些衣服上标有M、S、L、XL、XXL等号码.但我不清楚代表的具体范围.适合什么人穿.但肯定与身高、胖瘦有关.这位同学很善动脑,也爱观察. S代表最小号,身高在150~155 cm的人适合穿S号.M 号适合身高在155~160 cm的人群着装…….厂家做衣服订尺寸也并不是按所有人的尺寸定做,而是按某个范围分组批量生产.如何确定组距与组数呢?分组组数的确定,不仅与数据多少有关,还与数据的取值情况有关.在实际决定组数时,常有一个尝试过程:先定组距,再计算出相应的组数.看看这个组数是否大致符合确定组数的经验法则.在尝试中,往往要比较相应于几个组距的组数,然后从中选定一个较为合适的组数.我们一起看下表:小亮的做法.144 cm以下145~149 cm 150~154 cm3 6 9155~159 cm 160~164 cm 165~169 cm16 9 5170 cm以上2 小亮是怎么做的?先分组,再得到相应各组的学生人数.根据上表绘制统计图(如下)(投影)图5-3当收集的数据连续取值时,我们通常将数据分组,然后再绘制频数分布直方图.注:数据越多,分的组数也应越多,当数据在100以内时,通常按照数据的多少,分成5~12组.为了更好地刻画数据的总体规律,我们还可以在得到的频数分布直方图上取点、连线,得到如下的频数分布折线图.(投影)图5-4比较一下各种统计图各自的优缺点.表一是没有经过整理的数据.数据多,而且数量表示上不简单、不直观.各个数据所占人数多少也没有直接给出,还需要计算.表二,优点:数量表示上确切.即准确表示出各个数据所占的人数.缺点:不能直观反映数据的总体规律.数据也较多.图5-3、图5-4能直观形象地将数据表示出来,而且能刻画出数据的总体规律.中间人数较集中,两边较少.我们在收集到一些数据后,一定要选择合理的表示方式表示所收集的数据.常用表格与图表两种方式.何时用哪种方式,应根据我们研究问题的侧重点来定.具体问题具体分析.不要生搬硬套,应多总结、提炼研究问题的思想和方法.不要一味去模仿.只要多动脑去思考.我相信同学们会创新出更好的方法.三、课堂练习见书本四、课时小结1.如何整理所收集的数据.2.将数据用适当的统计图表示出来.(1)表格形式.(2)频数分布直方图(3)频数分布折线图.3.各种统计图、表的优缺点.4.根据统计图表信息,提出合理化建议.今后我们还要学习一些统计知识,一些图表的制作.如频率分布直方图及它的意义.五、课后作业习题5.3。
目录Ⅰ.教学任务分析教材分析 (1)学情分析 (1)教学四维目标 (2)教学重点 (2)教学难点 (2)教法学法 (2)Ⅱ.教学过程设计一、巧设情境,引入新课 (3)二、新知探究,合作交流 (3)三、运用新知,课堂练习 (9)四、互动环节,智力比拼 (9)五、思维延伸,拓展提升 (10)六、盘点收获,自我提升 (11)七、明星小组,量化考核 (11)八、教师寄语,情感升华 (11)九、板书设计 (12)III.教学反思 (13)§6.2.2 频率的稳定性Ⅰ、教学任务分析Ⅱ、教学过程设计一、巧设情境,引入新课班级通过上课情况、作业质量、教师评价等多方面的综合考察和评比,优秀小组已经诞生,他们是张钰婷组和李梓浩组。
现在学校要求每个班级上报一个优秀小组进行表彰,但是这两个小组综合得分并列班级第一,该如何抉择呢?经过思考之后,老师决定用抛掷一枚均匀硬币的方式来评选优秀小组,大家认为抛掷一枚均匀的硬币,硬币落下后,会出现哪两种情况?引发学生思考1:同学们认为正面朝上和正面朝下的可能性相同吗?学生思考2:用抛掷一枚均匀硬币的方式评选班级优秀小组,对这两个小组公平吗?二、新知探究,合作交流设计意图由自己班级熟悉的同学,评选优秀小组引入能引起学生的学习兴趣,而抛硬币本身是一个十分有趣的活动,引发学生思考:正面朝上和正面朝下的可能性相同吗?有利于课堂教学的迅速开展。
(一)引导学生,启发猜想通过用抛硬币的方式评选班级优秀小组引发学生猜想:抛掷一枚均匀硬币正面朝上和正面朝下的可能性相同。
如何对猜想进行验证呢?——试验(二)小组合作,开展试验1.以3位同学为一组,做30次掷硬币游戏,并将数据记录在下表中:抛掷硬币注意事项:(1)将硬币从一定高度任意抛出,以保证试验的随机性;(2)若硬币掉落桌面或者地面,以地面或桌面试验结果为准,如果硬币出现直立情况,则重新进行试验。
2.展示2-3组同学的试验结果,引发学生思考1:为什么在30次抛硬币的试验中,组与组之间正面朝上的次数差距会比较大?——试验次数太少引发学生思考2:如何加大试验次数?3.累计全班同学的试验结果, 并将试验数据汇总到表格中:引导学生从6.2第一课时抛掷图钉的活动受到启发,采用试验的方法验证自己猜想。
“频率的稳定性(1)”教学设计一、教学目标1.知识与技能: 通过掷图钉活动,经历猜测、试验和收集试验数据、分析试验结果、验证猜测等活动过程,初步了解在试验次数很大时,随机事件发生的频率具有稳定性.2.过程与方法: 通过探究活动,培养动手能力和处理数据的能力,发展实事求是的探索精神和合作意识.3.情感与态度:通过对实际问题的分析,进一步提高“用数学”的意识与能力,体会数学的价值发展.二、教学重难点教学重点:通过试验让学生理解当试验次数较大时,实验的频率具有稳定性,并据此能初步估计出某一事件发生的可能性大小.教学难点:对大量重复试验得到的数据进行统计分析.三、教学过程第一环节情境引入,激发兴趣创设情景对话:小明和小军利用周末时间在家制作照片墙,但是图钉不够用,派谁去买呢?于是小明提出掷图钉的建议:掷一枚图钉,落地后会出现两种情况,如果钉尖朝上,小军去;如果钉尖朝下,小明去.引出钉尖朝上和钉尖朝下的可能性不同的猜测,小军说:“直觉告诉我,任意掷一枚图钉,钉尖朝上和钉尖朝下的可能性是不相同的.”小明说:“其实我的直觉和你一样,但我不知道对不对.”进而产生通过试验验证的想法.设计意图:从生活中的常见问题出发,让学生合理猜测游戏结果.让学生体验到并非所有事件的概率都可以通过理论计算得到.我们所学到的很多知识,都是先猜测,再经过多次的试验得出来的.由此引导学生通过大量的试验来验证.培养学生猜测结果的能力,并初步体会试验结果可能性有可能不同.第二环节新知探究,合作试验活动内容:(一)猜测让学生讨论,猜想钉尖朝上和钉尖朝下的可能性是否相同(二)试验和收集试验数据(1)拿出准备好的图钉,两人一组做20次掷图钉游戏,并将数据记录在下表中:试验总次数钉尖朝上的次数钉尖朝下的次数钉尖朝上的频率()介绍频率定义:在n 次重复试验中,不确定事件A 发生了m 次,则比值n m 称为事件A 发生的频率.(2)累计全班同学的试验结果,并将试验数据汇总填入下表: 设计意图:通过分组试验让学生体验随机事件的可能性,验证猜测.当试验的次数较少时,规律不明显,甚至与有的学生的猜测有矛盾,从而让学生思考造成这种结果的原因是试验的次数不够,培养学生发现问题、解决问题的能力.进而学生有目的地把全班试验的结果都统计出来,体会试验和收集试验数据的过程,领会数学是来源于生活,培养学生的合作精神和实事求是的探索意识,激发学生探索随机事件规律的兴趣.第三环节 探索交流,验证猜测(三)分析试验数据(3)请同学们根据上表,完成折线统计图:(4)观察折线统计图,钉尖朝上的频率的变化有什么规律?钉尖朝下的频率()试验总次数n20 40 80 120 160 200 240 280 320 360 400 钉尖朝上次数m钉尖朝上频率钉尖朝上的频率 1.0 0.80.6 0.40.2得出结论:在试验次数很大时,钉尖朝上的频率都会在一个常数附近摆动,即钉尖朝上的频率具有稳定性.设计意图:教师引导在学生探索的过程中,利用Excel表格协助统计,绘制折线统计图.使学生在探索的过程中感受计算机对数据的处理有巨大作用.学生通过观察形象直观的统计图,进行分析,引导学生用自己的语言进行描述,如有的学生发现“一开始的时候频率相差较大,随着试验次数越来越多,频率相差的值越来越小.”有的学生发现“试验的次数较小时,折线上下摆动的幅度可能比较大;但当试验的次数很大时,折线的波动幅度越来越小,频率越来越稳定”.进而得出结论在试验次数很大时,钉尖朝上的频率都会在一个常数附近摆动,即钉尖朝上的频率具有稳定性.(四)验证猜测学生分组讨论议一议的两个问题,进一步加深对频率稳定性的认识,初步体会用频率可以估计事件发生的可能性的大小.通过数学史实的介绍,让学生了解数学知识产生的背景,增长见闻,培养学习数学的兴趣.第四环节随堂练习巩固新知1.某位篮球爱好者进行了三轮投篮试验,结果如下表:轮数投球数命中数命中率第一轮1080.8第二轮15100.67第三轮1290.75 A.0.8B.0.75C.0.67D.不能确定2.为了看图钉落地后钉尖着地的频率有多大,小明做了大量重复试验,发现钉尖着地的次数是实验总次数的40%,下列说法错误的是( )A.钉尖着地的频率是0.4B.前20次试验结束后,钉尖着地的次数一定是8次C.随着试验次数的增加,钉尖着地的频率稳定在0.4附近D.钉尖着地的可能性小于钉尖朝上的可能性3.一个不透明的袋子里有若干个小球,它们除了颜色外,其它都相同,甲同学从袋子里随机摸出一个球,记下颜色后放回袋子里,摇匀后再次随机摸出一个球,记下颜色,…,甲同学反复大量实验后,根据白球出现的频率绘制了如图所示的统计图,则下列说法正确的是()A. 袋子一定有三个白球B. 袋子中白球占小球总数的十分之三C. 再摸三次球,一定有一次是白球D. 再摸1000次,摸出白球的次数会接近330次4.某射击运动员在同一条件下进行射击,结果如下表所示:射击总次数n1020501002005001000击中靶心的次数m9164188168429861击中靶心的频率(1)完成上表;(2)根据上表,画出该运动员击中靶心的频率的折线统计图;(3)观察画出的折线统计图,击中靶心的频率的变化有什么规律?5.一粒木质中国象棋棋子“車”,它的正面雕刻一个“車”字,它的反面是平的,将棋子从一定高度下抛,落地反弹后可能是“車”字面朝上,也可能是“車”字朝下.由于棋子的两面不均匀,为了估计“車”字朝上的机会,某实验小组做了棋子下抛实验,并把实验数据整理如下:实验次数20406080100120140160“車”字朝上的频数14183847527788相应的频率0.70.450.630.590.520.550.56(1)请将表中数据补充完整,并画出折线统计图中剩余部分.(2)如果实验继续进行下去,根据上表数据,这个实验的频率将接近于该事件发生的机会,请估计这个机会约是多少?设计意图:随堂练习第1-3题为简单基础的选择题,主要是让学生感受随机事件的可能性有大有小,不能用“一定”及“肯定”来描述随机事件.通过大量的试验,频率都会在一个常数附近摆动,具有稳定性.因此大量的试验能帮助我们推测事件的可能性大小.随堂练习第4、5题则是练习学生处理数据,绘制折线统计图的能力,其中第5题给出折线统计图的一部分进行补充,节省了学生答题的时间,提高了课堂教学的效率.本环节可以采用抢答的形式或“击鼓传花”进行,题目浅显易做,适合学生独立完成,有利于活跃课堂气氛,激发学习兴趣.第五环节课堂小结感悟升华1.在n次重复试验中,事件A发生了m 次,则比值称为事件A发生的频率.2.当试验次数很大时,钉尖朝上的频率,都会在一个常数附近摆动,即钉尖朝上的频率具有稳定性.设计意图:通过回顾本节课各项环节,师生互相交流如何通过试验的方法来确定频率的稳定性,及用频率来估计事件发生的可能性的大小.同时总结活动体验,有利于学生积累活动经验,形成良好的数学思考过程.第六环节课后作业综合提升教材142页习题6.21.对某批产品的质量进行随机抽查,结果如下表所示:随机抽取的产品数n1020501002005001000合格的产品数m9194793187467935合格率(1)完成上表;(2)根据上表,画出产品合格率变化的折线统计图;(3)观察画出的折线统计图,产品合格率的变化有什么规律?2.数学理解抛一个如图所示的瓶盖,盖口向上或盖口向下的可能性是否一样大?怎样才能验证自己结论的正确性?设计意图:让学生学以致用,通过综合题和实践运用提升学生动手能力和分析数据的能力,进一步提高“用数学”的意识与能力,体会数学的价值发展.四、教学设计反思学生通过一节课时间经历“猜测—实验和收集实验数据—分析试验结果—验证猜测”的过程,探索大量重复试验中不确定事件发生的频率会稳定在一个常数附近.领会数学来源于生活,服务于生活.整个课堂要体现学生为主体,教师重在做好引导,操作时要提醒学生注意图钉不要扎到手,可以设计学生提醒准备一个盒子,扔到盒子里,或用书本围成一块空处进行投掷.数据处理时如果班级学生人数较多,数据也较多,计算可能较为复杂,教师也做好Excel表格进行协助,微课中有具体表格操作指导,快速得到折线统计图,方便学生观察,也有利于教学过程顺利进展,促进教学目的达成.议一议环节有助于学生各抒己见,将本节课的猜测进行验证,推向内容的高潮.随堂练习可采取一些活动,激发学生兴趣,有助于推动课堂氛围.整个课堂激发了学生的竞争意识、合作意识、动手操作意识等,极大地调动学生的学习的积极性。
第六章概率初步
2 频率的稳定性(第1课时)
一、教学目标:
1.知识与技能: 通过试验让学生理解当试验次数较大时,试验频率稳定在某一常数附近,并据此能估计出某一事件发生的频率。
2.过程与方法: 在活动中进一步发展学生合作交流的意识与能力,发展学生的辩证思维能力。
3.情感与态度:通过对实际问题的分析,培养使用数学的良好意识,激发学习兴趣,体验数学的应用价值;进一步体会“数学就在我们身边”,发展学生的应用数学的能力.
教学重点:通过试验让学生理解当试验次数较大时,实验的频率具有稳定性,并据此能初步估计出某一事件发生的可能性大小。
教学难点:大量重复试验得到频率的稳定值的分析.
二、教学过程分析
本节课设计了七个教学环节:课前准备;创设情境,激发兴趣;分组试验,获取数据;合作交流,探究新知;巩固训练,发展思维;归纳小结;布置作业。
第一环节课前准备
以2人合作小组为单位准备图钉。
第二环节创设情境,激发兴趣
活动内容:教师首先设计一个情景对话:以小明和小丽玩抛图钉游戏为背景展开交流,引出钉尖朝上和钉尖朝下的可能性不同的猜测,进而产生通过试验验证的想法。
活动目的:培养学生猜测游戏结果的能力,并从中初步体会试验结果可能性有可能不同。
让学生体会猜测结果,这是很重要的一步,我们所学到的很多知识,都是先猜测,再经过多次的试验得出来的。
而且由此引出猜测是需通过大量的试验来验证。
这就是我们本节课要来研究的问题。
第三环节分组试验,获取数据
活动内容:参照教材提供的任意掷一枚图钉,出现钉尖朝上和钉尖朝下两种结果,让同学猜想钉尖朝上和钉尖朝下的可能性是否相同的情境,让学生来做做试验。
请同学们拿出准备好的图钉:
m称介绍频率定义:在n次重复试验中,不确定事件A发生了m次,则比值
n
为事件发生的频率。
(2)累计全班同学的试验结果,并将试验数据汇总填入下表:
证之前的猜想.当试验的次数较少时,规律不明显,甚至与开始的猜测有矛盾,让学生动脑得出造成这种结果的原因是试验的次数不够,培养学生发现问题、解决问题的能力。
从而使学生自发的把全班试验的结果都统计出来,学会进行试验和收集试验数据。
分组试验也可以培养学生的合作精神和探索意识,激发学生形
成由大胆猜想到验证猜想最后总结规律的数学思考过程.
第四环节操作交流,探究新知
活动内容:(1)请同学们根据已填的表格,完成下面的折线统计图
(2)小明共做了400次掷图钉游戏,并记录了游戏的结果绘制了下面的折线统计图,观察图像,钉尖朝上的频率的变化有什么规律?
结论:在试验次数很大时,钉尖朝上的频率都会在一个常数附近摆动,即钉尖朝上的频率具有稳定性
活动目的:通过绘制折线统计图的过程,使学生进一步对数据进行处理,观察形象直观的统计图进而得出结论,突出本节课的重点.学生分组讨论议一议的两个问题,进一步加深对频率稳定性的认识,初步体会用频率可以估计事件发生的可能性的大小.
第五环节巩固训练发展思维
活动内容:
问题1、某射击运动员在同一条件下进行射击,结果如下表:
(2)根据上表画出该运动员击中靶心的频率的折线统计图;
(3)观察画出的折线统计图,击中靶心的频率变化有什么规律?
数学理解:抛一个如图所示的瓶盖,盖口向上或盖口向下的可能性是否一样大?怎样才能验证自己结论的正确性?
活动目的:设置问题1主要是衔接本节课的探索试验题,使学生形成分析数据、计算数据、绘制表格、归纳总结的数学思维,同时进一步体会频率的稳定性。
本题难度不大,适合学生独立完成后展演。
第六环节回忆思考,归纳小结
活动内容:1、通过本节课的学习,你了解了哪些知识?
2、在本节课的教学活动中,你获得了哪些活动体验?
活动目的:对本节课的知识进行回顾,师生互相交流如何通过试验的方法来确定频率的稳定性,及用频率来估计事件发生的可能性的大小。
同时总结活动体验,有利于学生积累活动经验,形成良好的数学思考过程。
实际教学效果:学生畅所欲言自己的切身感受与实际收获,树立正确的随机观念,通过现实世界中熟悉和感兴趣的问题,丰富对频率背景的认识,积累大量的活动经验。
第七环节布置作业
教材 145页知识技能 1。